1
|
Li M, Kim JB, Sastry BKS, Chen M. Infective endocarditis. Lancet 2024; 404:377-392. [PMID: 39067905 DOI: 10.1016/s0140-6736(24)01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 07/30/2024]
Abstract
First described more than 350 years ago, infective endocarditis represents a global health concern characterised by infections affecting the native or prosthetic heart valves, the mural endocardium, a septal defect, or an indwelling cardiac device. Over recent decades, shifts in causation and epidemiology have been observed. Echocardiography remains pivotal in the diagnosis of infective endocarditis, with alternative imaging modalities gaining significance. Multidisciplinary management requiring expertise of cardiologists, cardiovascular surgeons, infectious disease specialists, microbiologists, radiologists and neurologists, is imperative. Current recommendations for clinical management often rely on observational studies, given the limited number of well conducted randomised controlled trials studying infective endocarditis due to the rarity of the disease. In this Seminar, we provide a comprehensive overview of optimal clinical practices in infective endocarditis, highlighting key aspects of pathophysiology, pathogens, diagnosis, management, prevention, and multidisciplinary approaches, providing updates on recent research findings and addressing remaining controversies in diagnostic accuracy, prevention strategies, and optimal treatment.
Collapse
Affiliation(s)
- Mingfang Li
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Joon Bum Kim
- Department of Thoracic and Cardiovascular Surgery, Aortic Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - B K S Sastry
- Department of Cardiology, Renova Century Hospital, Hyderabad, Telangana, India
| | - Minglong Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Fischer AJ, Enders D, Baumgartner H, Diller GP, Kaleschke G. Occurrence and Outcome of Infective Endocarditis after Surgical Compared to Transcatheter Pulmonary Valve Implantation in Congenital Heart Disease. J Clin Med 2024; 13:2683. [PMID: 38731212 PMCID: PMC11084703 DOI: 10.3390/jcm13092683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Conflicting data exist on the occurrence and outcome of infective endocarditis (IE) after pulmonary valve implantation. Objectives: This study sought to assess the differences between transcatheter pulmonary valve implantation (TPVI) and surgical pulmonary valve replacement (SPVR). Methods: All patients ≥ 4 years who underwent isolated pulmonary valve replacement between 2005 and 2018 were analyzed based on the data of a major German health insurer (≈9.2 million insured subjects representative of the German population). The primary endpoint was a composite of IE occurrence and all-cause death. Results: Of 461 interventions (cases) in 413 patients (58.4% male, median age 18.9 years [IQR 12.3-33.4]), 34.4% underwent TPVI and 65.5% SPVR. IE was diagnosed in 8.0% of cases during a median follow-up of 3.5 years. Risk for IE and all-cause death was increased in patients with prior IE (p < 0.001), but not associated with age (p = 0.50), sex (p = 0.67) or complexity of disease (p = 0.59). While there was no difference in events over the entire observational time period (p = 0.22), the time dynamics varied between TPVI and SPVR: Within the first year, the risk for IE and all-cause death was lower after TPVI (Hazard Ratio (HR) 95% CI 0.19 (0.06-0.63; p = 0.006) but increased over time and exceeded that of SPVR in the long term (HR 10.07 (95% CI 3.41-29.76; p < 0.001). Conclusions: Patients with TPVI appear to be at lower risk for early but higher risk for late IE, resulting in no significant difference in the overall event rate compared to SPVR. The results highlight the importance of long-term specialized care and preventive measures after both interventions.
Collapse
Affiliation(s)
- Alicia Jeanette Fischer
- Department of Cardiology III—Adult Congenital and Valvular Heart Disease, University Hospital Muenster, 48149 Muenster, Germany (G.K.)
| | - Dominic Enders
- Institute of Biostatistics and Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Helmut Baumgartner
- Department of Cardiology III—Adult Congenital and Valvular Heart Disease, University Hospital Muenster, 48149 Muenster, Germany (G.K.)
| | - Gerhard-Paul Diller
- Department of Cardiology III—Adult Congenital and Valvular Heart Disease, University Hospital Muenster, 48149 Muenster, Germany (G.K.)
| | - Gerrit Kaleschke
- Department of Cardiology III—Adult Congenital and Valvular Heart Disease, University Hospital Muenster, 48149 Muenster, Germany (G.K.)
| |
Collapse
|
3
|
Han Y, Shao Z, Sun Z, Han Y, Xu H, Song S, Pan X, de Jaegere PPT, Fan T, Zhang G. In vitro bench testing using patient-specific 3D models for percutaneous pulmonary valve implantation with Venus P-valve. Chin Med J (Engl) 2024; 137:990-996. [PMID: 37606001 PMCID: PMC11046019 DOI: 10.1097/cm9.0000000000002793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Due to the wide variety of morphology, size, and dynamics, selecting an optimal valve size and location poses great difficulty in percutaneous pulmonary valve implantation (PPVI). This study aimed to report our experience with in vitro bench testing using patient-specific three-dimensional (3D)-printed models for planning PPVI with the Venus P-valve. METHODS Patient-specific 3D soft models were generated using PolyJet printing with a compliant synthetic material in 15 patients scheduled to undergo PPVI between July 2018 and July 2020 in Central China Fuwai Hospital of Zhengzhou University. RESULTS 3D model bench testing altered treatment strategy in all patients (100%). One patient was referred for surgery because testing revealed that even the largest Venus P-valve would not anchor properly. In the remaining 14 patients, valve size and/or implantation location was altered to avoid valve migration and/or compression coronary artery. In four patients, it was decided to change the point anchoring because of inverted cone-shaped right ventricular outflow tract (RVOT) ( n = 2) or risk of compression coronary artery ( n = 2). Concerning sizing, we found that an oversize of 2-5 mm suffices. Anchoring of the valve was dictated by the flaring of the in- and outflow portion in the pulmonary artery. PPVI was successful in all 14 patients (absence of valve migration, no coronary compression, and none-to-mild residual pulmonary regurgitation [PR]). The diameter of the Venus P-valve in the 3D simulation group was significantly smaller than that of the conventional planning group (36 [2] vs. 32 [4], Z = -3.77, P <0.001). CONCLUSIONS In vitro testing indicated no need to oversize the Venus P-valve to the degree recommended by the balloon-sizing technique, as 2-5 mm sufficed.
