1
|
Koo HJ, Ha H, Lee GH, Lee JE, Park SH, Park KJ, Kang JW, Yang DH. Evaluation of Aortic Diseases Using Four-Dimensional Flow Magnetic Resonance Imaging. Vasc Specialist Int 2024; 40:41. [PMID: 39690708 DOI: 10.5758/vsi.240066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 12/19/2024] Open
Abstract
The complex hemodynamic environment within the aortic lumen plays a crucial role in the progression of aortic diseases such as aneurysms and dissections. Traditional imaging modalities often fail to provide comprehensive flow dynamics that are essential for precise risk assessment and timely intervention. The advent of time-resolved, three-dimensional (3D) phase-contrast magnetic resonance imaging (4D flow MRI) has revolutionized the evaluation of aortic diseases by allowing a detailed visualizations of flow patterns and quantification of hemodynamic parameters. This review explores the utility of 4D flow MRI in the assessment of thoracic aortic diseases, highlighting the key hemodynamic parameters, including flow velocity, wall shear stress, oscillatory shear index, relative residence time, vortex, turbulent kinetic energy, flow displacement, pulse wave velocity, aortic distensibility, energy loss, and stasis. We elucidate the significant findings of studies utilizing 4D flow MRI in the context of aortic aneurysms and dissections, highlighting its role in enhancing our understanding of disease mechanisms and improving clinical outcomes. This review underscores the potential of 4D flow MRI to refine risk stratification and guide therapeutic decisions, ultimately contributing to better management of aortic diseases.
Collapse
Affiliation(s)
- Hyun Jung Koo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hojin Ha
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Korea
| | - Gyu-Han Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Institute of Medical Devices, Kangwon National University, Chuncheon, Korea
| | - Jong En Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Hyub Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung-Jin Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Joon-Won Kang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Maroun A, Scott MB, Catania R, Berhane H, Jarvis K, Allen BD, Barker AJ, Markl M. Multiyear Interval Changes in Aortic Wall Shear Stress in Patients with Bicuspid Aortic Valve Assessed by 4D Flow MRI. J Magn Reson Imaging 2024; 60:2580-2589. [PMID: 38426608 DOI: 10.1002/jmri.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In patients with bicuspid aortic valve (BAV), 4D flow MRI can quantify regions exposed to abnormal aortic hemodynamics, including high wall shear stress (WSS), a known stimulus for arterial wall dysfunction. However, the long-term multiscan reproducibility of 4D flow MRI-derived hemodynamic parameters is unknown. PURPOSE To investigate the long-term stability of 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps in patients with BAV undergoing multiyear surveillance imaging. STUDY TYPE Retrospective. POPULATION 20 BAV patients (mean age 48.4 ± 13.9 years; 14 males) with five 4D flow MRI scans, with intervals of at least 6 months between scans, and 125 controls (mean age: 50.7 ± 15.8 years; 67 males). FIELD STRENGTH/SEQUENCE 1.5 and 3.0T, prospectively ECG and respiratory navigator-gated aortic 4D flow MRI. ASSESSMENT Automated AI-based 4D flow analysis pipelines were used for data preprocessing, aorta 3D segmentation, and quantification of ascending aorta (AAo) peak velocity, peak systolic WSS, and heatmap-derived relative area of elevated WSS compared to WSS ranges in age and sex-matched normative control populations. Growth rate was derived from the maximum AAo diameters measured on the first and fifth MRI scans. STATISTICAL TESTS One-way repeated measures analysis of variance. P < 0.05 indicated significance. RESULTS One hundred 4D flow MRI exams (five per patient) were analyzed. The mean total follow-up duration was 5.5 ± 1.1 years, and the average growth rate was 0.3 ± 0.2 mm/year. Peak velocity, peak systolic WSS, and relative area of elevated WSS did not change significantly over the follow-up period (P = 0.64, P = 0.69, and P = 0.35, respectively). The patterns and areas of elevated WSS demonstrated good reproducibility on semiquantitative assessment. CONCLUSION 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps showed good multiyear and multiscan stability in BAV patients with low aortic growth rates. These findings underscore the reliability of these metrics in monitoring BAV patients for potential risk of dilation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael B Scott
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Roberta Catania
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Haben Berhane
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly Jarvis
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Kara R, Vergara C. Assessing turbulent effects in ascending aorta in presence of bicuspid aortic valve. Comput Methods Biomech Biomed Engin 2024; 27:2349-2361. [PMID: 37950490 DOI: 10.1080/10255842.2023.2279938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Aortic valves with bicuspids have two rather than three leaflets, which is a congenital heart condition. About 0.5-2% of people have a bicuspid aortic valve. Blood flow through the aorta is commonly believed to be laminar, although aortic valve disorders can cause turbulent transitions. Understanding the impact of turbulence is crucial for foreseeing how the disease will progress. The study's objective was use large eddy simulation to provide a thorough analysis of the turbulence in bicuspid aortic valve dysfunction. Using a large eddy simulation, the blood flow patterns of the bicuspid and tricuspid aortic valves were compared, and significant discrepancies were found. The velocity field in flow in bicuspid configurations was asymmetrically distributed toward the ascending aorta. In tricuspid aortic valve (TAV) the flow, on the other hand, was symmetrical within the same aortic segment. Moreover, we looked into standard deviation, Q-criterion, viscosity ratio and wall shear stresses for each cases to understand transition to turbulence. Our findings indicate that in the bicuspid aortic valve (BAV) case, the fluid-dynamic abnormalities increase. The global turbulent kinetic energy and time-averaged wall shear stress for the TAV and BAV scenarios were also examined. We discovered that the global turbulent kinetic energy was higher in the BAV case compared to TAV, in addition to the increased wall shear stress induced by the BAV in the ascending aorta.
Collapse
Affiliation(s)
- Rukiye Kara
- Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey
| | - Christian Vergara
- LABS - Dipartimento di Chimica, Materiali e Ingegneria Chimica" Giulio Natta" - Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Govindarajan V, Wanna C, Johnson NP, Kolanjiyil AV, Kim H, Kitkungvan D, McPherson DM, Grande-Allen J, Chandran KB, Estrera A, Ramzy D, Prakash S. Unraveling aortic hemodynamics using fluid structure interaction: biomechanical insights into bicuspid aortic valve dynamics with multiple aortic lesions. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01892-w. [PMID: 39365514 DOI: 10.1007/s10237-024-01892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention. In this study, a patient-specific workflow was utilized to biomechanically assess a Turner syndrome patient's BAV, dilated ascending aorta, and elongated arch. Results showed significant improvements in valve function (effective orifice area, EOA increased approximately twofold) and reduction in valve stress (~ 1.8-fold) following virtual commissurotomy, leading to enhanced flow dynamics and decreased viscous dissipation (~ twofold) particularly in the ascending aorta. However, increased viscous dissipation in the distal transverse aortic arch offset its local reduction in the AAo post-intervention, emphasizing the elongated arch's role in aortic hemodynamics. Our findings highlight the importance of comprehensive biomechanical evaluation and integrating patient-specific modeling with conventional imaging techniques for improved disease assessment, risk stratification, and treatment planning, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Vijay Govindarajan
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA.
- Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Charles Wanna
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - Nils P Johnson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | | | | | - Danai Kitkungvan
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - David M McPherson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | | | - Krishnan B Chandran
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
- The University of Iowa, Iowa City, IA, USA
| | - Antony Estrera
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - Danny Ramzy
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| | - Siddharth Prakash
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, TX, 77054, USA
| |
Collapse
|
5
|
Calò K, Guala A, Mazzi V, Lodi Rizzini M, Dux-Santoy L, Rodriguez-Palomares J, Scarsoglio S, Ridolfi L, Gallo D, Morbiducci U. Pathophysiology of the ascending aorta: Impact of dilation and valve phenotype on large-scale blood flow coherence detected by 4D flow MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108369. [PMID: 39146759 DOI: 10.1016/j.cmpb.2024.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND OBJECTIVE The evidence on the role of hemodynamics in aorta pathophysiology has yet to be robustly translated into clinical applications, to improve risk stratification of aortic diseases. Motivated by the need to enrich the current understanding of the pathophysiology of the ascending aorta (AAo), this study evaluates in vivo how large-scale aortic flow coherence is affected by AAo dilation and aortic valve phenotype. METHODS A complex networks-based approach is applied to 4D flow MRI data to quantify subject-specific AAo flow coherence in terms of correlation between axial velocity waveforms and the aortic flow rate waveform along the cardiac cycle. The anatomical length of persistence of such correlation is quantified using the recently proposed network metric average weighted curvilinear distance (AWCD). The analysis considers 107 subjects selected to allow an ample stratification in terms of aortic valve morphology, absence/presence of AAo dilation and of aortic valve stenosis. RESULTS The analysis highlights that the presence of AAo dilation as well as of bicuspid aortic valve phenotype breaks the physiological AAo flow coherence, quantified in terms of AWCD. Of notice, it emerges that cycle-average blood flow rate and relative AAo dilation are main determinants of AWCD, playing opposite roles in promoting and hampering the persistence of large-scale flow coherence in AAo, respectively. CONCLUSIONS The findings of this study can contribute to broaden the current mechanistic link between large-scale blood flow coherence and aortic pathophysiology, with the prospect of enriching the existing tools for the in vivo non-invasive hemodynamic risk assessment for aortic diseases onset and progression.
Collapse
Affiliation(s)
- Karol Calò
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Mazzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Lodi Rizzini
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Jose Rodriguez-Palomares
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Stefania Scarsoglio
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Luca Ridolfi
- PolitoBIOMed Lab, Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
6
|
El-Nashar H, Sabry M, Tseng YT, Francis N, Latif N, Parker KH, Moore JE, Yacoub MH. Multiscale structure and function of the aortic valve apparatus. Physiol Rev 2024; 104:1487-1532. [PMID: 37732828 PMCID: PMC11495199 DOI: 10.1152/physrev.00038.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.
Collapse
Affiliation(s)
- Hussam El-Nashar
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Malak Sabry
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nadine Francis
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kim H Parker
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdi H Yacoub
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Fujiwara T, Malone LJ, Chatfield KC, Berthusen A, Fonseca B, Browne LP, Barker AJ. Assessment of abnormal transvalvular flow and wall shear stress direction for pediatric/young adults with bicuspid aortic valve: A cross-sectional four-dimensional flow study. J Cardiovasc Magn Reson 2024; 26:101102. [PMID: 39326557 DOI: 10.1016/j.jocmr.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Aortic dilation is seen in pediatric/young adult patients with bicuspid aortic valve (BAV), and hemodynamic markers to predict aortic dilation are necessary for monitoring. Although promising hemodynamic metrics, such as abnormal wall shear stress (WSS) magnitude, have been proposed for adult BAV patients using four-dimensional (4D) flow cardiovascular magnetic resonance, those for pediatric BAV patients have less frequently been reported, partly due to scarcity of data to define normal WSS range. To circumvent this challenge, this study aims to investigate if a recently proposed 4D flow-based hemodynamic measurement, abnormal flow directionality, is associated with aortic dilation in pediatric/young adult BAV patients. METHODS 4D flow scans for BAV patients (<20 years old) and age-matched controls were retrospectively enrolled. Static segmentation for the aorta and pulmonary arteries was obtained to quantify peak systolic hemodynamics and diameters in the proximal aorta. In addition to peak velocity, WSS, vorticity, helicity, and viscous energy loss, direction of aortic velocity and WSS in BAV patients were compared with that of control atlas using registration technique; angle differences of >60 deg and >120 deg were defined as moderately and severely abnormal, respectively. The association between the obtained metrics and normalized diameters (Z-scores) was evaluated at the sinotubular junction, mid-ascending aorta, and distal ascending aorta. RESULTS Fifty-three BAV patients, including 18 with history of repaired aortic coarctation, and 17 controls were enrolled. Correlation between moderately abnormal velocity/WSS direction and aortic Z-scores was moderate to strong at the sinotubular junction and mid-ascending aorta (R = 0.62-0.81; p < 0.001) while conventional measurements exhibited weaker correlation (|R| = 0.003-0.47, p = 0.009-0.99) in all subdomains. Multivariable regression analysis found moderately abnormal velocity direction and existence of aortic regurgitation (only for isolated BAV group) were independently associated with mid-ascending aortic Z-scores. CONCLUSION Abnormal velocity and WSS directionality in the proximal aorta were strongly associated with aortic Z-scores in pediatric/young adult BAV patients.
