1
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Chen A, Mesfin JM, Gianneschi NC, Christman KL. Intravascularly Deliverable Biomaterial Platforms for Tissue Repair and Regeneration Post-Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300603. [PMID: 36989469 PMCID: PMC10539487 DOI: 10.1002/adma.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Each year, nearly 19 million people die of cardiovascular disease with coronary heart disease and myocardial infarction (MI) as the leading cause of the progression of heart failure. Due to the high risk associated with surgical procedures, a variety of minimally invasive therapeutics aimed at tissue repair and regeneration are being developed. While biomaterials delivered via intramyocardial injection have shown promise, there are challenges associated with delivery in acute MI. In contrast, intravascularly injectable biomaterials are a desirable category of therapeutics due to their ability to be delivered immediately post-MI via less invasive methods. In addition to passive diffusion into the infarct, these biomaterials can be designed to target the molecular and cellular characteristics seen in MI pathophysiology, such as cells and proteins present in the ischemic myocardium, to reduce off-target localization. These injectable materials can also be stimuli-responsive through enzymes or chemical imbalances. This review outlines the natural and synthetic biomaterial designs that allow for retention and accumulation within the infarct via intravascular delivery, including intracoronary infusion and intravenous injection.
Collapse
Affiliation(s)
- Alexander Chen
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Joshua M. Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biomedical Engineering, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Tesoro L, Hernandez I, Saura M, Badimón L, Zaragoza C. Novel cutting edge nano-strategies to address old long-standing complications in cardiovascular diseases. A comprehensive review. Eur J Clin Invest 2024; 54:e14208. [PMID: 38622800 DOI: 10.1111/eci.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVD) impact a substantial portion of the global population and represent a significant threat to experiencing life-threatening outcomes, such as atherosclerosis, myocardial infarction, stroke and heart failure. Despite remarkable progress in pharmacology and medical interventions, CVD persists as a major public health concern, and now ranks as the primary global cause of death and the highest consumer of global budgets. Ongoing research endeavours persist in seeking novel therapeutic avenues and interventions to deepen our understanding of CVD, enhance prevention measures, and refine treatment strategies. METHODS Nanotechnology applied to the development of new molecular probes with diagnostic and theranostic properties represents one of the greatest technological challenges in preclinical and clinical research. RESULTS The application of nanotechnology in cardiovascular medicine holds great promise for advancing our understanding of CVDs and revolutionizing their diagnosis and treatment strategies, ultimately improving patient care and outcomes. In addition, the capacity of drug encapsulation in nanoparticles has significantly bolstered their biological safety, bioavailability and solubility. In combination with imaging technologies, molecular imaging has emerged as a pivotal therapeutic tool, offering insight into the molecular events underlying disease and facilitating targeted treatment approaches. CONCLUSION Here, we present a comprehensive overview of the recent advancements in targeted nanoparticle approaches for diagnosing CVDs, encompassing molecular imaging techniques, underscoring the significant progress in theranostic, as a novel and promising therapeutic strategy.
Collapse
Affiliation(s)
- Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Lina Badimón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular-Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
4
|
Song L, Jia K, Yang F, Wang J. Advanced Nanomedicine Approaches for Myocardial Infarction Treatment. Int J Nanomedicine 2024; 19:6399-6425. [PMID: 38952676 PMCID: PMC11215519 DOI: 10.2147/ijn.s467219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.