Collapse
Affiliation(s)
- Yu Han
- Department of Structure Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
| | - Zehua Shao
- Children's Heart Center, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
| | - Zirui Sun
- Department of Structure Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
| | - Yan Han
- Department of Structure Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
| | - Hongdang Xu
- Department of Anesthesiology, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
| | - Shubo Song
- Children's Heart Center, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
| | - Xiangbin Pan
- Department of Structure Heart Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Beijing 100037, China
| | | | - Taibing Fan
- Children's Heart Center, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
| | - Gejun Zhang
- Department of Structure Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 451460, China
- Department of Structure Heart Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
4
|
Pan W, Zhou D, Hijazi ZM, Qureshi SA, Promphan W, Feng Y, Zhang G, Liu X, Pan X, Chen L, Cao Q, Tiong KG, Leong MC, Roymanee S, Prachasilchai P, Choi JY, Tomita H, Le Tan J, Akhtar K, Lam S, So K, Tin DN, Nguyen LH, Huo Y, Wang J, Ge J. 2024 Statement from Asia expert operators on transcatheter pulmonary valve replacement. Catheter Cardiovasc Interv 2024; 103:660-669. [PMID: 38419402 DOI: 10.1002/ccd.30978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Transcatheter pulmonary valve replacement (TPVR), also known as percutaneous pulmonary valve implantation, refers to a minimally invasive technique that replaces the pulmonary valve by delivering an artificial pulmonary prosthesis through a catheter into the diseased pulmonary valve under the guidance of X-ray and/or echocardiogram while the heart is still beating not arrested. In recent years, TPVR has achieved remarkable progress in device development, evidence-based medicine proof and clinical experience. To update the knowledge of TPVR in a timely fashion, and according to the latest research and further facilitate the standardized and healthy development of TPVR in Asia, we have updated this consensus statement. After systematical review of the relevant literature with an in-depth analysis of eight main issues, we finally established eight core viewpoints, including indication recommendation, device selection, perioperative evaluation, procedure precautions, and prevention and treatment of complications.
Collapse
Affiliation(s)
- Wenzhi Pan
- Zhongshan Hopital, Fudan University, Shanghai, China
| | - Daxin Zhou
- Zhongshan Hopital, Fudan University, Shanghai, China
| | - Ziyad M Hijazi
- Pediatrics & Medicine, Weill Cornell Medicine, Doha, Qatar
| | | | - Worakan Promphan
- Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Yuan Feng
- West China Hospital, Sichuan University, Chengdu, China
| | | | - Xianbao Liu
- Second Hospital of Zhejiang Medical University, Hangzhou, China
| | - Xin Pan
- Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | - Pimpak Prachasilchai
- Queen Sirikit National Institute of Child Health, Pediatric Cardiac Center, Thailand
| | | | | | - Ju Le Tan
- National Heart Center, Singapore, Singapore
| | - Khurram Akhtar
- Armed Forces Institute of Cardiology National Institute of Heart Diseases, Rawalpindi, Pakistan
| | - Simon Lam
- Queen Marry Hospital, Hong Kong, China
| | - Kent So
- The Chinese University of Hong Kong, Hong Kong, China
| | - Do N Tin
- Children's Hospital, Hanoi, Vietnam
| | | | - Yong Huo
- Peking University First Hospital, Beijing, China
| | - Jian'an Wang
- Second Hospital of Zhejiang Medical University, Hangzhou, China
| | - Junbo Ge
- Zhongshan Hopital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Stefanescu Schmidt AC, Armstrong AK, Aboulhosn JA, Kennedy KF, Jones TK, Levi DS, McElhinney DB, Bhatt AB. Transcatheter Pulmonary Valve Replacement With Balloon-Expandable Valves: Utilization and Procedural Outcomes From the IMPACT Registry. JACC Cardiovasc Interv 2024; 17:231-244. [PMID: 38267137 DOI: 10.1016/j.jcin.2023.10.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/03/2023] [Accepted: 10/31/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Transcatheter pulmonary valve replacement (TPVR) has expanded and evolved since its initial commercial approval in the United States in 2010. OBJECTIVES This study sought to characterize real-world practice, including patient selection, procedural outcomes, complications, and off-label usage. METHODS Characteristics and outcomes for patients undergoing balloon-expandable TPVR were collected from the American College of Cardiology National Cardiovascular Data Registry IMPACT (Improving Pediatric and Adult Congenital Treatment) Registry. RESULTS Between April 2016 and March 2021, 4,513 TPVR procedures were performed in patients with a median age of 19 years, 57% with a Melody (Medtronic Inc) and 43% with a SAPIEN (Edwards Lifesciences) valve. Most implanting centers performed <10 cases annually. One-third of transcatheter pulmonary valve implants were into homograft conduits, one-third were into bioprosthetic valves (BPVs), 25% were in native or patched right ventricular outflow tracts (RVOTs), and 6% were into Contegra (Medtronic Inc) conduits. Over the course of the study period, SAPIEN valve use grew from ∼25% to 60%, in large part because of implants in patients with a native/patched RVOT. Acute success was achieved in 95% of patients (95.7% in homografts, 96.2% in BPVs, 94.2% in native RVOTs, and 95.4% in Contegra conduits). Major adverse events occurred in 2.4% of procedures, more commonly in patients with a homograft (2.9%) or native RVOT (3.4%) than a prior BPV (1.4%; P = 0.004). CONCLUSIONS This study describes novel population data on the use and procedural outcomes of TPVR with balloon-expandable valves. Over time, there has been increasing use of TPVR to treat regurgitant native RVOT anatomy, with the SAPIEN valve more commonly used for this application.