Collapse
Affiliation(s)
- Takashi Fujiwara
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - LaDonna J Malone
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Kathryn C Chatfield
- Department of Pediatrics, Division of Cardiology, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Alex Berthusen
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Brian Fonseca
- Department of Pediatrics, Section of Pediatric Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Lorna P Browne
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA.
| | - Alex J Barker
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, Colorado 80045, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E Montview Blvd, Aurora, Colorado 80045, USA.
| |
Collapse
|
8
|
Jia Y, Khokhar AA, Pilgrim T, Costa G, Mylotte D, Sammartino S, Tomii D, Fosbøl E, Tamburino C, Kofoed KF, Barbanti M, Windecker S, Chen M, De Backer O. Incidence and predictors of continued ascending aortic dilatation after TAVI in patients with bicuspid aortic stenosis. Clin Res Cardiol 2024:10.1007/s00392-024-02545-9. [PMID: 39297943 DOI: 10.1007/s00392-024-02545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Patients undergoing transcatheter aortic valve implantation (TAVI) for bicuspid aortic stenosis (AS) frequently present with ascending aortic (AAo) dilatation which is left untreated. The objective of this study was to study the natural progression and underlying mechanisms of AAo dilatation after TAVI for bicuspid AS. METHODS Patients with a native bicuspid AS and a baseline AAo maximum diameter > 40 mm treated by TAVI and in whom post-TAVI computed tomography (CT) scans beyond 1 year were available were included. AAo dilatation was deemed to be either continuous (≥ 2 mm increase) or stable (< 2 mm increase or decrease). Uni- and multivariate logistic regression analysis was utilized in order to identify factors associated with continuous AAo dilatation post-TAVI. RESULTS A total of 61 patients with a mean AAo maximum diameter of 45.6 ± 3.9 mm at baseline were evaluated. At a median follow-up of 2.9 years, AAo dimensions remained stable in 85% of patients. Continuous AAo dilatation was observed in 15% of patients at a rate of 1.4 mm/year. Factors associated with continuous AAo dilatation were raphe length/annulus mean diameter ratio (OR 4.09, 95% CI [1.40-16.7], p = 0.022), TAV eccentricity at the leaflet outflow level (OR 2.11, 95%CI [1.12-4.53], p = 0.031) and maximum transprosthetic gradient (OR 1.30, 95%CI [0.99-1.73], p = 0.058). CONCLUSIONS Ascending aortic dilatation in patients undergoing TAVI for bicuspid AS remains stable in the majority of patients. Factors influencing TAV stent frame geometry and function were identified to be associated with continuous AAo dilatation after TAVI; this should be confirmed in future larger cohort studies.
Collapse
Affiliation(s)
- Yuheng Jia
- The Heart Center, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, West China Hospital, Chengdu, China
| | - Arif A Khokhar
- Department of Cardiology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Thomas Pilgrim
- Department of Cardiology and, Cardiovascular Center, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Giuliano Costa
- AOU Policlinico 'G. Rodolico-San Marco', University of Catania, Catania, Italy
| | - Darren Mylotte
- Department of Cardiology, Galway University Hospital, Galway, Ireland
| | - Sofia Sammartino
- AOU Policlinico 'G. Rodolico-San Marco', University of Catania, Catania, Italy
| | - Daijiro Tomii
- Department of Cardiology and, Cardiovascular Center, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Emil Fosbøl
- The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Corrado Tamburino
- AOU Policlinico 'G. Rodolico-San Marco', University of Catania, Catania, Italy
| | | | | | - Stephan Windecker
- Department of Cardiology and, Cardiovascular Center, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Mao Chen
- Department of Cardiology, West China Hospital, Chengdu, China
| | - Ole De Backer
- The Heart Center, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
9
|
Moscarelli M, Zaccone G, Zlahoda-Huzior A, Pernice V, Milo S, Violante F, Trizzino F, Dudek D, Speziale G, Lancellotti P, Fattouch K. Valvular and perivalvular thrombosis following self-expandable aortic valve replacement: analysis of 100 multi-detector computed tomography scans. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae085. [PMID: 39687471 PMCID: PMC11648950 DOI: 10.1093/ehjopen/oeae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 12/18/2024]
Abstract
Aims Subclinical thrombosis may represent an early stage of prosthesis structural disease. Most of the available evidence on the incidence, location, predictors, and consequences of thrombosis comes from studies that have employed balloon-expandable valves. We aimed to describe the different localisations of valvular and perivalvular thrombosis and analyse prosthesis-host multi-detector computed tomography predictors in the context of self-expandable prosthesis. Additionally, we aimed to assess the impact of valvular and perivalvular thrombosis on prosthesis performance and subsequent clinical outcomes. Methods and results This analysis includes 100 consecutive patients with normal renal function who underwent transcatheter aortic valve replacement using Evolut R and received multi-detector computed tomography and transthoracic bi-dimensional echocardiography at the 6 month follow-up. Leaflet thrombosis was detected in 18 (18%) patients; 6 (6%) had at least one leaflet with severe thrombosis. Thrombosis of the anatomic sinus was detected in 24 patients (24%) and was more prevalent in the non-coronary sinus. Subvalvular thrombosis with partial or complete circumferential involvement of the prosthesis inner skirt was diagnosed in 23 patients (23%). Bicuspid valve was the predictor with highest association with hypoattenuated lesions [least absolute shrinkage and selection operator coefficient 0.35, 95%, confidence interval (CI) 0.21-0.68]. There was no difference in terms of haemodynamic structural valve dysfunction, neurological events, and re-hospitalisation between the groups with and without thrombosis (hazard ratio: 0.86, 95% CI: 0.24-3.06, P = 0.82). Conclusion This study showed that in a relatively low-risk population, valvular and perivalvular thrombosis were not rare phenomena following transcatheter aortic valve replacement at early follow-up. Bicuspid valve showed the strongest association with post-implant thrombosis.
Collapse
Affiliation(s)
- Marco Moscarelli
- Department of Cardiovascular Surgery, Maria Eleonora Hospital, Viale della Regione Siciliana Nord Ovest, 1571, 90135 Palermo PA, Italy
- Department of Surgery & Cancer, Faculty of Medicine, Hammersmith Hospital, 72 Du Cane Rd, London W12 0HS, UK
| | - Gregorio Zaccone
- Department of Cardiovascular Surgery, Maria Eleonora Hospital, Viale della Regione Siciliana Nord Ovest, 1571, 90135 Palermo PA, Italy
| | - Adriana Zlahoda-Huzior
- Department of Measurement and Electronics AGH University of Krakow, Poland, al. A. Mickiewicza 30 / B1 30-059 Kraków
- SimHub, VIRMED Sp. z o. o.Ul. Miechowska 5B / 1, 30-055 Kraków, Polska NIP 6772492319
| | - Vincenzo Pernice
- Department of Cardiovascular Surgery, Maria Eleonora Hospital, Viale della Regione Siciliana Nord Ovest, 1571, 90135 Palermo PA, Italy
| | - Sabrina Milo
- Department of Radiology, Maria Eleonora Hospital, Viale della Regione Siciliana Nord Ovest, 1571, 90135 Palermo PA, Italy
| | - Francesco Violante
- Department of Radiology, Maria Eleonora Hospital, Viale della Regione Siciliana Nord Ovest, 1571, 90135 Palermo PA, Italy
| | - Francesca Trizzino
- Department of Cardiovascular Surgery, Maria Eleonora Hospital, Viale della Regione Siciliana Nord Ovest, 1571, 90135 Palermo PA, Italy
| | - Dariusz Dudek
- Jagiellonian University Medical College, Świętej Anny 12, 31-008 Kraków, Poland
| | - Giuseppe Speziale
- Department of Cardiovascular Surgery, Anthea Hospital, GVM Care & Research, Via Camillo Rosalba, 35/37, 70124 Bari BA, Italy
| | - Patrizio Lancellotti
- Département des sciences cliniques, Cardiologie-Pathologies spéciales et réhabilitation, GIGA Institute, B36 Quartier Hôpital 4000 Liège, Belgique
| | - Khalil Fattouch
- Kore University, Faculty of Medicine, Piazza dell'Università, 94100 Enna EN, Italy
| |
Collapse
|
10
|
Martin-Blazquez A, Martin-Lorenzo M, Santiago-Hernandez A, Heredero A, Donado A, Lopez JA, Anfaiha-Sanchez M, Ruiz-Jimenez R, Esteban V, Vazquez J, Aldamiz-Echevarria G, Alvarez-Llamas G. Analysis of Vascular Smooth Muscle Cells from Thoracic Aortic Aneurysms Reveals DNA Damage and Cell Cycle Arrest as Hallmarks in Bicuspid Aortic Valve Patients. J Proteome Res 2024; 23:3012-3024. [PMID: 38594816 PMCID: PMC11301675 DOI: 10.1021/acs.jproteome.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.
Collapse
Affiliation(s)
- Ariadna Martin-Blazquez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Marta Martin-Lorenzo
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | | | - Angeles Heredero
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Alicia Donado
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Juan A Lopez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miriam Anfaiha-Sanchez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Rocio Ruiz-Jimenez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Vanesa Esteban
- Department
of Allergy and Immunology, IIS-Fundación
Jiménez Díaz, Fundación Jiménez Díaz
Hospital-UAM, 28040 Madrid, Spain
- Faculty
of Medicine and Biomedicine, Alfonso X El
Sabio University, 28691 Madrid, Spain
| | - Jesus Vazquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | | - Gloria Alvarez-Llamas
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
- RICORS2040, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department
of Biochemistry and Molecular Biology, Complutense
University, 28040 Madrid, Spain
| |
Collapse
|
11
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Koike H, Nishimura T, Morikawa M. Quantitative evaluation of pulmonary hypertension using 4D flow MRI: A retrospective study. Heliyon 2024; 10:e31177. [PMID: 38813238 PMCID: PMC11133668 DOI: 10.1016/j.heliyon.2024.e31177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
Background Pulmonary hypertension (PH) is a severe vascular disorder that may affect 50 % of patients with heart failure. Currently, right-sided heart catheterization is required to definitively diagnose PH. However, this method is invasive and thus may not be appropriate for repeated, long-term monitoring of PH patients. This retrospective study's aim was to evaluate whether 4D flow magnetic resonance imaging (MRI) can be used to quantitively measure flow parameters to identify patients with PH. Methods The study cohort included 97 patients recruited from a single institution and divided into three groups based on echocardiographic estimate of pulmonary artery systolic pressure (PASP): normal group with PASP<36 mmHg, borderline PH group with PASP of 37-50 mmHg, and PH group with PASP>50 mmHg. 4D flow MRI was used to quantitively assess blood flow and velocity, regurgitation, wall shear stress (WSS) and kinetic energy in the pulmonary artery trunk, right main pulmonary artery, and left pulmonary artery. Two experienced radiologists independently analyzed the MR images, blinded to clinical details. Results We found a significant difference in WSS in the pulmonary artery trunk, right main pulmonary artery and left main pulmonary artery among the three patient groups. We also found significant differences in the kinetic energy and average through velocity in the pulmonary artery trunk and right main pulmonary artery, and significant differences in the flow rate in the right main pulmonary artery. Conclusion These data suggest that 4D flow MRI can quantitate pulmonary artery flow parameters and distinguish between patients with and without PH.
Collapse
Affiliation(s)
- Hirofumi Koike
- Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takamasa Nishimura
- Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Minoru Morikawa
- Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
13
|
Kiljander T, Kauhanen P, Sillanmäki S, Lottonen-Raikaslehto L, Husso M, Ylä-Herttuala E, Saari P, Kokkonen J, Laukkanen J, Mustonen P, Hedman M. Repaired coarctation of the aorta does not affect four-dimensional flow metrics in bicuspid aortic valve disease. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 38:ivae086. [PMID: 38704861 PMCID: PMC11101282 DOI: 10.1093/icvts/ivae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES The objective of this study was primarily to compare four-dimensional flow magnetic resonance imaging metrics in the ascending aorta (AA) of patients with right-left fusion type bicuspid aortic valve (RL-BAV) and repaired coarctation of the aorta (CoA) to RL-BAV without CoA. Metrics of patients with RL-BAV were also compared to the matched group of patients with common tricuspid aortic valve (TAV). METHODS Eleven patients with RL-BAV and CoA, 11 patients with RL-BAV without CoA and 22 controls with TAV were investigated. Peak velocity (cm/s), peak flow (ml/s) and flow displacement (%) were analysed at 5 pre-defined AA levels. In addition, regional wall shear stress (WSS, mN/m2), circumferential WSS (WSSc) and axial WSS (WSSa) at all levels were quantified in 6 sectors of the aortic circle. Averaged WSS values on each level (WSSavg, WSSc, avg and WSSa, avg) were calculated as well. RESULTS Peak velocity at the proximal tubular AA was significantly lower in BAV and CoA group (P = 0.047) compared to BAV without CoA. In addition, the WSSa, avg was found to be higher for the BAV and CoA group at proximal AA respectively (P = 0.040). No other significant differences were found between these groups. BAV group's peak velocity was higher at every level (P < 0.001-0.004) compared to TAV group. Flow displacement was significantly higher for the BAV group at every level (P < 0.001) besides at the most distal level. All averaged WSS values were significantly higher in BAV patients in distal AA (P < 0.001-0.018). CONCLUSIONS Repaired CoA does not relevantly alter four-dimensional flow metrics in the AA of patients with RL-BAV. However, RL-BAV majorly alters flow dynamics in the AA when compared to patients with TAV. CLINICAL TRIAL REGISTRATION NUMBER https://www.clinicaltrials.gov/study/NCT05065996, Unique Protocol ID 5063566.