Collapse
Affiliation(s)
- Lin Song
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Kangwei Jia
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fuqing Yang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Szabados T, Molnár A, Kenyeres É, Gömöri K, Pipis J, Pósa B, Makkos A, Ágg B, Giricz Z, Ferdinandy P, Görbe A, Bencsik P. Identification of New, Translatable ProtectomiRs against Myocardial Ischemia/Reperfusion Injury and Oxidative Stress: The Role of MMP/Biglycan Signaling Pathways. Antioxidants (Basel) 2024; 13:674. [PMID: 38929113 PMCID: PMC11201193 DOI: 10.3390/antiox13060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Ischemic conditionings (ICon) were intensively investigated and several protective signaling pathways were identified. Previously, we have shown the role of matrix metalloproteinases (MMP) in myocardial ischemia/reperfusion injury (MIRI) and the cardioprotective role of biglycan (BGN), a small leucine-rich proteoglycan in vitro. Here, we hypothesized that cardiac MMP and BGN signaling are involved in the protective effects of ICon. METHODS A reverse target-microRNA prediction was performed by using the miRNAtarget™ 2.0 software to identify human microRNAs with a possible regulatory effect on MMP and BGN, such as on related genes. To validate the identified 1289 miRNAs in the predicted network, we compared them to two cardioprotective miRNA omics datasets derived from pig and rat models of MIRI in the presence of ICons. RESULTS Among the experimentally measured miRNAs, we found 100% sequence identity to human predicted regulatory miRNAs in the case of 37 porcine and 24 rat miRNAs. Upon further analysis, 42 miRNAs were identified as MIRI-associated miRNAs, from which 24 miRNAs were counter-regulated due to ICons. CONCLUSIONS Our findings highlight 24 miRNAs that potentially regulate cardioprotective therapeutic targets associated with MMPs and BGN in a highly translatable porcine model of acute myocardial infarction.
Collapse
Affiliation(s)
- Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Arnold Molnár
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| | - Éva Kenyeres
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Judit Pipis
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| | - Bence Pósa
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Bence Ágg
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Zoltán Giricz
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Péter Ferdinandy
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| |
Collapse
|
6
|
Tesoro L, Hernández I, Ramírez-Carracedo R, Díez-Mata J, Alcharani N, Jiménez-Guirado B, Ovejero-Paredes K, Filice M, Zamorano JL, Saura M, Zaragoza C, Botana L. NIL10: A New IL10-Receptor Binding Nanoparticle That Induces Cardiac Protection in Mice and Pigs Subjected to Acute Myocardial Infarction through STAT3/NF-κB Activation. Pharmaceutics 2022; 14:pharmaceutics14102044. [PMID: 36297479 PMCID: PMC9608724 DOI: 10.3390/pharmaceutics14102044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Early response after acute myocardial infarction (AMI) prevents extensive cardiac necrosis, in which inflammation resolution, including expression of anti-inflammatory interleukin-10 (IL-10), may play a key role. (2) Methods: We synthesized NIL10, a micelle-based nanoparticle, to target IL-10 receptor in mice and pigs subjected to AMI. (3) Results: Administration of NIL10 induced cardiac protection of wild-type and IL-10 knockout mice and pigs subjected to AMI. Cardiac protection was not induced in IL-10-receptor null mice, as shown by a significant recovery of cardiac function, in which inflammatory foci and fibrosis were strongly reduced, together with the finding that resolving M2-like macrophage populations were increased after day 3 of reperfusion. In addition, anti-inflammatory cytokines, including IL-4, IL-7, IL-10, IL-13, IL-16, and IL-27 were also elevated. Mechanistically, NIL10 induced activation of the IL-10 receptor/STAT-3 signaling pathway, and STAT3-dependent inhibition of nuclear translocation of pro-inflammatory NF-ĸB transcription factor. (4) Conclusions: Taken together, we propose using NIL10 as a novel therapeutic tool against AMI-induced cardiac damage.