Collapse
Affiliation(s)
- Ada C Stefanescu Schmidt
- Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | - Jamil A Aboulhosn
- Ahmanson/University of California, Los Angeles Adult Congenital Heart Center, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, USA
| | | | - Thomas K Jones
- Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Daniel S Levi
- Mattel Children's Hospital at University of California-Los Angeles, Los Angeles, California, USA
| | | | - Ami B Bhatt
- Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; American College of Cardiology, Washington, DC, USA
| |
Collapse
|
6
|
Kagiyama Y, Kenny D, Hijazi ZM. Current status of transcatheter intervention for complex right ventricular outflow tract abnormalities. Glob Cardiol Sci Pract 2024; 2024:e202407. [PMID: 38404661 PMCID: PMC10886730 DOI: 10.21542/gcsp.2024.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/11/2023] [Indexed: 02/27/2024] Open
Abstract
Various transcatheter interventions for the right ventricular outflow tract (RVOT) have been introduced and developed in recent decades. Transcatheter pulmonary valve perforation was first introduced in the 1990s. Radiofrequency wire perforation has been the approach of choice for membranous pulmonary atresia in newborns, with high success rates, although complication rates remain relatively common. Stenting of the RVOT is a novel palliative treatment that may improve hemodynamics in neonatal patients with reduced pulmonary blood flow and RVOT obstruction. Whether this option is superior to other surgical palliative strategies or early primary repair of tetralogy of Fallot remains unclear. Transcatheter pulmonary valve replacement has been one of the biggest innovations in the last two decades. With the success of the Melody and SAPIEN valves, this technique has evolved into the gold standard therapy for RVOT abnormalities with excellent procedural safety and efficacy. Challenges remain in managing the wide heterogeneity of postoperative lesions seen in RVOT, and various technical modifications, such as pre-stenting, valve ring modification, or development of self-expanding systems, have been made. Recent large studies have revealed outcomes comparable to those of surgery, with less morbidity. Further experience and multicenter studies and registries to compare the outcomes of various strategies are necessary, with the ultimate goal of a single-step, minimally invasive approach offering the best longer-term anatomical and physiological results.
Collapse
Affiliation(s)
- Yoshiyuki Kagiyama
- Department of Pediatric Cardiology, Children’s Health Ireland at Crumlin, Dublin 12, Republic of Ireland
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Damien Kenny
- Department of Pediatric Cardiology, Children’s Health Ireland at Crumlin, Dublin 12, Republic of Ireland
| | - Ziyad M. Hijazi
- Department of Cardiovascular Diseases, Sidra Medicine, and Weill Cornell Medical College, Doha, Qatar
| |
Collapse
|
7
|
Manukyan SN, Soynov IA, Voytov AV, Rzaeva KA, Baranov AA, Bogachev-Prokofiev AV. [Modern possibilities for transcatheter pulmonary valve replacement]. Khirurgiia (Mosk) 2024:32-44. [PMID: 38344958 DOI: 10.17116/hirurgia202402132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The literature review is devoted to transcatheter pulmonary valve replacement. The authors summarize the indications, clinical data and current capabilities of transcatheter pulmonary valve replacement. The authors also overviewed modern valves for transcatheter pulmonary artery replacement. Effectiveness of transcatheter pulmonary valve implantation has been substantiated. Various studies comparing the outcomes of different valve systems for endovascular implantation were analyzed. The authors concluded the prospects for transcatheter pulmonary valve implantation.
Collapse
Affiliation(s)
- S N Manukyan
- Meshalkin National Medical Research, Novosibirsk, Russia
| | - I A Soynov
- Meshalkin National Medical Research, Novosibirsk, Russia
| | - A V Voytov
- Meshalkin National Medical Research, Novosibirsk, Russia
| | - K A Rzaeva
- Meshalkin National Medical Research, Novosibirsk, Russia
| | - A A Baranov
- Meshalkin National Medical Research, Novosibirsk, Russia
| | | |
Collapse
|
8
|
Ji M, Zhang L, Gao L, Lin Y, He Q, Xie M, Li Y. Application of Speckle Tracking Echocardiography for Evaluating Ventricular Function after Transcatheter Pulmonary Valve Replacement. Diagnostics (Basel) 2023; 14:88. [PMID: 38201397 PMCID: PMC10795743 DOI: 10.3390/diagnostics14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Pulmonary regurgitation usually leads to right heart dilatation and eventually right heart dysfunction, which is associated with a poor prognosis. Transcatheter pulmonary valve replacement is a developing treatment for pulmonary valve dysfunction that can take the place of traditional surgery and make up for the shortcomings of a large injury. Echocardiography plays a significant role in assessing ventricular function; however, conventional echocardiographic parameters have several limitations. Speckle tracking echocardiography has been regarded as a more accurate tool for quantifying cardiac function than conventional echocardiography. Therefore, the aim of this review was to summarize the application of speckle tracking echocardiography for evaluating right and left ventricular functions in patients after transcatheter pulmonary valve replacement.