Collapse
Affiliation(s)
- Teemu Kiljander
- Department of Cardiology, Tampere University Hospital, Heart Hospital NOVA, Jyväskylä, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petteri Kauhanen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Saara Sillanmäki
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Minna Husso
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Elias Ylä-Herttuala
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Petri Saari
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jorma Kokkonen
- Department of Cardiology, Tampere University Hospital, Heart Hospital NOVA, Jyväskylä, Finland
| | - Jari Laukkanen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Pirjo Mustonen
- Department of Cardiology, , Heart Center, Turku University Hospital, Turku, Finland
| | - Marja Hedman
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Cardiology, , Heart Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
14
|
Chiariello GA, Di Mauro M, Pasquini A, Bruno P, Nesta M, Fabiani L, Mazza A, Meloni M, Baldo E, Ponzo M, Ferraro F, Conserva AD, D’Acierno E, Villa E, Trani C, Burzotta F, Massetti M. Progression of the ascending aorta diameter after surgical or transcatheter bicuspid aortic valve replacement. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2024; 38:ivae100. [PMID: 38775458 PMCID: PMC11142625 DOI: 10.1093/icvts/ivae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVES Ascending aorta (AA) dilatation in patients with bicuspid aortic valve (AV) is related both to genetic and haemodynamic factors. The aim of this study is to compare late progression of AA dilatation in bicuspid AV patients undergoing surgical aortic valve replacement (SAVR) versus transcatheter aortic valve implantation (TAVI). METHODS Data of 189 consecutive patients who underwent AV replacement for severe bicuspid AV stenosis were prospectively collected. Patients who underwent SAVR were compared to patients who underwent TAVI. Indication to the procedure was validated by the institutional Heart Team. Aortic diameters were evaluated by transthoracic echocardiogram. Differences between preoperative and long-term follow-up AA diameters were compared in the 2 groups. RESULTS Between January 2015 and December 2021, 143 (76%) patients underwent SAVR and 46 (24%) patients underwent TAVI. At 4.6 (standard deviation 1.7) years follow-up, patients in the TAVI group showed significantly lower survival (P = 0.00013) and event-free survival (P < 0.0001). AA diameter progression was lower in surgical compared to transcatheter patients, 0.95 (0.60, 1.30) vs 1.65 (0.67, 2.63) mm, P = 0.02. AA diameter progression indexed for body surface area and height was lower in the surgical group: 0.72 (0.38, 1.05) vs 1.05 (0.39, 1.71) mm/m2, P = 0.02, and 0.59 (0.36, 0.81) vs 1.11 (0.44, 1.78) mm/m, P = 0.001, respectively. At multivariable linear regression analysis transcatheter procedure, baseline aortic diameter and paravalvular leak were significantly associated with increased postoperative AA dilatation. CONCLUSIONS Bicuspid AV patients who underwent SAVR, showed significantly less long-term AA diameter progression than patients who underwent transcatheter procedure.
Collapse
Affiliation(s)
- Giovanni Alfonso Chiariello
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Michele Di Mauro
- Heart and Vascular Centre, Cardiovascular Research Institute, CARIM, Maastricht, Netherlands
| | - Annalisa Pasquini
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Piergiorgio Bruno
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Marialisa Nesta
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Ludovica Fabiani
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Andrea Mazza
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Martina Meloni
- Department of Cardiology, Thoracic and Vascular Sciences, S. Matteo University Hospital, Pavia, Italy
| | | | - Myriana Ponzo
- Department of Cardiology, Cristo Re Hospital, Rome, Italy
| | - Francesco Ferraro
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Davide Conserva
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Edoardo D’Acierno
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Emmanuel Villa
- Department of Cardiovascular Surgery, Cardiac Surgery Unit, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Carlo Trani
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Burzotta
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences, Agostino Gemelli Foundation Polyclinic IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
15
|
Qin T, Mao W, Caballero A, Kamioka N, Lerakis S, Lain S, Elefteriades J, Liang L, Sun W. Patient-specific analysis of bicuspid aortic valve hemodynamics using a fully coupled fluid-structure interaction model. Comput Biol Med 2024; 172:108191. [PMID: 38457932 PMCID: PMC11498348 DOI: 10.1016/j.compbiomed.2024.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart disease, is prone to develop significant valvular dysfunction and aortic wall abnormalities such as ascending aortic aneurysm. Growing evidence has suggested that abnormal BAV hemodynamics could contribute to disease progression. In order to investigate BAV hemodynamics, we performed 3D patient-specific fluid-structure interaction (FSI) simulations with fully coupled blood flow dynamics and valve motion throughout the cardiac cycle. Results showed that the hemodynamics during systole can be characterized by a systolic jet and two counter-rotating recirculation vortices. At peak systole, the jet was usually eccentric, with asymmetric recirculation vortices and helical flow motion in the ascending aorta. The flow structure at peak systole was quantified using the vorticity, flow rate reversal ratio and local normalized helicity (LNH) at four locations from the aortic root to the ascending aorta. The systolic jet was evaluated with the peak velocity, normalized flow displacement, and jet angle. It was found that peak velocity and normalized flow displacement (rather than jet angle) gave a strong correlation with the vorticity and LNH in the ascending aorta, which suggests that these two metrics could be used for clinical noninvasive evaluation of abnormal blood flow patterns in BAV patients.
Collapse
Affiliation(s)
- Tongran Qin
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Sutra Medical Inc, Lake Forest, CA, USA
| | - Wenbin Mao
- Mechanical Engineering, University of South Florida, FL, USA
| | - Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; PAI+ Research Group, Mechanical Engineering Department, Universidad Autónoma de Occidente, Cali, Colombia
| | | | - Stamatios Lerakis
- Emory University, School of Medicine, Atlanta, GA, USA; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Santiago Lain
- PAI+ Research Group, Mechanical Engineering Department, Universidad Autónoma de Occidente, Cali, Colombia
| | - John Elefteriades
- Aortic Institute, School of Medicine, Yale University, New Haven, CT, USA
| | - Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL, USA
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Sutra Medical Inc, Lake Forest, CA, USA.
| |
Collapse
|
16
|
Saitta S, Carioni M, Mukherjee S, Schönlieb CB, Redaelli A. Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 246:108057. [PMID: 38335865 DOI: 10.1016/j.cmpb.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND OBJECTIVE 4D flow magnetic resonance imaging provides time-resolved blood flow velocity measurements, but suffers from limitations in spatio-temporal resolution and noise. In this study, we investigated the use of sinusoidal representation networks (SIRENs) to improve denoising and super-resolution of velocity fields measured by 4D flow MRI in the thoracic aorta. METHODS Efficient training of SIRENs in 4D was achieved by sampling voxel coordinates and enforcing the no-slip condition at the vessel wall. A set of synthetic measurements were generated from computational fluid dynamics simulations, reproducing different noise levels. The influence of SIREN architecture was systematically investigated, and the performance of our method was compared to existing approaches for 4D flow denoising and super-resolution. RESULTS Compared to existing techniques, a SIREN with 300 neurons per layer and 20 layers achieved lower errors (up to 50% lower vector normalized root mean square error, 42% lower magnitude normalized root mean square error, and 15% lower direction error) in velocity and wall shear stress fields. Applied to real 4D flow velocity measurements in a patient-specific aortic aneurysm, our method produced denoised and super-resolved velocity fields while maintaining accurate macroscopic flow measurements. CONCLUSIONS This study demonstrates the feasibility of using SIRENs for complex blood flow velocity representation from clinical 4D flow, with quick execution and straightforward implementation.
Collapse
Affiliation(s)
- Simone Saitta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Marcello Carioni
- Department of Applied Mathematics, University of Twente, 7500AE Enschede, the Netherlands
| | - Subhadip Mukherjee
- Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology (IIT) Kharagpur, India
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
17
|
Hachiro K, Takashima N, Suzuki T. Later aorta operation after aortic valve replacement for bicuspid aortic valve. J Cardiothorac Surg 2024; 19:144. [PMID: 38504348 PMCID: PMC10949618 DOI: 10.1186/s13019-024-02638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND We investigated long-term outcomes, particularly later aorta operations and overall death in patients who underwent aortic valve replacement for bicuspid aortic valve without aortic surgery. METHODS Between January 2002 and December 2022, 274 patients underwent aortic valve replacement for bicuspid aortic valve at our institution. Of them, 181 patients who did not undergo aortic surgery, in accordance with current guidelines, were analyzed retrospectively. RESULTS The median follow-up duration was 6.1 (2.0-10.6) years, and follow-up was completed in 97.8% of pateints. There were 3 patients (1.7%) who underwent later aorta operation during follow-up period. The cumulative later aorta operation rate at 10 years adjusting overall death as competing risk was 16.3%, and the estimated rates of freedom from overall death at 10 years was 83.7%. Fine-Gray competing risk regression model showed that aortic valve stenosis was only the predictor of later aorta operation (hazard ratio 8.477; p = 0.012). In multivariable Cox models, predictors of overall death were aortic valve stenosis (hazard ratio: 8.270, 95% confidence interval: 1.082-63.235; p = 0.042) and operation time (hazard ratio: 1.011, 95% confidence interval: 1.004-1.017; p = 0.002). CONCLUSIONS Patients with bicuspid aortic valve with ascending aortic diameter less than 45 mm are at low risk of later aorta operation after isolated aortic valve replacement.
Collapse
Affiliation(s)
- Kohei Hachiro
- Division of Cardiovascular Surgery, Department of Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan.
| | - Noriyuki Takashima
- Division of Cardiovascular Surgery, Department of Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan
| | - Tomoaki Suzuki
- Division of Cardiovascular Surgery, Department of Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan
| |
Collapse
|
18
|
Balint B, Bernstorff IGL, Schwab T, Schäfers HJ. Aortic regurgitation provokes phenotypic modulation of smooth muscle cells in the normal ascending aorta. J Thorac Cardiovasc Surg 2023; 166:1604-1616.e1. [PMID: 37500054 DOI: 10.1016/j.jtcvs.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Aortic complications are more likely to occur in patients with ascending aortic aneurysms and concomitant aortic regurgitation (AR). AR may have a negative influence on the aortic wall structure even in patients with tricuspid aortic valves and absence of aortic dilatation. It is unknown whether smooth muscle cell (SMC) changes are a feature of AR-associated aortic remodeling. METHODS Nondilated aortic samples were harvested intraoperatively from individuals with normal aortic valves (n = 10) or those with either predominant aortic stenosis (AS) (n = 20) or AR (n = 35). Tissue from each patient was processed for immunohistochemistry or used for the extraction of medial SMCs. Tissue and cells were stained for markers of SMC contraction (alpha-smooth muscle actin), synthesis (vimentin) and senescence (p16INK4A and p21Cip1 [p16/p21]). Replicative capacity was analyzed in cultured SMCs from AS- and AR-associated aortas. A subanalysis compared SMCs from individuals with either tricuspid aortic valves or bicuspid aortic valves to evaluate the effect of aortic valve morphology. RESULTS In aortic tissue samples, AR was associated with decreased alpha-smooth muscle actin and increased vimentin, p16 and p21 compared with normal aortic valves and AS. In cell culture, SMCs from AR-aortas had decreased alpha-smooth muscle actin and increased vimentin compared with SMCs from AS-aortas. AR-associated SMCs had increased p16 and p21 expression, and they reached senescence earlier than SMCs from AS-aortas. In AR, SMC changes were more pronounced with the presence of a bicuspid aortic valve. CONCLUSIONS AR itself negatively influences SMC phenotype in the ascending aortic wall. This AR-specific effect is independent of aortic diameter and aortic valve morphology, although it is more pronounced with bicuspid aortic valves. These findings provide insight into the mechanisms of AR-related aortic remodeling, and they provide a model for studying SMC-specific therapies in culture.
Collapse
Affiliation(s)
- Brittany Balint
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany.
| | | | - Tanja Schwab
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
19
|
Sundström E, Laudato M. Machine Learning-Based Segmentation of the Thoracic Aorta with Congenital Valve Disease Using MRI. Bioengineering (Basel) 2023; 10:1216. [PMID: 37892946 PMCID: PMC10604748 DOI: 10.3390/bioengineering10101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Subjects with bicuspid aortic valves (BAV) are at risk of developing valve dysfunction and need regular clinical imaging surveillance. Management of BAV involves manual and time-consuming segmentation of the aorta for assessing left ventricular function, jet velocity, gradient, shear stress, and valve area with aortic valve stenosis. This paper aims to employ machine learning-based (ML) segmentation as a potential for improved BAV assessment and reducing manual bias. The focus is on quantifying the relationship between valve morphology and vortical structures, and analyzing how valve morphology influences the aorta's susceptibility to shear stress that may lead to valve incompetence. The ML-based segmentation that is employed is trained on whole-body Computed Tomography (CT). Magnetic Resonance Imaging (MRI) is acquired from six subjects, three with tricuspid aortic valves (TAV) and three functionally BAV, with right-left leaflet fusion. These are used for segmentation of the cardiovascular system and delineation of four-dimensional phase-contrast magnetic resonance imaging (4D-PCMRI) for quantification of vortical structures and wall shear stress. The ML-based segmentation model exhibits a high Dice score (0.86) for the heart organ, indicating a robust segmentation. However, the Dice score for the thoracic aorta is comparatively poor (0.72). It is found that wall shear stress is predominantly symmetric in TAVs. BAVs exhibit highly asymmetric wall shear stress, with the region opposite the fused coronary leaflets experiencing elevated tangential wall shear stress. This is due to the higher tangential velocity explained by helical flow, proximally of the sinutubal junction of the ascending aorta. ML-based segmentation not only reduces the runtime of assessing the hemodynamic effectiveness, but also identifies the significance of the tangential wall shear stress in addition to the axial wall shear stress that may lead to the progression of valve incompetence in BAVs, which could guide potential adjustments in surgical interventions.