Collapse
Affiliation(s)
- Laura Tesoro
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ignacio Hernández
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Rafael Ramírez-Carracedo
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Javier Díez-Mata
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
| | - Nunzio Alcharani
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
| | - Beatriz Jiménez-Guirado
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
| | - Karina Ovejero-Paredes
- Departamento de Química, Facultad de Farmacia, Universidad Complutense (UCM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERRES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Marco Filice
- Departamento de Química, Facultad de Farmacia, Universidad Complutense (UCM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERRES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Jose Luis Zamorano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Marta Saura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, 28871 Madrid, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (C.Z.); (L.B.)
| | - Laura Botana
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (C.Z.); (L.B.)
| |
Collapse
|
7
|
Xie J, Luo C, Mo B, Lin Y, Liu G, Wang X, Li L. Inflammation and Oxidative Stress Role of S100A12 as a Potential Diagnostic and Therapeutic Biomarker in Acute Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2633123. [PMID: 36062187 PMCID: PMC9436632 DOI: 10.1155/2022/2633123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022]
Abstract
Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases with high morbidity and mortality. Numerous studies have indicated that S100A12 may has an essential role in the occurrence and development of AMI, and in-depth studies are currently lacking. The purpose of this study is to investigate the effect of S100A12 on inflammation and oxidative stress and to determine its clinical applicability in AMI. Here, AMI datasets used to explore the expression pattern of S100A12 in AMI were derived from the Gene Expression Omnibus (GEO) database. The pooled standard average deviation (SMD) was calculated to further determine S100A12 expression. The overlapping differentially expressed genes (DEGs) contained in all included datasets were recognized by the GEO2R tool. Then, functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were carried out to determine the molecular function of overlapping DEGs. Gene set enrichment analysis (GSEA) was conducted to determine unrevealed mechanisms of S100A12. Summary receiver operating characteristic (SROC) curve analysis and receiver operating characteristic (ROC) curve analysis were carried out to identify the diagnostic capabilities of S100A12. Moreover, we screened miRNAs targeting S100A12 using three online databases (miRWalk, TargetScan, and miRDB). In addition, by comprehensively using enzyme-linked immunosorbent assay (ELISA), real-time quantitative PCR (RT-qPCR), Western blotting (WB) methods, etc., we used the AC16 cells to validate the expression and underlying mechanism of S100A12. In our study, five datasets related to AMI, GSE24519, GSE60993, GSE66360, GSE97320, and GSE48060 were included; 412 overlapping DEGs were identified. Protein-protein interaction (PPI) network and functional analyses showed that S100A12 was a pivotal gene related to inflammation and oxidative stress. Then, S100A12 overexpression was identified based on the included datasets. The pooled standard average deviation (SMD) also showed that S100A12 was upregulated in AMI (SMD = 1.36, 95% CI: 0.70-2.03, p = 0.024). The SROC curve analysis result suggested that S100A12 had remarkable diagnostic ability in AMI (AUC = 0.90, 95% CI: 0.87-0.92). And nine miRNAs targeting S100A12 were also identified. Additionally, the overexpression of S100A12 was further confirmed that it maybe promote inflammation and oxidative stress in AMI through comprehensive in vitro experiments. In summary, our study suggests that overexpressed S100A12 may be a latent diagnostic biomarker and therapeutic target of AMI that induces excessive inflammation and oxidative stress. Nine miRNAs targeting S100A12 may play a crucial role in AMI, but further studies are still needed. Our work provides a positive inspiration for the in-depth study of S100A12 in AMI.
Collapse
Affiliation(s)
- Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
| | - Changjun Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
| | - Binhai Mo
- Department of Cardiology, The First People Hospital of Nanning & The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530016 Guangxi, China
| | - Yunhua Lin
- The First Clinical Medical College, Guangxi Medical University, Nanning 530021, China
| | - Guoqing Liu
- The First Clinical Medical College, Guangxi Medical University, Nanning 530021, China
| | - Xiantao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, 530021 Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021 Guangxi, China
| |
Collapse
|
8
|
Thackeray JT, Hess A. Good Things in Small Packages: Growth and Potential of Theragnostic Platforms in Cardiovascular Medicine. Circ Cardiovasc Imaging 2022; 15:e014403. [PMID: 35678175 DOI: 10.1161/circimaging.122.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James T Thackeray
- Translational Cardiovascular Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Hess
- Translational Cardiovascular Molecular Imaging, Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|