Collapse
Affiliation(s)
- Mengmeng Ji
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.J.); (L.Z.); (L.G.); (Y.L.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.J.); (L.Z.); (L.G.); (Y.L.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.J.); (L.Z.); (L.G.); (Y.L.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yixia Lin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.J.); (L.Z.); (L.G.); (Y.L.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qing He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.J.); (L.Z.); (L.G.); (Y.L.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.J.); (L.Z.); (L.G.); (Y.L.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
- Tongji Medical College and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.J.); (L.Z.); (L.G.); (Y.L.); (Q.H.)
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
9
|
Wong N, Shorofsky M, Lim DS. Catheter-based Interventions in Tetralogy of Fallot Across the Lifespan. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:339-351. [PMID: 38161670 PMCID: PMC10755836 DOI: 10.1016/j.cjcpc.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 01/03/2024]
Abstract
Surgical treatment of tetralogy of Fallot (TOF) involves surgical relief of right ventricular outflow tract (RVOT) obstruction and closure of ventricular septal defect. However, some patients may require staged palliation before surgical repair. This traditionally was achieved only with surgery but recently evolved to include catheter-based techniques. RVOT dysfunction occurs inevitably after the surgical repair of TOF and, depending on the surgical approach, manifests as either progressive stenosis, regurgitation, or a combination of both. This predisposes the individual to repeated RVOT interventions with the attendant risks of multiple open-heart surgeries. The advent of transcatheter pulmonary valve replacement has reduced the operative burden, and the expansion of transcatheter pulmonary valve replacement device platforms has widened the type and size of RVOT anatomies that can be treated. This review will discuss the transcatheter therapies available throughout the lifespan of the patient with TOF.
Collapse
Affiliation(s)
- Ningyan Wong
- Department of Cardiology, National Heart Centre Singapore, Singapore
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Shorofsky
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - D. Scott Lim
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Gebauer R, Chaloupecký V, Hučín B, Tláskal T, Komárek A, Janoušek J. Survival and Freedom From Reinterventions in Patients With Repaired Tetralogy of Fallot: Up to 42-Year Follow-Up of 917 Patients. J Am Heart Assoc 2023; 12:e024771. [PMID: 37823375 PMCID: PMC10757544 DOI: 10.1161/jaha.121.024771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/08/2023] [Indexed: 10/13/2023]
Abstract
Background To evaluate long-term outcome of tetralogy of Fallot repair analyzing an unbiased country-wide surgically treated population with tetralogy of Fallot. Methods and Results Retrospective analysis of consecutive patients aged <18 years who underwent tetralogy of Fallot repair at a single nationwide pediatric cardiac center. Death from any cause and need for surgical or catheter reintervention were the study end points. Cox regression analysis was used to identify related risk factors. A total of 917 patients (male, 56.3%) were analyzed. Staged repair was performed in 16.9%. Early mortality (24/917, 2.62% patients) was confined to the early surgical eras. Late mortality was 4.5% (40/893 patients). Survival probability was 95.1%, 93.8% and 91.9% at 10, 20 and 30 years after repair, respectively. Early surgical era (P=0.013) and surgical/catheter reinterventions (P<0.001) were multivariable predictors of late death. A total of 487 reinterventions were performed after initial repair in 253/917 patients (27.6%), with pulmonary artery revalvulation (196/917 patients, 21.4%) being most frequent. Probability of freedom from first reintervention was 89.0%, 73.3%, and 55.1% at 10, 20, and 30 years after primary repair, respectively. Transannular repair was associated with the need for pulmonary artery revalvulation (P<0.001). Patients who underwent staged repair were more likely to need reinterventions on pulmonary arteries (P<0.001). Conclusions In an unbiased nationwide cohort, tetralogy of Fallot repair carried a favorable survival of >90% at 30 years. Each reintervention significantly incrementally increased the risk of mortality. Type of initial repair predicted the need for specific surgical or catheter reinterventions.
Collapse
Affiliation(s)
- Roman Gebauer
- Children’s Heart Center, 2nd Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Václav Chaloupecký
- Children’s Heart Center, 2nd Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Bohumil Hučín
- Children’s Heart Center, 2nd Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Tomáš Tláskal
- Children’s Heart Center, 2nd Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Arnošt Komárek
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Jan Janoušek
- Children’s Heart Center, 2nd Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| |
Collapse
|
11
|
Delgado V, Ajmone Marsan N, de Waha S, Bonaros N, Brida M, Burri H, Caselli S, Doenst T, Ederhy S, Erba PA, Foldager D, Fosbøl EL, Kovac J, Mestres CA, Miller OI, Miro JM, Pazdernik M, Pizzi MN, Quintana E, Rasmussen TB, Ristić AD, Rodés-Cabau J, Sionis A, Zühlke LJ, Borger MA. 2023 ESC Guidelines for the management of endocarditis. Eur Heart J 2023; 44:3948-4042. [PMID: 37622656 DOI: 10.1093/eurheartj/ehad193] [Citation(s) in RCA: 284] [Impact Index Per Article: 284.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
12
|
Dardari M, Cinteza E, Vasile CM, Padovani P, Vatasescu R. Infective Endocarditis among Pediatric Patients with Prosthetic Valves and Cardiac Devices: A Review and Update of Recent Emerging Diagnostic and Management Strategies. J Clin Med 2023; 12:4941. [PMID: 37568344 PMCID: PMC10420327 DOI: 10.3390/jcm12154941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Infective endocarditis (IE) is a disease of the endocardium, which leads to the appearance of vegetation on the valves, cardiac structures, or, potentially, vascular endothelium of the heart. The risk of IE can be increased more than 140 times by congenital heart disease (50-59% of all IE), particularly if cyanotic. An increase in mortality may result from IE in patients with a complex cardiac pathology or patients with an implanted prosthetic material, most frequently conduits in a pulmonary position. Cardiac implantable electronic devices (CIED) infective endocarditis is a life-threatening complication representing 10% of all cases of endocarditis. Common signs of presentation are often fever and chills; redness and swelling at the pocket of the pacemaker, including the erosion and exteriorization of the device; and life-threatening sepsis. The use of intracardiac echocardiography for the diagnosis of IE is an innovative method. This may be needed, especially in older children undergoing complex cardiac surgery, when transthoracic echocardiography (TTE) and transesophageal echocardiography (TOE) failed to provide a reliable diagnosis. The 2018 European Heart Rhythm Association (EHRA) experts' consensus statement on transvenous lead extraction recommends complete device removal and antimicrobial therapy for any device-related infection, including CIED-IE. The most detected microorganism was Staphylococcus Aureus. In addition, cardiac surgery and interventional cardiology associated with the placement of prostheses or conduits may increase the risk of IE up to 1.6% for Melody valve implantation. Our manuscript presents a comprehensive review of infective endocarditis associated with cardiac devices and prostheses in the pediatric population, including recent advances in diagnosis and management.