Collapse
Affiliation(s)
- Elias Sundström
- Department of Engineering Mechanics, FLOW Research Center, KTH Royal Institute of Technology, Teknikringen 8, 10044 Stockholm, Sweden
| | - Marco Laudato
- Department of Engineering Mechanics, FLOW Research Center, KTH Royal Institute of Technology, Teknikringen 8, 10044 Stockholm, Sweden
- Department of Engineering Mechanics, The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH Royal Institute of Technology, Teknikringen 8, 10044 Stockholm, Sweden
| |
Collapse
|
20
|
Ganizada BH, Reesink KD, Parikh S, Ramaekers MJFG, Akbulut AC, Saraber PJMH, Debeij GP, Jaminon AM, Natour E, Lorusso R, Wildberger JE, Mees B, Schurink GW, Jacobs MJ, Cleutjens J, Krapels I, Gombert A, Maessen JG, Accord R, Delhaas T, Schalla S, Schurgers LJ, Bidar E. The Maastricht Acquisition Platform for Studying Mechanisms of Cell-Matrix Crosstalk (MAPEX): An Interdisciplinary and Systems Approach towards Understanding Thoracic Aortic Disease. Biomedicines 2023; 11:2095. [PMID: 37626592 PMCID: PMC10452257 DOI: 10.3390/biomedicines11082095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5-5.5 cm or shows a growth rate of >0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold of <55 mm. Moreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue-cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell-matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms.
Collapse
Affiliation(s)
- Berta H. Ganizada
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Koen D. Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Mitch J. F. G. Ramaekers
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Asim C. Akbulut
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Stem Cell Research University Maastricht Facility, 6229 ER Maastricht, The Netherlands
| | - Pepijn J. M. H. Saraber
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Gijs P. Debeij
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - MUMC-TAA Student Team
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Armand M. Jaminon
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Ehsan Natour
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Roberto Lorusso
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Barend Mees
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Geert Willem Schurink
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Michael J. Jacobs
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Jack Cleutjens
- Department of Pathology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Ingrid Krapels
- Department of Clinical Genetics, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Alexander Gombert
- Department of Vascular Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Jos G. Maessen
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Simon Schalla
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Leon J. Schurgers
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Stem Cell Research University Maastricht Facility, 6229 ER Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Elham Bidar
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| |
Collapse
|
21
|
Ramaekers MJFG, Westenberg JJM, Adriaans BP, Nijssen EC, Wildberger JE, Lamb HJ, Schalla S. A clinician's guide to understanding aortic 4D flow MRI. Insights Imaging 2023; 14:114. [PMID: 37395817 DOI: 10.1186/s13244-023-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Four-dimensional flow magnetic resonance imaging is an emerging technique which may play a role in diagnosis and risk-stratification of aortic disease. Some knowledge of flow dynamics and related parameters is necessary to understand and apply this technique in clinical workflows. The purpose of the current review is to provide a guide for clinicians to the basics of flow imaging, frequently used flow-related parameters, and their relevance in the context of aortic disease.Clinical relevance statement Understanding normal and abnormal aortic flow could improve clinical care in patients with aortic disease.
Collapse
Affiliation(s)
- Mitch J F G Ramaekers
- Department of Cardiology and Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bouke P Adriaans
- Department of Cardiology and Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Estelle C Nijssen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Simon Schalla
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center +, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| |
Collapse
|
22
|
Punzo B, Ranieri B, Tramontano L, Affinito O, Franzese M, Bossone E, Saba L, Cavaliere C, Cademartiri F. 4D-Flow Cardiovascular Magnetic Resonance Sequence for Aortic Assessment: Multi-Vendor and Multi-Magnetic Field Reproducibility in Healthy Volunteers. J Clin Med 2023; 12:jcm12082960. [PMID: 37109295 PMCID: PMC10141060 DOI: 10.3390/jcm12082960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES Four-dimensional (4D) flow cardiac magnetic resonance (CMR) represents an emerging technique for non-invasive evaluation of the aortic flow. The aim of this study was to investigate a 4D-flow CMR sequence for the assessment of thoracic aorta comparing different vendors and different magnetic fields of MR scanner in fifteen healthy volunteers. METHODS CMR was performed on three different MRI scanners: one at 1.5 T and two at 3 T. Flow parameters and planar wall shear stress (WSS) were extracted from six transversal planes along the full thoracic aorta by three operators. Inter-vendor comparability as well as scan-rescan, intra- and interobserver reproducibility were examined. RESULTS A high heterogeneity was found in the comparisons for each operator and for each scanner in the six transversal planes analysis (Friedman rank-sum test; p-value ≤ 0.05). Among all, the most reproducible measures were extracted for the sinotubular junction plane and for the flow parameters. CONCLUSIONS Our results suggest that standardized procedures have to be defined to make more comparable and reproducible 4D-flow parameters and mainly, clinical impactfulness. Further studies on sequences development are needed to validate 4D-flow MRI assessment across vendors and magnetic fields also compared to a missing gold standard.
Collapse
Affiliation(s)
- Bruna Punzo
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | - Brigida Ranieri
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | | | - Ornella Affinito
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | - Monica Franzese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | - Eduardo Bossone
- Department of Public Health, "Federico II" University of Naples, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.) di Cagliari, 09123 Cagliari, Italy
| | - Carlo Cavaliere
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | | |
Collapse
|
23
|
Staal AHJ, Cortenbach KRG, Gorris MAJ, van der Woude LL, Srinivas M, Heijmen RH, Geuzebroek GSC, Grewal N, Hebeda KM, de Vries IJM, DeRuiter MC, van Kimmenade RRJ. Adventitial adaptive immune cells are associated with ascending aortic dilatation in patients with a bicuspid aortic valve. Front Cardiovasc Med 2023; 10:1127685. [PMID: 37057097 PMCID: PMC10086356 DOI: 10.3389/fcvm.2023.1127685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundBicuspid aortic valve (BAV) is associated with ascending aorta aneurysms and dissections. Presently, genetic factors and pathological flow patterns are considered responsible for aneurysm formation in BAV while the exact role of inflammatory processes remains unknown.MethodsIn order to objectify inflammation, we employ a highly sensitive, quantitative immunohistochemistry approach. Whole slides of dissected, dilated and non-dilated ascending aortas from BAV patients were quantitatively analyzed.ResultsDilated aortas show a 4-fold increase of lymphocytes and a 25-fold increase in B lymphocytes in the adventitia compared to non-dilated aortas. Tertiary lymphoid structures with B cell follicles and helper T cell expansion were identified in dilated and dissected aortas. Dilated aortas were associated with an increase in M1-like macrophages in the aorta media, in contrast the number of M2-like macrophages did not change significantly.ConclusionThis study finds unexpected large numbers of immune cells in dilating aortas of BAV patients. These findings raise the question whether immune cells in BAV aortopathy are innocent bystanders or contribute to the deterioration of the aortic wall.
Collapse
Affiliation(s)
- Alexander H. J. Staal
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kimberley R. G. Cortenbach
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lieke L. van der Woude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Robin H. Heijmen
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Nimrat Grewal
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marco C. DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Roland R. J. van Kimmenade
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Roland R. J. van Kimmenade,
| |
Collapse
|
24
|
Bibevski S, Ruzmetov M, Plate JF, Scholl FG. The Impact of Bicuspid Aortic Valve Leaflet Fusion Morphology on the Ascending Aorta and on Outcomes of Aortic Valve Replacement. Tex Heart Inst J 2023; 50:491701. [PMID: 36972539 PMCID: PMC10178649 DOI: 10.14503/thij-21-7831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND Patients with bicuspid aortic valves (BAVs) tend to develop dilation of the ascending aorta. The aim of this study was to analyze the impact of leaflet fusion pattern on aortic root diameter and outcomes in patients undergoing surgery for BAV vs tricuspid aortic valve (TAV) disease. METHODS This is a retrospective review of 90 patients with aortic valve disease (mean [SD] age, 51.5 [8.2] years) who underwent aortic valve replacement for BAV (n = 60) and TAV (n = 30). Fusion of right-left (R/L) coronary cusps was identified in 45 patients, whereas the remaining 15 patients had right-noncoronary (R/N) cusp fusion. Aortic diameter was measured at 4 levels, and Z values were computed. RESULTS There were no significant differences between the BAV and TAV groups for age, weight, aortic insufficiency grade, or size of implanted prostheses. However, a higher preoperative peak gradient at the aortic valve was significantly associated with R/L fusion (P = .02). Preoperative Z values of ascending aorta and sinotubular junction diameter were significantly higher in patients with R/N fusion than with the R/L (P < .001 and P = .04, respectively) and TAV (P < .001 and P < .05, respectively) subgroups. During the follow-up period (mean [SD], 2.7 [1.8] years), 3 patients underwent a redo procedure. At the last follow-up, the sizes of ascending aorta were similar among all 3 patient groups. CONCLUSION This study suggests that preoperative dilation of the ascending aorta is more common in patients with R/N fusion than in patients with R/L and TAV but is not significantly different between all groups in the early follow-up period. R/L fusion was associated with an increased risk of preoperative presence of aortic stenosis.
Collapse
Affiliation(s)
- Steve Bibevski
- Section of Pediatric Cardiothoracic Surgery, Joe DiMaggio Children's Hospital, Hollywood, Florida
| | - Mark Ruzmetov
- Section of Pediatric Cardiothoracic Surgery, Joe DiMaggio Children's Hospital, Hollywood, Florida
| | - Juan F Plate
- Section of Adult Cardiac Surgery, Memorial Regional Hospital, Hollywood, Florida
| | - Frank G Scholl
- Section of Pediatric Cardiothoracic Surgery, Joe DiMaggio Children's Hospital, Hollywood, Florida
| |
Collapse
|
25
|
Wiesemann S, Trauzeddel RF, Musa A, Hickstein R, Mayr T, von Knobelsdorff-Brenkenhoff F, Bollache E, Markl M, Schulz-Menger J. Changes of aortic hemodynamics after aortic valve replacement-A four dimensional flow cardiovascular magnetic resonance follow up study. Front Cardiovasc Med 2023; 10:1071643. [PMID: 36865891 PMCID: PMC9971963 DOI: 10.3389/fcvm.2023.1071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Objectives Non-invasive assessment of aortic hemodynamics using four dimensional (4D) flow magnetic resonance imaging (MRI) provides new information on blood flow patterns and wall shear stress (WSS). Aortic valve stenosis (AS) and/or bicuspid aortic valves (BAV) are associated with altered aortic flow patterns and elevated WSS. Aim of this study was to investigate changes in aortic hemodynamics over time in patients with AS and/or BAV with or without aortic valve replacement. Methods We rescheduled 20 patients for a second 4D flow MRI examination, whose first examination was at least 3 years prior. A total of 7 patients received an aortic valve replacement between baseline and follow up examination (=operated group = OP group). Aortic flow patterns (helicity/vorticity) were assessed using a semi-quantitative grading approach from 0 to 3, flow volumes were evaluated in 9 planes, WSS in 18 and peak velocity in 3 areas. Results While most patients had vortical and/or helical flow formations within the aorta, there was no significant change over time. Ascending aortic forward flow volumes were significantly lower in the OP group than in the NOP group at baseline (NOP 69.3 mL ± 14.2 mL vs. OP 55.3 mL ± 1.9 mL p = 0.029). WSS in the outer ascending aorta was significantly higher in the OP group than in the NOP group at baseline (NOP 0.6 ± 0.2 N/m2 vs. OP 0.8 ± 0.2 N/m2, p = 0.008). Peak velocity decreased from baseline to follow up in the aortic arch only in the OP group (1.6 ± 0.6 m/s vs. 1.2 ± 0.3 m/s, p = 0.018). Conclusion Aortic valve replacement influences aortic hemodynamics. The parameters improve after surgery.