Collapse
Affiliation(s)
- Mohamed Dardari
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.D.); (R.V.)
- Electrophysiology and Cardiac Pacing Lab., Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Eliza Cinteza
- Interventional Cardiology Compartment, Marie Sklodowska Curie Children Emergency Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Corina Maria Vasile
- Pediatric and Adult Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, 33600 Bordeaux, France
| | - Paul Padovani
- Nantes Université, CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, 44000 Nantes, France;
| | - Radu Vatasescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.D.); (R.V.)
- Electrophysiology and Cardiac Pacing Lab., Clinical Emergency Hospital, 014461 Bucharest, Romania
| |
Collapse
|
13
|
Baessato F, Ewert P, Meierhofer C. CMR and Percutaneous Treatment of Pulmonary Regurgitation: Outreach the Search for the Best Candidate. Life (Basel) 2023; 13:life13051127. [PMID: 37240773 DOI: 10.3390/life13051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Performance of cardiovascular magnetic resonance (CMR) in the planning phase of percutaneous pulmonary valve implantation (PPVI) is needed for the accurate delineation of the right ventricular outflow tract (RVOT), coronary anatomy and the quantification of right ventricular (RV) volume overload in patients with significant pulmonary regurgitation (PR). This helps to find the correct timings for the intervention and prevention of PPVI-related complications such as coronary artery compression, device embolization and stent fractures. A defined CMR study protocol should be set for all PPVI candidates to reduce acquisition times and acquire essential sequences that are determinants for PPVI success. For correct RVOT sizing, contrast-free whole-heart sequences, preferably at end-systole, should be adopted in the pediatric population thanks to their high reproducibility and concordance with invasive angiographic data. When CMR is not feasible or contraindicated, cardiac computed tomography (CCT) may be performed for high-resolution cardiac imaging and eventually the acquisition of complementary functional data. The aim of this review is to underline the role of CMR and advanced multimodality imaging in the context of pre-procedural planning of PPVI concerning its current and potential future applications.
Collapse
Affiliation(s)
- Francesca Baessato
- Department of Cardiology, Regional Hospital S. Maurizio, 39100 Bolzano, Italy
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, 80636 Munich, Germany
| | - Peter Ewert
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, 80636 Munich, Germany
| | - Christian Meierhofer
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, 80636 Munich, Germany
| |
Collapse
|
14
|
Lourtet-Hascoët J, Valdeolmillos E, Houeijeh A, Bonnet E, Karsenty C, Sharma SR, Kempny A, Iung B, Gatzoulis MA, Fraisse A, Hascoët S. Infective endocarditis after transcatheter pulmonary valve implantation in patients with congenital heart disease: Distinctive features. Arch Cardiovasc Dis 2023; 116:159-166. [PMID: 36842868 DOI: 10.1016/j.acvd.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023]
Abstract
The introduction of transcatheter pulmonary valve implantation (TPVI) has greatly benefited the management of right ventricular outflow tract dysfunction. Infective endocarditis (IE) is a feared complication of TPVI that affects valve durability and patient outcomes. Current recommendations provide only limited guidance on the management of IE after TPVI (TPVI-IE). This article, by a group of experts in congenital heart disease in children and adults, interventional cardiology, infectious diseases including IE, and microbiology, provides a comprehensive review of the current evidence on TPVI-IE, including its incidence, risk factors, causative organisms, diagnosis, and treatment. The incidence of TPVI-IE varies from 13-91/1000 person-years for Melody valves to 8-17/1000 person-years for SAPIEN valves. Risk factors include history of IE, DiGeorge syndrome, immunosuppression, male sex, high residual transpulmonary gradient and portal of bacteria entry. Staphylococci and streptococci are the most common culprits, whereas Staphylococcus aureus is associated with the most severe disease. In addition to the modified Duke criteria, a high residual gradient warrants a strong suspicion. Imaging studies are helpful for the diagnosis. Intravenous antibiotics guided by blood culture results are the mainstay of treatment. Invasive re-intervention may be required. TPVI-IE in patients with congenital heart disease exhibits several distinctive features. Whether specific valve types are associated with a higher risk of TPVI-IE requires further investigation. Patient and parent education regarding IE prevention may have a role to play and should be offered to all patients.
Collapse
Affiliation(s)
- Julie Lourtet-Hascoët
- Department of Pediatric Cardiology and Adults with Congenital Heart Disease Centre, Royal Brompton Hospital, SW3 6NP London, UK; Clinical Microbiology Laboratory, Hôpital Saint Joseph, Groupe Hospitalier Paris Saint Joseph, 75014 Paris, France
| | - Estibaliz Valdeolmillos
- Pôle des cardiopathies congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Centre de Référence Cardiopathies Congénitales Complexes-réseau M3C, Faculté de Médecine, Université Paris-Saclay, INSERM UMR-S999, BME Lab, 92350 Le Plessis-Robinson, France
| | - Ali Houeijeh
- Department of Congenital Heart Disease, Lille University Hospital, 59000 Lille, France
| | - Eric Bonnet
- Infectious Diseases Mobile Unit, Clinique Pasteur, 31000 Toulouse, France
| | - Clément Karsenty
- Cardiologie pédiatrie, Hôpital des enfants, Centre de Compétence Cardiopathies Congénitales Complexes-réseau M3C- CHU Toulouse, 31000 Toulouse, France
| | - Shiv-Raj Sharma
- Department of Pediatric Cardiology and Adults with Congenital Heart Disease Centre, Royal Brompton Hospital, SW3 6NP London, UK
| | - Aleksander Kempny
- Department of Pediatric Cardiology and Adults with Congenital Heart Disease Centre, Royal Brompton Hospital, SW3 6NP London, UK
| | - Bernard Iung
- Service de Cardiologie, Hôpital Bichat, AP-HP, Université Paris-Cité, 75018 Paris, France
| | - Michael A Gatzoulis
- Department of Pediatric Cardiology and Adults with Congenital Heart Disease Centre, Royal Brompton Hospital, SW3 6NP London, UK; National Heart and Lung Institute, Imperial College, SW3 6LY London, UK
| | - Alain Fraisse
- Department of Pediatric Cardiology and Adults with Congenital Heart Disease Centre, Royal Brompton Hospital, SW3 6NP London, UK
| | - Sébastien Hascoët
- Department of Pediatric Cardiology and Adults with Congenital Heart Disease Centre, Royal Brompton Hospital, SW3 6NP London, UK; Pôle des cardiopathies congénitales, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Centre de Référence Cardiopathies Congénitales Complexes-réseau M3C, Faculté de Médecine, Université Paris-Saclay, INSERM UMR-S999, BME Lab, 92350 Le Plessis-Robinson, France.
| |
Collapse
|
15
|
MacDonald ST, Bhan A, Khambadkone S, Mullen M. Percutaneous heart valves demonstrating long-term durability: A case series of Melody valves in the pulmonary position lasting up to 19 years. Catheter Cardiovasc Interv 2023; 101:401-406. [PMID: 36626279 DOI: 10.1002/ccd.30534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
It is uncertain how long catheter delivered percutaneous heart valves may last. In congenital cardiology, stenosis and regurgitation of right ventricular to pulmonary artery conduits and valves is common, leading to repeated operations for young patients with concomitant mortality and morbidity. It has also been unclear whether percutaneous pulmonary valves last as long as surgical pulmonary valves. When the current generation of the percutaneous pulmonary valve was first implanted in the United Kingdom from 2003, randomized trials were initially not performed, decided on a case-by-case basis in congenital cardiology, nor long-term registries kept. We describe three cases where such percutaneous heart valves have lasted up to 19 years. All valves were working without significant stenosis and minor degrees of regurgitation on long-term echocardiographic follow-up, patients being asymptomatic. This demonstrates that percutaneous pulmonary valves can achieve long-term durability and may prevent the need for otherwise high-risk surgery in congenital cardiac patients.
Collapse
Affiliation(s)
| | - Amit Bhan
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Sachin Khambadkone
- Department of Paediatric Cardiology, Great Ormond Street Hospital, London, UK
| | - Michael Mullen
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| |
Collapse
|
16
|
Fox JC, Carvajal HG, Wan F, Canter MW, Merritt TC, Eghtesady P. Outcomes of Treatment for Infective Endocarditis Following Transcatheter Pulmonary Valve Replacement. World J Pediatr Congenit Heart Surg 2023; 14:12-20. [PMID: 36847769 DOI: 10.1177/21501351221129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Recipients of transcatheter pulmonary valve replacement (TPVR) have shown increased risk of infective endocarditis (IE). Little is known about the outcomes of different management strategies, particularly surgery, for IE after TPVR. METHODS We queried the Pediatric Health Information System database for cases of IE after TPVR performed from 2010-2020. We described patient demographics, hospital courses, admission complications, and treatment outcomes based on therapy offered, surgical or medical only. We compared outcomes of initial therapy. Data are expressed as median or percent. RESULTS Sixty-nine cases of IE were identified, accounting for 98 related hospital admissions; 29% of patients recorded IE-related readmissions. Of those readmitted after initial medical therapy only, 33% had relapse IE. Rates of surgery were 22% during initial admission and 36% overall. Likelihood of surgical intervention increased with each subsequent admission. Renal and respiratory failure were more common in those given initial surgery. Mortality rate was 4.3% overall and 8% in the surgical cohort. CONCLUSION Initial medical therapy may result in relapses/readmissions and possible delay of surgical therapy, which appears to be most effective for treatment of IE. For those treated only medically, a more aggressive course of therapy may be more likely to prevent relapse. Mortality following surgical therapy for IE after TPVR appears higher than reported for surgical pulmonary valve replacement generally.