Collapse
Affiliation(s)
- Stephanie Wiesemann
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralf Felix Trauzeddel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Ahmed Musa
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Richard Hickstein
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Thomas Mayr
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Clinic Agatharied, Department of Cardiology, Ludwig Maximilian University of Munich, Hausham, Germany
| | - Emilie Bollache
- CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeanette Schulz-Menger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,*Correspondence: Jeanette Schulz-Menger, ✉
| |
Collapse
|
26
|
Jonnagiri R, Sundström E, Gutmark E, Anderson S, Pednekar AS, Taylor MD, Tretter JT, Gutmark-Little I. Influence of aortic valve morphology on vortical structures and wall shear stress. Med Biol Eng Comput 2023; 61:1489-1506. [PMID: 36763231 DOI: 10.1007/s11517-023-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
The aim of this paper is to assess the association between valve morphology and vortical structures quantitatively and to highlight the influence of valve morphology/orientation on aorta's susceptibility to shear stress, both proximal and distal. Four-dimensional phase-contrast magnetic resonance imaging (4D PCMRI) data of 6 subjects, 3 with tricuspid aortic valve (TAV) and 3 with functionally bicuspid aortic values (BAV) with right-left coronary leaflet fusion, were processed and analyzed for vorticity and wall shear stress trends. Computational fluid dynamics (CFD) has been used with moving TAV and BAV valve designs in patient-specific aortae to compare with in vivo shear stress data. Vorticity from 4D PCMRI data about the aortic centerline demonstrated that TAVs had a higher number of vortical flow structures than BAVs at peak systole. Coalescing of flow structures was shown to be possible in the arch region of all subjects. Wall shear stress (WSS) distribution from CFD results at the aortic root is predominantly symmetric for TAVs but highly asymmetric for BAVs with the region opposite the raphe (fusion location of underdeveloped leaflets) being subjected to higher WSS. Asymmetry in the size and number of leaflets in BAVs and TAVs significantly influence vortical structures and WSS in the proximal aorta for all valve types and distal aorta for certain valve orientations of BAV. Analysis of vortical structures using 4D PCMRI data (on the left side) and wall shear stress data using CFD (on the right side).
Collapse
Affiliation(s)
- Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Elias Sundström
- Department of Engineering Mechanics, Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Shae Anderson
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amol S Pednekar
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Iris Gutmark-Little
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
27
|
Morany A, Lavon K, Gomez Bardon R, Kovarovic B, Hamdan A, Bluestein D, Haj-Ali R. Fluid-structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods. Biomech Model Mechanobiol 2023; 22:837-850. [PMID: 36763197 DOI: 10.1007/s10237-022-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023]
Abstract
The lattice Boltzmann method (LBM) has been increasingly used as a stand-alone CFD solver in various biomechanical applications. This study proposes a new fluid-structure interaction (FSI) co-modeling framework for the hemodynamic-structural analysis of compliant aortic valves. Toward that goal, two commercial software packages are integrated using the lattice Boltzmann (LBM) and finite element (FE) methods. The suitability of the LBM-FE hemodynamic FSI is examined in modeling healthy tricuspid and bicuspid aortic valves (TAV and BAV), respectively. In addition, a multi-scale structural approach that has been employed explicitly recognizes the heterogeneous leaflet tissues and differentiates between the collagen fiber network (CFN) embedded within the elastin matrix of the leaflets. The CFN multi-scale tissue model is inspired by monitoring the distribution of the collagen in 15 porcine leaflets. Different simulations have been examined, and structural stresses and resulting hemodynamics are analyzed. We found that LBM-FE FSI approach can produce good predictions for the flow and structural behaviors of TAV and BAV and correlates well with those reported in the literature. The multi-scale heterogeneous CFN tissue structural model enhances our understanding of the mechanical roles of the CFN and the elastin matrix behaviors. The importance of LBM-FE FSI also emerges in its ability to resolve local hemodynamic and structural behaviors. In particular, the diastolic fluctuating velocity phenomenon near the leaflets is explicitly predicted, providing vital information on the flow transient nature. The full closure of the contacting leaflets in BAV is also demonstrated. Accordingly, good structural kinematics and deformations are captured for the entire cardiac cycle.
Collapse
Affiliation(s)
- Adi Morany
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Karin Lavon
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Rami Haj-Ali
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel. .,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
28
|
Hurd ER, Han M, Mendes JK, Hadley JR, Johnson CR, DiBella EVR, Oshinski JN, Timmins LH. Comparison of Prospective and Retrospective Gated 4D Flow Cardiac MR Image Acquisitions in the Carotid Bifurcation. Cardiovasc Eng Technol 2023; 14:1-12. [PMID: 35618870 DOI: 10.1007/s13239-022-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To evaluate the agreement of 4D flow cMRI-derived bulk flow features and fluid (blood) velocities in the carotid bifurcation using prospective and retrospective gating techniques. METHODS Prospective and retrospective ECG-gated three-dimensional (3D) cine phase-contrast cardiac MRI with three-direction velocity encoding (i.e., 4D flow cMRI) data were acquired in ten carotid bifurcations from men (n = 3) and women (n = 2) that were cardiovascular disease-free. MRI sequence parameters were held constant across all scans except temporal resolution values differed. Velocity data were extracted from the fluid domain and evaluated across the entire volume or at defined anatomic planes (common, internal, external carotid arteries). Qualitative agreement between gating techniques was performed by visualizing flow streamlines and topographical images, and statistical comparisons between gating techniques were performed across the fluid volume and defined anatomic regions. RESULTS Agreement in the kinematic data (e.g., bulk flow features and velocity data) were observed in the prospectively and retrospectively gated acquisitions. Voxel differences in time-averaged, peak systolic, and diastolic-averaged velocity magnitudes between gating techniques across all volunteers were 2.7%, 1.2%, and 6.4%, respectively. No significant differences in velocity magnitudes or components ([Formula: see text], [Formula: see text], [Formula: see text]) were observed. Importantly, retrospective acquisitions captured increased retrograde flow in the internal carotid artery (i.e., carotid sinus) compared to prospective acquisitions (10.4 ± 6.3% vs. 4.6 ± 5.3%; [Formula: see text] < 0.05). CONCLUSION Prospective and retrospective ECG-gated 4D flow cMRI acquisitions provide comparable evaluations of fluid velocities, including velocity vector components, in the carotid bifurcation. However, the increased temporal coverage of retrospective acquisitions depicts increased retrograde flow patterns (i.e., disturbed flow) not captured by the prospective gating technique.
Collapse
Affiliation(s)
- Elliott R Hurd
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
| | - Mengjiao Han
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Jason K Mendes
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - J Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chris R Johnson
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Edward V R DiBella
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - John N Oshinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA.
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA.
| |
Collapse
|
29
|
Qin JJ, Obeidy P, Gok M, Gholipour A, Grieve SM. 4D-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: A systematic review. Front Cardiovasc Med 2023; 9:1075833. [PMID: 36698944 PMCID: PMC9869052 DOI: 10.3389/fcvm.2022.1075833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Purpose Current intervention guidelines for bicuspid aortic valve (BAV) associated ascending aorta (AAo) dilatation are suboptimal predictors of clinical outcome. There is growing interest in identifying better biomarkers such as wall shear stress (WSS) to help risk stratify BAV aortopathy. The aim of the systematic review is to synthesize existing evidence of the relationship between WSS and aortopathy in the BAV population. Methods A comprehensive literature search of available major databases was performed in May 2022 to include studies that used four-dimensional flow cardiac magnetic resonance (4D-flow) MRI to quantify WSS in the AAo in adult BAV populations. Summary results and statistical analysis were provided for key numerical results. A narrative summary was provided to assess similarities between studies. Results A total of 26 studies that satisfied selection criteria and quality assessment were included in the review. The presence of BAV resulted in significantly elevated WSS magnitude and circumferential WSS, but not axial WSS. The presence of aortic stenosis had additional impact on WSS and flow alterations. BAV phenotypes were associated with different WSS distributions and flow profiles. Altered protein expression in the AAo wall associated with WSS supported the contribution of altered hemodynamics to aortopathy in addition to genetic factors. Conclusion WSS has the potential to be a valid biomarker for BAV aortopathy. Future work would benefit from larger study cohorts with longitudinal evaluations to further characterize WSS association with aortopathy, mortality, and morbidities. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022337077, identifier CRD42022337077.
Collapse
Affiliation(s)
- Jiaxing Jason Qin
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Peyman Obeidy
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mustafa Gok
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Radiology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Alireza Gholipour
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Stuart M. Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,*Correspondence: Stuart M. Grieve,
| |
Collapse
|
30
|
Hurd ER, Iffrig E, Jiang D, Oshinski JN, Timmins LH. Flow-based method demonstrates improved accuracy for calculating wall shear stress in arterial flows from 4D flow MRI data. J Biomech 2023; 146:111413. [PMID: 36535100 PMCID: PMC9845191 DOI: 10.1016/j.jbiomech.2022.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Four-dimensional flow magnetic resonance imaging (i.e., 4D flow MRI) has become a valuable tool for the in vivo assessment of blood flow within large vessels and cardiac chambers. As wall shear stress (WSS) has been correlated with the development and progression of cardiovascular disease, focus has been directed at developing techniques to quantify WSS directly from 4D flow MRI data. The goal of this study was to compare the accuracy of two such techniques - termed the velocity and flow-based methods - in the setting of simplified and complex flow scenarios. Synthetic MR data were created from exact solutions to the Navier-Stokes equations for the steady and pulsatile flow of an incompressible, Newtonian fluid through a rigid cylinder. In addition, synthetic MR data were created from the predicted velocity fields derived from a fluid-structure interaction (FSI) model of pulsatile flow through a thick-walled, multi-layered model of the carotid bifurcation. Compared to the analytical solutions for steady and pulsatile flow, the flow-based method demonstrated greater accuracy than the velocity-based method in calculating WSS across all changes in fluid velocity/flow rate, tube radius, and image signal-to-noise (p < 0.001). Furthermore, the velocity-based method was more sensitive to boundary segmentation than the flow-based method. When compared to results from the FSI model, the flow-based method demonstrated greater accuracy than the velocity-based method with average differences in time-averaged WSS of 0.31 ± 1.03 Pa and 0.45 ± 1.03 Pa, respectively (p <0.005). These results have implications on the utility, accuracy, and clinical translational of methods to determine WSS from 4D flow MRI.