Collapse
Affiliation(s)
- J Chancellor Fox
- Department of Surgery, Division of Cardiothoracic Surgery, 12275Washington University School of Medicine, St. Louis, MO, USA.,Section of Pediatric Cardiothoracic Surgery, St. Louis Children's Hospital, One Children's Place, St. Louis, MO, USA
| | - Horacio G Carvajal
- Department of Surgery, Division of Cardiothoracic Surgery, 12275Washington University School of Medicine, St. Louis, MO, USA.,Section of Pediatric Cardiothoracic Surgery, St. Louis Children's Hospital, One Children's Place, St. Louis, MO, USA
| | - Fei Wan
- Division of Public Health Sciences, Department of Surgery, 12275Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew W Canter
- Department of Surgery, Division of Cardiothoracic Surgery, 12275Washington University School of Medicine, St. Louis, MO, USA.,Section of Pediatric Cardiothoracic Surgery, St. Louis Children's Hospital, One Children's Place, St. Louis, MO, USA
| | - Taylor C Merritt
- Department of Surgery, Division of Cardiothoracic Surgery, 12275Washington University School of Medicine, St. Louis, MO, USA.,Section of Pediatric Cardiothoracic Surgery, St. Louis Children's Hospital, One Children's Place, St. Louis, MO, USA
| | - Pirooz Eghtesady
- Department of Surgery, Division of Cardiothoracic Surgery, 12275Washington University School of Medicine, St. Louis, MO, USA.,Section of Pediatric Cardiothoracic Surgery, St. Louis Children's Hospital, One Children's Place, St. Louis, MO, USA
| |
Collapse
|
17
|
Houeijeh A, Batteux C, Karsenty C, Ramdane N, Lecerf F, Valdeolmillos E, Lourtet-Hascoet J, Cohen S, Belli E, Petit J, Hascoët S. Long-term outcomes of transcatheter pulmonary valve implantation with melody and SAPIEN valves. Int J Cardiol 2023; 370:156-166. [PMID: 36283540 DOI: 10.1016/j.ijcard.2022.10.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Transcatheter pulmonary valve implantation (TPVI) is effective for treating right ventricle outflow tract (RVOT) dysfunction. Factors associated with long-term valve durability remain to be investigated. METHODS Consecutive patients successfully treated by TPVI with Melody valves (n = 32) and SAPIEN valves (n = 182) between 2008 and 2020 at a single tertiary centre were included prospectively and monitored. RESULTS The 214 patients had a median age of 28 years (range, 10-81). The RVOT was a patched native pulmonary artery in 96 (44.8%) patients. Median follow-up was 2.8 years (range, 3 months-11.4 years). Secondary pulmonary valve replacement (sPVR) was performed in 23 cases (10.7%), due to stenosis (n = 22, 95.7%) or severe regurgitation (n = 1, 4.3%), yielding an incidence of 7.6/100 patient-years with melody valves and 1.3/100 patient-years with SAPIEN valves (P = 0.06). The 5- and 10-year sPVR-freedom rates were 78.1% and 50.4% with Melody vs. 94.3% and 82.2% with SAPIEN, respectively (P = 0.06). The incidence of infective endocarditis (IE) was 5.5/100 patient-years with Melody and 0.2/100 patient-years with SAPIEN (P < 0.0001). Factors associated with sPVR by univariate analysis were RV obstruction before TPVI (P = 0.04), transpulmonary maximal velocity > 2.7 m/s after TPVI (p = 0.0005), valve diameter ≤ 22 mm (P < 0.003), IE (P < 0.0001), and age < 25 years at TPVI (P = 0.04). By multivariate analysis adjusted for IE occurrence, transpulmonary maximal velocity remained associated with sPVR. CONCLUSIONS TPVI is effective for treating RVOT dysfunction. Incidence of sPVR is higher in patients with residual RV obstruction or IE. IE add a substantial risk of TPVI graft failure and is mainly linked to the Melody valve. SOCIAL MEDIA ABSTRACT Transcatheter pulmonary valve implantation is effective for treating right ventricular outflow tract dysfunction in patients with congenital heart diseases. Incidence of secondary valve replacement is higher in patients with residual obstruction or infective endocarditis.
Collapse
Affiliation(s)
- Ali Houeijeh
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France; Department of Congenital Heart Disease, Lille University Hospital, Faculté de médecine, Laboratoire EA4489, Université Lille II, Lille, France.
| | - Clement Batteux
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France.
| | - Clement Karsenty
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France; Service de cardiologie pédiatrique, Hôpital des Enfants, CHU de Toulouse, 330 avenue de Grande-Bretagne, Toulouse, France.
| | - Nassima Ramdane
- Department of Congenital Heart Disease, Lille University Hospital, Faculté de médecine, Laboratoire EA4489, Université Lille II, Lille, France.
| | - Florence Lecerf
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France; Inserm UMR-S 999, Hôpital Marie Lannelongue, Faculté de médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France.
| | - Estibaliz Valdeolmillos
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France; Inserm UMR-S 999, Hôpital Marie Lannelongue, Faculté de médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France.
| | - Julie Lourtet-Hascoet
- Service de microbiologie Clinique, Hôpital Saint-Joseph, Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, Paris, France.
| | - Sarah Cohen
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France.
| | - Emre Belli
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France.
| | - Jérôme Petit
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France.
| | - Sébastien Hascoët
- Department of Congenital Heart Disease, Marie Lannelongue Hospital, BME lab, Centre Constitutif Réseau M3C Cardiopathies Congénitales Complexes, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France; Inserm UMR-S 999, Hôpital Marie Lannelongue, Faculté de médecine, Université Paris-Saclay, 133 avenue de la résistance, 92350 Le Plessis Robinson, France.
| |
Collapse
|
18
|
Patel ND, Levi DS, Cheatham JP, Qureshi SA, Shahanavaz S, Zahn EM. Transcatheter Pulmonary Valve Replacement: A Review of Current Valve Technologies. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100452. [PMID: 39132347 PMCID: PMC11307711 DOI: 10.1016/j.jscai.2022.100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 08/13/2024]
Abstract
Transcatheter pulmonary valve replacement was first performed by Dr Philip Bonhoeffer, who implanted a Medtronic Melody valve in a human in 2000. Over the past 2 decades, there have been many advances in transcatheter pulmonary valve technology. This includes the use of the SAPIEN transcatheter heart valve in the pulmonary position, modifications and refinements to valve implantation procedures, and development of self-expanding valves and prestents to treat large diameter native or patched right ventricular outflow tracts. This article reviews the current transcatheter pulmonary valve technologies with a focus on valve design, screening process, implant procedure, and clinical outcomes.