Collapse
Affiliation(s)
- Elliott R Hurd
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Elizabeth Iffrig
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - David Jiang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
31
|
Johnson EMI, Scott MB, Jarvis K, Allen B, Carr J, Chris Malaisrie S, McCarthy P, Mehta C, Fedak PWM, Barker AJ, Markl M. Global Aortic Pulse Wave Velocity is Unchanged in Bicuspid Aortopathy With Normal Valve Function but Elevated in Patients With Aortic Valve Stenosis: Insights From a 4D Flow MRI Study of 597 Subjects. J Magn Reson Imaging 2023; 57:126-136. [PMID: 35633284 PMCID: PMC9701914 DOI: 10.1002/jmri.28266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Aortopathy is common with bicuspid aortic valve (BAV), and underlying intrinsic tissue abnormalities are believed causative. Valve-mediated hemodynamics are altered in BAV and may contribute to aortopathy and its progression. The contribution of intrinsic tissue defects versus altered hemodynamics to aortopathy progression is not known. PURPOSE To investigate relative contributions of tissue-innate versus hemodynamics in progression of BAV aortopathy. STUDY TYPE Retrospective. SUBJECTS Four hundred seventy-three patients with aortic dilatation (diameter ≥40 mm; comprised of 281 BAV with varied AS severity, 192 tricuspid aortic valve [TAV] without AS) and 124 healthy controls. Subjects were 19-91 years (141/24% female). FIELD STRENGTH/SEQUENCE 1.5T, 3T; time-resolved gradient-echo 3D phase-contrast (4D flow) MRI. ASSESSMENT A surrogate measure for global aortic wall stiffness, pulse wave velocity (PWV), was quantified from MRI by standardized, automated technique based on through-plane flow cross-correlation maximization. Comparisons were made between BAV patients with aortic dilatation and varying aortic valve stenosis (AS) severity and healthy subjects and aortopathy patients with normal TAV. STATISTICAL TESTS Multivariable regression, analysis of covariance (ANCOVA), Tukey's, student's (t), Mann-Whitney (U) tests, were used with significance levels P < 0.05 or P < 0.01 for post-hoc Bonferroni-corrected t/U tests. Bland-Altman and ICC calculations were performed. RESULTS Multivariable regression showed age with the most significant association for increased PWV in all groups (increase 0.073-0.156 m/sec/year, R2 = 0.30-48). No significant differences in aortic PWV were observed between groups without AS (P = 0.20-0.99), nor were associations between PWV and regurgitation or Sievers type observed (P = 0.60, 0.31 respectively). In contrast, BAV AS patients demonstrated elevated PWV and a significant relationship for AS severity with increased PWV (covariate: age, R2 = 0.48). BAV and TAV patients showed no association between aortic diameter and PWV (P = 0.73). DATA CONCLUSION No significant PWV differences were observed between BAV patients with normal valve function and control groups. However, AS severity and age in BAV patients were directly associated with PWV increases. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | - Michael B Scott
- Northwestern University, Radiology,Northwestern University, Bioengineering
| | | | | | | | | | | | | | | | - Alex J Barker
- University of Colorado Anschutz, Radiology, Bioengineering
| | - Michael Markl
- Northwestern University, Radiology,Northwestern University, Bioengineering
| |
Collapse
|
32
|
Kusner JJ, Brown JY, Gleason TG, Edelman ER. The Natural History of Bicuspid Aortic Valve Disease. STRUCTURAL HEART 2022. [DOI: 10.1016/j.shj.2022.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Zhang J, Rothenberger SM, Brindise MC, Markl M, Rayz VL, Vlachos PP. Wall Shear Stress Estimation for 4D Flow MRI Using Navier-Stokes Equation Correction. Ann Biomed Eng 2022; 50:1810-1825. [PMID: 35943617 PMCID: PMC10263099 DOI: 10.1007/s10439-022-02993-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
This study introduces a novel wall shear stress (WSS) estimation method for 4D flow MRI. The method improves the WSS accuracy by using the reconstructed pressure gradient and the flow-physics constraints to correct velocity gradient estimation. The method was tested on synthetic 4D flow data of analytical Womersley flow and flow in cerebral aneurysms and applied to in vivo 4D flow data acquired in cerebral aneurysms and aortas. The proposed method's performance was compared to the state-of-the-art method based on smooth-spline fitting of velocity profile and the WSS calculated from uncorrected velocity gradient. The proposed method improved the WSS accuracy by as much as 100% for the Womersley flow and reduced the underestimation of mean WSS by 39 to 50% for the synthetic aneurysmal flow. The predicted mean WSS from the in vivo aneurysmal data using the proposed method was 31 to 50% higher than the other methods. The predicted aortic WSS using the proposed method was 3 to 6 times higher than the other methods and was consistent with previous CFD studies and the results from recently developed methods that take into account the limited spatial resolution of 4D flow MRI. The proposed method improves the accuracy of WSS estimation from 4D flow MRI, which can help predict blood vessel remodeling and progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean M Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Melissa C Brindise
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael Markl
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vitaliy L Rayz
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
Sophocleous F, De Garate E, Bigotti MG, Anwar M, Jover E, Chamorro-Jorganes A, Rajakaruna C, Mitrousi K, De Francesco V, Wilson A, Stoica S, Parry A, Benedetto U, Chivasso P, Gill F, Hamilton MCK, Bucciarelli-Ducci C, Caputo M, Emanueli C, Biglino G. A Segmental Approach from Molecular Profiling to Medical Imaging to Study Bicuspid Aortic Valve Aortopathy. Cells 2022; 11:cells11233721. [PMID: 36496981 PMCID: PMC9737804 DOI: 10.3390/cells11233721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Bicuspid aortic valve (BAV) patients develop ascending aortic (AAo) dilation. The pathogenesis of BAV aortopathy (genetic vs. haemodynamic) remains unclear. This study aims to identify regional changes around the AAo wall in BAV patients with aortopathy, integrating molecular data and clinical imaging. BAV patients with aortopathy (n = 15) were prospectively recruited to surgically collect aortic tissue and measure molecular markers across the AAo circumference. Dilated (anterior/right) vs. non-dilated (posterior/left) circumferential segments were profiled for whole-genomic microRNAs (next-generation RNA sequencing, miRCURY LNA PCR), protein content (tandem mass spectrometry), and elastin fragmentation and degeneration (histomorphometric analysis). Integrated bioinformatic analyses of RNA sequencing and proteomic datasets identified five microRNAs (miR-128-3p, miR-210-3p, miR-150-5p, miR-199b-5p, and miR-21-5p) differentially expressed across the AAo circumference. Among them, three miRNAs (miR-128-3p, miR-150-5p, and miR-199b-5p) were predicted to have an effect on eight common target genes, whose expression was dysregulated, according to proteomic analyses, and involved in the vascular-endothelial growth-factor signalling, Hippo signalling, and arachidonic acid pathways. Decreased elastic fibre levels and elastic layer thickness were observed in the dilated segments. Additionally, in a subset of patients n = 6/15, a four-dimensional cardiac magnetic resonance (CMR) scan was performed. Interestingly, an increase in wall shear stress (WSS) was observed at the anterior/right wall segments, concomitantly with the differentially expressed miRNAs and decreased elastic fibres. This study identified new miRNAs involved in the BAV aortic wall and revealed the concomitant expressional dysregulation of miRNAs, proteins, and elastic fibres on the anterior/right wall in dilated BAV patients, corresponding to regions of elevated WSS.
Collapse
Affiliation(s)
- Froso Sophocleous
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Estefania De Garate
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Maria Giulia Bigotti
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Eva Jover
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Cha Rajakaruna
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Konstantina Mitrousi
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Viola De Francesco
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Aileen Wilson
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Serban Stoica
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Andrew Parry
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Umberto Benedetto
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Pierpaolo Chivasso
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Frances Gill
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Mark C. K. Hamilton
- Department of Clinical Radiology, University Hospitals Bristol, Bristol Royal Infirmary, Bristol BS2 8EJ, UK
| | - Chiara Bucciarelli-Ducci
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Giovanni Biglino
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
- Correspondence: ; Tel.: +44-117-342-3287
| |
Collapse
|
35
|
Wedin JO, Vedin O, Rodin S, Simonson OE, Hörsne Malmborg J, Pallin J, James SK, Flachskampf FA, Ståhle E, Grinnemo KH. Patients With Bicuspid Aortic Stenosis Demonstrate Adverse Left Ventricular Remodeling and Impaired Cardiac Function Before Surgery With Increased Risk of Postoperative Heart Failure. Circulation 2022; 146:1310-1322. [PMID: 35971843 PMCID: PMC9586833 DOI: 10.1161/circulationaha.122.060125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Differences in adverse cardiac remodeling between patients who have bicuspid (BAV) and tricuspid aortic valve (TAV) with severe isolated aortic stenosis (AS) and its prognostic impact after surgical aortic valve replacement remains unclear. We sought to investigate differences in preoperative diastolic and systolic function in patients with BAV and TAV who have severe isolated AS and the incidence of postoperative heart failure hospitalization and mortality. METHODS Two hundred seventy-one patients with BAV (n=152) or TAV (n=119) and severe isolated AS without coronary artery disease or other valvular heart disease, scheduled for surgical aortic valve replacement, were prospectively included. Comprehensive preoperative echocardiographic assessment of left ventricular (LV) diastolic and systolic function was performed. The heart failure events were registered during a mean prospective follow-up of 1260 days versus 1441 days for patients with BAV or TAV, respectively. RESULTS Patients with BAV had a more pronounced LV hypertrophy with significantly higher indexed LV mass ([LVMi] 134 g/m2 versus 104 g/m2, P<0.001), higher prevalence of LV diastolic dysfunction (72% versus 44%, P<0.001), reduced LV ejection fraction (55% versus 60%, P<0.001), significantly impaired global longitudinal strain (P<0.001), significantly higher NT-proBNP (N-terminal pro-brain natriuretic peptide) levels (P=0.007), and a higher prevalence of preoperative levosimendan treatment (P<0.001) than patients with TAV. LVMi was associated with diastolic dysfunction in both patients with BAV and TAV. There was a significant interaction between aortic valve morphology and LVMi on LV ejection fraction, which indicated a pronounced association between LVMi and LV ejection fraction for patients with BAV and lack of association between LVMi and LV ejection fraction for patients with TAV. Postoperatively, the patients with BAV required significantly more inotropic support (P<0.001). The patients with BAV had a higher cumulative incidence of postoperative heart failure admissions compared with patients with TAV (28.2% versus 10.6% at 6 years after aortic valve replacement, log-rank P=0.004). Survival was not different between patients with BAV and TAV (log-rank P=0.165). CONCLUSIONS Although they were significantly younger, patients with BAV who had isolated severe AS had worse preoperative LV function and an increased risk of postoperative heart failure hospitalization compared with patients who had TAV. Our findings suggest that patients who have BAV with AS might benefit from closer surveillance and possibly earlier intervention.
Collapse
Affiliation(s)
- Johan O. Wedin
- Department of Surgical Sciences (J.O.W., S.R., O.E.S., E.S., K.-H.G.), Uppsala University, Sweden.,Department of Cardiothoracic Surgery and Anesthesiology (J.O.W., O.E.S., J.H.M., J.P., E.S., K.-H.G.), Uppsala University Hospital, Sweden
| | - Ola Vedin
- Department of Medical Sciences (O.V., S.K.J., F.A.F.), Uppsala University, Sweden.,Boehringer Ingelheim AB, Stockholm, Sweden (O.V.)
| | - Sergey Rodin
- Department of Surgical Sciences (J.O.W., S.R., O.E.S., E.S., K.-H.G.), Uppsala University, Sweden
| | - Oscar E. Simonson
- Department of Surgical Sciences (J.O.W., S.R., O.E.S., E.S., K.-H.G.), Uppsala University, Sweden.,Department of Cardiothoracic Surgery and Anesthesiology (J.O.W., O.E.S., J.H.M., J.P., E.S., K.-H.G.), Uppsala University Hospital, Sweden
| | - Jonathan Hörsne Malmborg
- Department of Cardiothoracic Surgery and Anesthesiology (J.O.W., O.E.S., J.H.M., J.P., E.S., K.-H.G.), Uppsala University Hospital, Sweden
| | - Johan Pallin
- Department of Cardiothoracic Surgery and Anesthesiology (J.O.W., O.E.S., J.H.M., J.P., E.S., K.-H.G.), Uppsala University Hospital, Sweden
| | - Stefan K. James
- Department of Medical Sciences (O.V., S.K.J., F.A.F.), Uppsala University, Sweden.,Department of Clinical Physiology and Cardiology (S.K.J., F.A.F.), Uppsala University Hospital, Sweden
| | - Frank A. Flachskampf
- Department of Medical Sciences (O.V., S.K.J., F.A.F.), Uppsala University, Sweden.,Department of Clinical Physiology and Cardiology (S.K.J., F.A.F.), Uppsala University Hospital, Sweden
| | - Elisabeth Ståhle
- Department of Surgical Sciences (J.O.W., S.R., O.E.S., E.S., K.-H.G.), Uppsala University, Sweden.,Department of Cardiothoracic Surgery and Anesthesiology (J.O.W., O.E.S., J.H.M., J.P., E.S., K.-H.G.), Uppsala University Hospital, Sweden
| | - Karl-Henrik Grinnemo
- Department of Surgical Sciences (J.O.W., S.R., O.E.S., E.S., K.-H.G.), Uppsala University, Sweden.,Department of Cardiothoracic Surgery and Anesthesiology (J.O.W., O.E.S., J.H.M., J.P., E.S., K.-H.G.), Uppsala University Hospital, Sweden
| |
Collapse
|
36
|
Nappi F, Giacinto O, Lusini M, Garo M, Caponio C, Nenna A, Nappi P, Rousseau J, Spadaccio C, Chello M. Patients with Bicuspid Aortopathy and Aortic Dilatation. J Clin Med 2022; 11:jcm11206002. [PMID: 36294323 PMCID: PMC9605389 DOI: 10.3390/jcm11206002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Bicuspid aortic valve (BAV) is the most frequent congenital cardiac disease. Alteration of ascending aorta diameter is a consequence of shear stress alterations due to haemodynamic abnormalities developed from inadequate valve cusp coaptation. (2) Objective: This narrative review aims to discuss anatomical, pathophysiological, genetical, ultrasound, and radiological aspects of BAV disease, focusing on BAV classification related to imaging patterns and flux models involved in the onset and developing vessel dilatation. (3) Methods: A comprehensive search strategy was implemented in PubMed from January to May 2022. English language articles were selected independently by two authors and screened according to the following criteria. (4) Key Contents and Findings: Ultrasound scan is the primary step in the diagnostic flowchart identifying structural and doppler patterns of the valve. Computed tomography determines aortic vessel dimensions according to the anatomo-pathology of the valve. Magnetic resonance identifies hemodynamic alterations. New classifications and surgical indications derive from these diagnostic features. Currently, indications correlate morphological results, dissection risk factors, and genetic alterations. Surgical options vary from aortic valve and aortic vessel substitution to aortic valve repair according to the morphology of the valve. In selected patients, transcatheter aortic valve replacement has an even more impact on the treatment choice. (5) Conclusions: Different imaging approaches are an essential part of BAV diagnosis. Morphological classifications influence the surgical outcome.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
- Correspondence: ; Tel.: +33-1-4933-4104; Fax: +33-1-4933-4119
| | - Omar Giacinto
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marialuisa Garo
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Claudio Caponio
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Juliette Rousseau
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Cristiano Spadaccio
- Department of Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
37
|
Park J, Kim J, Hyun S, Lee J. Hemodynamics in a three-dimensional printed aortic model: a comparison of four-dimensional phase-contrast magnetic resonance and image-based computational fluid dynamics. MAGMA (NEW YORK, N.Y.) 2022; 35:719-732. [PMID: 35133539 DOI: 10.1007/s10334-021-00984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE This study aims to compare an electrocardiogram (ECG)-gated four-dimensional (4D) phase-contrast (PC) magnetic resonance imaging (MRI) technique and computational fluid dynamics (CFD) using variables controlled in a laboratory environment to minimize bias factors. MATERIALS AND METHODS Data from 4D PC-MRI were compared with computational fluid dynamics using steady and pulsatile flows at various inlet velocities. Anatomically realistic models for a normal aorta, a penetrating atherosclerotic ulcer, and an abdominal aortic aneurysm were constructed using a three-dimensional printer. RESULTS For the normal aorta model, the errors in the peak and the average velocities were within 5%. The peak velocities of the penetrating atherosclerotic ulcer and the abdominal aortic aneurysm models displayed a more extensive range of differences because of the high-speed and vortical fluid flows generated by the shape of the blood vessel. However, the average velocities revealed only relatively minor differences. CONCLUSIONS This study compared the characteristics of PC-MRI and CFD through a phantom study that only included controllable experimental parameters. Based on these results, 4D PC-MRI and CFD are powerful tools for analyzing blood flow patterns in vivo. However, there is room for future developments to improve velocity measurement accuracy.
Collapse
Affiliation(s)
- Jieun Park
- Nonlinear Dynamics Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Junghun Kim
- Bio-Medical Research Institute, Kyungpook National University and Hospital, Daegu, Korea.
| | - Sinjae Hyun
- Department of Biomedical Engineering, Mercer University, Macon, GA, 31207, USA
| | - Jongmin Lee
- Department of Radiology, Kyungpook National University and Hospital, 50, Sam-Duk 2 Ga, Jung Gu, Daegu, 700-721, Republic of Korea.
| |
Collapse
|
38
|
Cherry M, Khatir Z, Khan A, Bissell M. The impact of 4D-Flow MRI spatial resolution on patient-specific CFD simulations of the thoracic aorta. Sci Rep 2022; 12:15128. [PMID: 36068322 PMCID: PMC9448751 DOI: 10.1038/s41598-022-19347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is considered the gold standard of medical imaging technologies as it allows for accurate imaging of blood vessels. 4-Dimensional Flow Magnetic Resonance Imaging (4D-Flow MRI) is built on conventional MRI, and provides flow data in the three vector directions and a time resolved magnitude data set. As such it can be used to retrospectively calculate haemodynamic parameters of interest, such as Wall Shear Stress (WSS). However, multiple studies have indicated that a significant limitation of the imaging technique is the spatiotemporal resolution that is currently available. Recent advances have proposed and successfully integrated 4D-Flow MRI imaging techniques with Computational Fluid Dynamics (CFD) to produce patient-specific simulations that have the potential to aid in treatments,surgical decision making, and risk stratification. However, the consequences of using insufficient 4D-Flow MRI spatial resolutions on any patient-specific CFD simulations is currently unclear, despite being a recognised limitation. The research presented in this study aims to quantify the inaccuracies in patient-specific 4D-Flow MRI based CFD simulations that can be attributed to insufficient spatial resolutions when acquiring 4D-Flow MRI data. For this research, a patient has undergone four 4D-Flow MRI scans acquired at various isotropic spatial resolutions and patient-specific CFD simulations have subsequently been run using geometry and velocity data produced from each scan. It was found that compared to CFD simulations based on a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm, using a spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4\,{\text {mm}} \times 4\,{\text {mm}} \times 4\,{\text {mm}}$$\end{document}4mm×4mm×4mm substantially underestimated the maximum velocity magnitude at peak systole by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$110.55\%$$\end{document}110.55%. The impacts of 4D-Flow MRI spatial resolution on WSS calculated from CFD simulations have been investigated and it has been shown that WSS is underestimated in CFD simulations that are based on a coarse 4D-Flow MRI spatial resolution. The authors have concluded that a minimum 4D-Flow MRI spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm must be used when acquiring 4D-Flow MRI data to perform patient-specific CFD simulations. A coarser spatial resolution will produce substantial differences within the flow field and geometry.
Collapse
Affiliation(s)
- Molly Cherry
- CDT in Fluid Dynamics, School of Computing, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zinedine Khatir
- School of Engineering and the Built Environment, Birmingham City University, Birmingham, B4 7XG, UK.,School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amirul Khan
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
39
|
Kaiser AD, Shad R, Schiavone N, Hiesinger W, Marsden AL. Controlled Comparison of Simulated Hemodynamics Across Tricuspid and Bicuspid Aortic Valves. Ann Biomed Eng 2022; 50:1053-1072. [PMID: 35748961 PMCID: PMC10775905 DOI: 10.1007/s10439-022-02983-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/16/2022] [Indexed: 11/01/2022]
Abstract
Bicuspid aortic valve is the most common congenital heart defect, affecting 1-2% of the global population. Patients with bicuspid valves frequently develop dilation and aneurysms of the ascending aorta. Both hemodynamic and genetic factors are believed to contribute to dilation, yet the precise mechanism underlying this progression remains under debate. Controlled comparisons of hemodynamics in patients with different forms of bicuspid valve disease are challenging because of confounding factors, and simulations offer the opportunity for direct and systematic comparisons. Using fluid-structure interaction simulations, we simulate flows through multiple aortic valve models in a patient-specific geometry. The aortic geometry is based on a healthy patient with no known aortic or valvular disease, which allows us to isolate the hemodynamic consequences of changes to the valve alone. Four fully-passive, elastic model valves are studied: a tricuspid valve and bicuspid valves with fusion of the left- and right-, right- and non-, and non- and left-coronary cusps. The resulting tricuspid flow is relatively uniform, with little secondary or reverse flow, and little to no pressure gradient across the valve. The bicuspid cases show localized jets of forward flow, excess streamwise momentum, elevated secondary and reverse flow, and clinically significant levels of stenosis. Localized high flow rates correspond to locations of dilation observed in patients, with the location related to which valve cusps are fused. Thus, the simulations support the hypothesis that chronic exposure to high local flow contributes to localized dilation and aneurysm formation.
Collapse
Affiliation(s)
- Alexander D Kaiser
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Rohan Shad
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Nicole Schiavone
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - William Hiesinger
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
40
|
Aliabadi S, Sojoudi A, Bandali MF, Bristow MS, Lydell C, Fedak PWM, White JA, Garcia J. Intra-cardiac pressure drop and flow distribution of bicuspid aortic valve disease in preserved ejection fraction. Front Cardiovasc Med 2022; 9:903277. [PMID: 36093173 PMCID: PMC9448951 DOI: 10.3389/fcvm.2022.903277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Background Bicuspid aortic valve (BAV) is more than a congenital defect since it is accompanied by several secondary complications that intensify induced impairments. Hence, BAV patients need lifelong evaluations to prevent severe clinical sequelae. We applied 4D-flow magnetic resonance imaging (MRI) for in detail visualization and quantification of in vivo blood flow to verify the reliability of the left ventricular (LV) flow components and pressure drops in the silent BAV subjects with mild regurgitation and preserved ejection fraction (pEF). Materials and methods A total of 51 BAV patients with mild regurgitation and 24 healthy controls were recruited to undergo routine cardiac MRI followed by 4D-flow MRI using 3T MRI scanners. A dedicated 4D-flow module was utilized to pre-process and then analyze the LV flow components (direct flow, retained inflow, delayed ejection, and residual volume) and left-sided [left atrium (LA) and LV] local pressure drop. To elucidate significant diastolic dysfunction in our population, transmitral early and late diastolic 4D flow peak velocity (E-wave and A-wave, respectively), as well as E/A ratio variable, were acquired. Results The significant means differences of each LV flow component (global measurement) were not observed between the two groups (p > 0.05). In terms of pressure analysis (local measurement), maximum and mean as well as pressure at E-wave and A-wave timepoints at the mitral valve (MV) plane were significantly different between BAV and control groups (p: 0.005, p: 0.02, and p: 0.04 and p: <0.001; respectively). Furthermore, maximum pressure and pressure difference at the A-wave timepoint at left ventricle mid and left ventricle apex planes were significant. Although we could not find any correlation between LV diastolic function and flow components, Low but statistically significant correlations were observed with local pressure at LA mid, MV and LV apex planes at E-wave timepoint (R: −0.324, p: 0.005, R: −0.327, p: 0.004, and R: −0.306, p: 0.008, respectively). Conclusion In BAV patients with pEF, flow components analysis is not sensitive to differentiate BAV patients with mild regurgitation and healthy control because flow components and EF are global parameters. Inversely, pressure (local measurement) can be a more reliable biomarker to reveal the early stage of diastolic dysfunction.
Collapse
|
41
|
McLennan D, Schäfer M, Barker AJ, Mitchell MB, Ing RJ, Browne LP, Ivy DD, Morgan GJ. Abnormal flow conduction through pulmonary arteries is associated with right ventricular volume and function in patients with repaired tetralogy of Fallot: does flow quality affect afterload? Eur Radiol 2022; 33:302-311. [DOI: 10.1007/s00330-022-09017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
|
42
|
Kiema M, Sarin JK, Kauhanen SP, Torniainen J, Matikka H, Luoto ES, Jaakkola P, Saari P, Liimatainen T, Vanninen R, Ylä-Herttuala S, Hedman M, Laakkonen JP. Wall Shear Stress Predicts Media Degeneration and Biomechanical Changes in Thoracic Aorta. Front Physiol 2022; 13:934941. [PMID: 35874533 PMCID: PMC9301078 DOI: 10.3389/fphys.2022.934941] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives: In thoracic aortic aneurysm (TAA) of the ascending aorta (AA), AA is progressively dilating due to the weakening of the aortic wall. Predicting and preventing aortic dissections and ruptures in TAA continues to be challenging, and more accurate assessment of the AA dilatation, identification of high-risk patients, and timing of repair surgery are required. We investigated whether wall shear stress (WSS) predicts pathological and biomechanical changes in the aortic wall in TAA. Methods: The study included 12 patients with bicuspid (BAV) and 20 patients with the tricuspid aortic valve (TAV). 4D flow magnetic resonance imaging (MRI) was performed a day before aortic replacement surgery. Biomechanical and histological parameters, including assessing of wall strength, media degeneration, elastin, and cell content were analyzed from the resected AA samples. Results: WSSs were greater in the outer curves of the AA compared to the inner curves in all TAA patients. WSSs correlated with media degeneration of the aortic wall (ρ = -0.48, p < 0.01), elastin content (ρ = 0.47, p < 0.01), and aortic wall strength (ρ = -0.49, p = 0.029). Subsequently, the media of the outer curves was thinner, more rigid, and tolerated lower failure strains. Failure values were shown to correlate with smooth muscle cell (SMC) density (ρ = -0.45, p < 0.02), and indicated the more MYH10+ SMCs the lower the strength of the aortic wall structure. More macrophages were detected in patients with severe media degeneration and the areas with lower WSSs. Conclusion: The findings indicate that MRI-derived WSS predicts pathological and biomechanical changes in the aortic wall in patients with TAA and could be used for identification of high-risk patients.
Collapse
Affiliation(s)
- Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko K. Sarin
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Medical Physics, Medical Imaging Center, Pirkanmaa Hospital District, Tampere, Finland
| | - S. Petteri Kauhanen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Jari Torniainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Hanna Matikka
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Emma-Sofia Luoto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Jaakkola
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
| | - Petri Saari
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Oulu University Hospital, Oulu, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Johanna P. Laakkonen,
| |
Collapse
|
43
|
Sadeghi R, Tomka B, Khodaei S, Daeian M, Gandhi K, Garcia J, Keshavarz-Motamed Z. Impact of extra-anatomical bypass on coarctation fluid dynamics using patient-specific lumped parameter and Lattice Boltzmann modeling. Sci Rep 2022; 12:9718. [PMID: 35690596 PMCID: PMC9188592 DOI: 10.1038/s41598-022-12894-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 01/28/2023] Open
Abstract
Accurate hemodynamic analysis is not only crucial for successful diagnosis of coarctation of the aorta (COA), but intervention decisions also rely on the hemodynamics assessment in both pre and post intervention states to minimize patient risks. Despite ongoing advances in surgical techniques for COA treatments, the impacts of extra-anatomic bypass grafting, a surgical technique to treat COA, on the aorta are not always benign. Our objective was to investigate the impact of bypass grafting on aortic hemodynamics. We investigated the impact of bypass grafting on aortic hemodynamics using a patient-specific computational-mechanics framework in three patients with COA who underwent bypass grafting. Our results describe that bypass grafting improved some hemodynamic metrics while worsened the others: (1) Doppler pressure gradient improved (decreased) in all patients; (2) Bypass graft did not reduce the flow rate substantially through the COA; (3) Systemic arterial compliance increased in patients #1 and 3 and didn't change (improve) in patient 3; (4) Hypertension got worse in all patients; (5) The flow velocity magnitude improved (reduced) in patient 2 and 3 but did not improve significantly in patient 1; (6) There were elevated velocity magnitude, persistence of vortical flow structure, elevated turbulence characteristics, and elevated wall shear stress at the bypass graft junctions in all patients. We concluded that bypass graft may lead to pseudoaneurysm formation and potential aortic rupture as well as intimal hyperplasia due to the persistent abnormal and irregular aortic hemodynamics in some patients. Moreover, post-intervention, exposures of endothelial cells to high shear stress may lead to arterial remodeling, aneurysm, and rupture.
Collapse
Affiliation(s)
- Reza Sadeghi
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Benjamin Tomka
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Seyedvahid Khodaei
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - MohammadAli Daeian
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Krishna Gandhi
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Julio Garcia
- grid.489011.50000 0004 0407 3514Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Radiology, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Cardiac Sciences, University of Calgary, Calgary, AB Canada ,grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, AB Canada
| | - Zahra Keshavarz-Motamed
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON ,grid.25073.330000 0004 1936 8227School of Biomedical Engineering, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227School of Computational Science and Engineering, McMaster University, Hamilton, ON Canada
| |
Collapse
|
44
|
Trenti C, Ziegler M, Bjarnegård N, Ebbers T, Lindenberger M, Dyverfeldt P. Wall shear stress and relative residence time as potential risk factors for abdominal aortic aneurysms in males: a 4D flow cardiovascular magnetic resonance case-control study. J Cardiovasc Magn Reson 2022; 24:18. [PMID: 35303893 PMCID: PMC8932193 DOI: 10.1186/s12968-022-00848-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) can lead to catastrophic events such as dissection or rupture, and are an expression of general aortic disease. Low wall shear stress (WSS), high oscillatory shear index (OSI), and high relative residence time (RRT) have been correlated against increased uptake of inflammatory markers in the vessel wall and may improve risk stratification of AAA. We sought to obtain a comprehensive view of WSS, OSI, and RRT in the whole aorta for patients with AAA and age-matched elderly controls and young normal controls. METHODS 4D Flow cardiovascular magnetic resonance images of the whole aorta were acquired in 18 AAA patients (70.8 ± 3.4 years), 22 age-matched controls (71.4 ± 3.4 years), and 23 young subjects (23.3 ± 3.1 years), all males. Three-dimensional segmentations of the whole aorta were created for all timeframes using a semi-automatic approach. The aorta was divided into five segments: ascending aorta, arch, descending aorta, suprarenal and infrarenal abdominal aorta. For each segment, average values of peak WSS, OSI, and RRT were computed. Student's t-tests were used to compare values between the three cohorts (AAA patients vs elderly controls, and elderly controls vs young controls) where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. RESULTS AAA patients had lower peak WSS in the descending aorta as well as in the abdominal aorta compared to elderly controls (p ≤ 0.001), similar OSI, but higher RRT in the descending and abdominal aorta (p ≤ 0.001). Elderly controls had lower peak WSS compared to young controls throughout the aorta (p < 0.001), higher OSI in all segments except for the infrarenal aorta (p < 0.001), and higher RRT throughout the aorta, except the infrarenal aorta (p < 0.001). CONCLUSIONS This study provides novel insights into WSS, OSI, and RRT in patients with AAA in relation to normal ageing, highlighting how AAA patients have markedly abnormal hemodynamic stresses not only in the infrarenal, but in the entire aorta. Moreover, we identified RRT as a marker for abnormal AAA hemodynamics. Further investigations are needed to explore if RRT or other measures of hemodynamics stresses best predict AAA growth and/or rupture.
Collapse
Affiliation(s)
- Chiara Trenti
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Magnus Ziegler
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Niclas Bjarnegård
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Marcus Lindenberger
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
45
|
Thube HR, Sane MR. Sudden death of a post-partum female with anomalous origin of the coronary artery with bicuspid aortic valve. Med Leg J 2022:258172211060688. [PMID: 35156433 DOI: 10.1177/00258172211060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modern techniques have enabled routine diagnosis of congenital cardiac defects, notwithstanding, there will be some that remain undiagnosed and asymptomatic until adulthood. But this is rarely the case with the patent foramen ovale, with the anomalous aortic origin of the left main coronary artery and bicuspid aortic valve. This case describes the sudden death of a female in her post-partum period due to cardiac tamponade following a ruptured aneurysm of the coronary artery at its origin at the sinus of Valsalva. Autopsy shows patent foramen ovale findings and anomalous aortic origin of coronary artery (AAOCA) and bicuspid aortic valve. The association of AAOCA with bicuspid aortic valve and patent foramen ovale is rare.
Collapse
Affiliation(s)
- Harshal R Thube
- Department of Forensic Medicine & Toxicology, All India Institute of Medical Sciences, Nagpur, India
| | - Mandar R Sane
- Department of Forensic Medicine & Toxicology, All India Institute of Medical Sciences, Nagpur, India
| |
Collapse
|
46
|
Evangelista Masip A, Galian-Gay L, Guala A, Lopez-Sainz A, Teixido-Turà G, Ruiz Muñoz A, Valente F, Gutierrez L, Fernandez-Galera R, Casas G, Panaro A, Marigliano A, Huguet M, González-Alujas T, Rodriguez-Palomares J. Unraveling Bicuspid Aortic Valve Enigmas by Multimodality Imaging: Clinical Implications. J Clin Med 2022; 11:456. [PMID: 35054153 PMCID: PMC8778671 DOI: 10.3390/jcm11020456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Multimodality imaging is the basis of the diagnosis, follow-up, and surgical management of bicuspid aortic valve (BAV) patients. Transthoracic echocardiography (TTE) is used in our clinical routine practice as a first line imaging for BAV diagnosis, valvular phenotyping and function, measurement of thoracic aorta, exclusion of other aortic malformations, and for the assessment of complications such are infective endocarditis and aortic. Nevertheless, TTE is less useful if we want to assess accurately other aortic segments such as mid-distal ascending aorta, where computed tomography (CT) and magnetic resonance (CMR) could improve the precision of aorta size measurement by multiplanar reconstructions. A major advantage of CT is its superior spatial resolution, which affords a better definition of valve morphology and calcification, accuracy, and reproducibility of ascending aorta size, and allows for coronary artery assessment. Moreover, CMR offers the opportunity of being able to evaluate aortic functional properties and blood flow patterns. In this setting, new developed sequences such as 4D-flow may provide new parameters to predict events during follow up. The integration of all multimodality information facilitates a comprehensive evaluation of morphologic and dynamic features, stratification of the risk, and therapy guidance of this cohort of patients.
Collapse
Affiliation(s)
- Arturo Evangelista Masip
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Teknon Heart Institute-Quiron Salud, 08022 Barcelona, Spain; (A.P.); (A.M.); (M.H.)
| | - Laura Galian-Gay
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Andrea Guala
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Angela Lopez-Sainz
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Gisela Teixido-Turà
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Aroa Ruiz Muñoz
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Filipa Valente
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Laura Gutierrez
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Ruben Fernandez-Galera
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Guillem Casas
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Alejandro Panaro
- Teknon Heart Institute-Quiron Salud, 08022 Barcelona, Spain; (A.P.); (A.M.); (M.H.)
| | - Alba Marigliano
- Teknon Heart Institute-Quiron Salud, 08022 Barcelona, Spain; (A.P.); (A.M.); (M.H.)
| | - Marina Huguet
- Teknon Heart Institute-Quiron Salud, 08022 Barcelona, Spain; (A.P.); (A.M.); (M.H.)
| | - Teresa González-Alujas
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| | - Jose Rodriguez-Palomares
- Departament de Cardiologia, Hospital Vall d’Hebron.CIBERCV, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.); (A.G.); (A.L.-S.); (G.T.-T.); (A.R.M.); (F.V.); (L.G.); (R.F.-G.); (G.C.); (T.G.-A.); (J.R.-P.)
| |
Collapse
|
47
|
Rosakis A, Gharib M. The Influence of Valve Leaflet Stiffness Variability on Aortic Wall Shear Stress. Ann Biomed Eng 2022; 50:29-38. [PMID: 34993697 DOI: 10.1007/s10439-021-02899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Aortic stenosis is a common cardiac condition that impacts the aorta's hemodynamics downstream of the affected valve. We sought to better understand how non-uniform stiffening of a stenotic aortic valve would affect the wall shear stress (WSS) experienced by the walls of the aorta and the residence time near the valve. Several experimental configurations were created by individually stiffening leaflets of a polymer aortic valve. These configurations were mounted inside an in vitro experimental setup. Digital particle image velocimetry (DPIV) was used to measure velocity profiles inside a model aorta. The DPIV results were used to estimate the WSS and residence time. Our analysis suggests that leaflet asymmetry greatly affects the amount of WSS by vectoring the systolic jet and stiffened leaflets have an increased residence time. This study indicates that valve leaflets with different stiffness conditions can have a more significant impact on wall shear stress than stenosis caused by the uniform increase in all three leaflets (and the subsequent increased systolic velocity) alone. This finding is promising for creating customizable (patient-specific) prosthetic heart valves tailored to individual patients.
Collapse
Affiliation(s)
| | - Morteza Gharib
- Caltech, 1200 E California Blvd, MC 105-50, Pasadena, CA, 91125, USA
| |
Collapse
|
48
|
Minderhoud SCS, Roos-Hesselink JW, Chelu RG, Bons LR, van den Hoven AT, Korteland SA, van den Bosch AE, Budde RPJ, Wentzel JJ, Hirsch A. Wall shear stress angle is associated with aortic growth in bicuspid aortic valve patients. Eur Heart J Cardiovasc Imaging 2022; 23:1680-1689. [PMID: 34977931 DOI: 10.1093/ehjci/jeab290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/18/2021] [Indexed: 02/01/2023] Open
Abstract
AIMS Aortic wall shear stress (WSS) distributions in bicuspid aortic valve (BAV) patients have been associated with aortic dilatation, but prospective, longitudinal data are missing. This study assessed differences in aortic WSS distributions between BAV patients and healthy controls and determined the association of WSS with aortic growth in patients. METHODS AND RESULTS Sixty subjects underwent four-dimensional (4D) flow cardiovascular magnetic resonance of the thoracic aorta (32 BAV patients and 28 healthy controls). Peak velocity, pulse wave velocity, aortic distensibility, peak systolic WSS (magnitude, axial, and circumferential), and WSS angle were assessed. WSS angle is defined as the angle between the WSSmagnitude and WSSaxial component. In BAV patients, three-year computed tomography angiography-based aortic volumetric growth was determined in the proximal and entire ascending aorta. WSSaxial was significantly lower in BAV patients compared with controls (0.93 vs. 0.72 Pa, P = 0.047) and WSScircumferential and WSS angle were significantly higher (0.29 vs. 0.64 Pa and 18° vs. 40°, both P < 0.001). Significant volumetric growth of the proximal ascending aorta occurred in BAV patients (from 49.1 to 52.5 cm3, P = 0.003). In multivariable analysis corrected for baseline aortic volume and diastolic blood pressure, WSS angle was the only parameter independently associated with proximal aortic growth (P = 0.031). In the entire ascending aorta, besides the WSS angle, the WSSmagnitude was also independently associated with growth. CONCLUSION Increased WSScircumferential and especially WSS angle are typical in BAV patients. WSS angle was found to predict aortic growth. These findings highlight the potential role of WSS measurements in BAV patients to stratify patients at risk for aortic dilation.
Collapse
Affiliation(s)
- Savine C S Minderhoud
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Raluca G Chelu
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lidia R Bons
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Allard T van den Hoven
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
49
|
Soulat G, Scott M, Allen BD, Avery R, Bonow RO, Malaisrie C, McCarthy P, Fedak P, Barker AJ, Markl M. Association of Regional Wall Shear Stress and Progressive Ascending Aorta Dilation in Bicuspid Aortic Valve. JACC. CARDIOVASCULAR IMAGING 2022; 15:33-42. [PMID: 34419402 PMCID: PMC8741630 DOI: 10.1016/j.jcmg.2021.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the role of wall shear stress (WSS) as a predictor of ascending aorta (AAo) growth at 5 years or greater follow-up. BACKGROUND Aortic 4-dimensional flow cardiac magnetic resonance (CMR) can quantify regions exposed to high WSS, a known stimulus for arterial wall dysfunction. However, its association with longitudinal changes in aortic dilation in patients with bicuspid aortic valve (BAV) is unknown. METHODS This retrospective study identified 72 patients with BAV (age 45 ± 12 years) who underwent CMR for surveillance of aortic dilation at baseline and ≥5 years of follow-up. Four-dimensional flow CMR analysis included the calculation of WSS heat maps to compare regional WSS in individual patients with population averages of healthy age- and sex-matched subjects (database of 136 controls). The relative areas of the AAo and aorta (in %) exposed to elevated WSS (outside the 95% CI of healthy population averages) were quantified. RESULTS At a median follow-up duration of 6.0 years, the mean AAo growth rate was 0.24 ± 0.20 mm/y. The fraction of the AAo exposed to elevated WSS at baseline was increased for patients with higher growth rates (>0.24 mm/y, n = 32) compared with those with growth rates <0.24 mm/y (19.9% [IQR: 10.2%-25.5%] vs 5.7% [IQR: 1.5%-21.3%]; P = 0.008). Larger areas of elevated WSS in the AAo and entire aorta were associated with higher rates of AAo dilation >0.24 mm/y (odds ratio: 1.51; 95% CI: 1.05-2.17; P = 0.026 and odds ratio: 1.70; 95% CI: 1.01-3.15; P = 0.046, respectively). CONCLUSIONS The area of elevated AAo WSS as assessed by 4-dimensional flow CMR identified BAV patients with higher rates of aortic dilation and thus might determine which patients require closer follow-up.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Biomedical Engineering, McCormick, School of Engineering, Northwestern University, Evanston, IL, USA
| | - Bradley D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert O. Bonow
- Division of Cardiology, Department of Medicine, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois
| | - Chris Malaisrie
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA
| | - Paul Fedak
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Alex J Barker
- Department of Radiology and Bioengineering, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Biomedical Engineering, McCormick, School of Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
50
|
Regional Vascular Changes and Aortic Dilatation in Pediatric Patients with Bicuspid Aortic Valve. Can J Cardiol 2022; 38:688-694. [DOI: 10.1016/j.cjca.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
|