Collapse
Affiliation(s)
- Neil D. Patel
- Children’s Hospital Los Angeles, Los Angeles, California
| | - Daniel S. Levi
- Mattel Children's Hospital at The University of California, Los Angeles, Los Angeles, California
| | | | | | | | - Evan M. Zahn
- Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
19
|
Kouijzer JJP, Noordermeer DJ, van Leeuwen WJ, Verkaik NJ, Lattwein KR. Native valve, prosthetic valve, and cardiac device-related infective endocarditis: A review and update on current innovative diagnostic and therapeutic strategies. Front Cell Dev Biol 2022; 10:995508. [PMID: 36263017 PMCID: PMC9574252 DOI: 10.3389/fcell.2022.995508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening microbial infection of native and prosthetic heart valves, endocardial surface, and/or indwelling cardiac device. Prevalence of IE is increasing and mortality has not significantly improved despite technological advances. This review provides an updated overview using recent literature on the clinical presentation, diagnosis, imaging, causative pathogens, treatment, and outcomes in native valve, prosthetic valve, and cardiac device-related IE. In addition, the experimental approaches used in IE research to improve the understanding of disease mechanisms and the current diagnostic pipelines are discussed, as well as potential innovative diagnostic and therapeutic strategies. This will ultimately help towards deriving better diagnostic tools and treatments to improve IE patient outcomes.
Collapse
Affiliation(s)
- Joop J. P. Kouijzer
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Daniëlle J. Noordermeer
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wouter J. van Leeuwen
- Department of Cardiothoracic Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Nelianne J. Verkaik
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Kirby R. Lattwein
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Kuwahara Y, Saji M, Yazaki S, Kishiki K, Yoshikawa T, Komori Y, Wada N, Shimizu J, Isobe M. Predicting prolonged intensive care unit stay following surgery in adults with Tetralogy of Fallot. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2022. [DOI: 10.1016/j.ijcchd.2022.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Çekirdekçi EI, Bugan B, Onar LÇ, Çekirdekçi A. Infective endocarditis after transcatheter approach versus surgical pulmonary valve replacement: A meta-analysis. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2022; 30:472-483. [PMID: 36303703 PMCID: PMC9580299 DOI: 10.5606/tgkdc.dergisi.2022.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In this meta-analysis, we aimed to assess the risk of infective endocarditis in transcatheter versus surgical pulmonary valve replacement patients. METHODS We systematically searched PubMed, Cochrane, EMBASE, Scopus, and Web of Science for the studies that reported the event rate of infective endocarditis in both transcatheter and surgical pulmonary valve replacement between December 2012 and December 2021. Random-effects model was used in the meta-analysis. RESULTS Fifteen comparison groups with 4,706 patients were included. The mean follow-up was 38.5±3.7 months. Patients with transcatheter pulmonary valve replacement had a higher risk of infective endocarditis than patients receiving surgically replaced valves (OR 2.68, 95% CI: 1.83-3.93, p<0.00001). The calculated absolute risk difference was 0.03 (95% CI: 0.01-0.05), indicating that if 1,000 patients received a surgical valve replacement, 30 cases of infective endocarditis would be prevented. A meta-regression of follow-up time on the incidence of infective endocarditis was not statistically significant (p=0.753). CONCLUSION Although transcatheter pulmonary valve replacement is a feasible alternative to surgical replacement in severe right ventricular outflow tract dysfunction, the higher incidence of infective endocarditis in transcatheter replacement remains a significant concern. Regarding this analysis, surgical treatment of right ventricular outflow tract dysfunction is still a viable option in patients with prohibitive risk.
Collapse
Affiliation(s)
- Elif Ijlal Çekirdekçi
- Department of Cardiology, University of Kyrenia, Kyrenia, Turkish Republic of Northern Cyprus
| | - Barış Bugan
- Department of Cardiology, Gülhane Training and Research Hospital, Ankara, Türkiye
| | - Lütfi Çağatay Onar
- Department of Cardiovascular Surgery, Dr. Ismail Fehmi Cumalioglu Government Hospital, Tekirdağ, Türkiye
| | - Ahmet Çekirdekçi
- Department of Cardiovascular Surgery, Kütahya Health Science University, Kütahya, Türkiye
| |
Collapse
|
22
|
Reply: Risk of Endocarditis Extension in Ross Reintervention With Transcatheter Pulmonary Valve Replacement. J Am Coll Cardiol 2022; 79:e459. [PMID: 35618355 DOI: 10.1016/j.jacc.2022.03.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022]
|
23
|
Stephens EH, Dearani JA, Taggart NW, Anderson JH, Miranda WR. Team Approach to Decision-Making in Pulmonary Valve Replacement. Semin Thorac Cardiovasc Surg 2022; 34:963-971. [DOI: 10.1053/j.semtcvs.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
|
24
|
Stammnitz C, Huscher D, Bauer UMM, Urban A, Nordmeyer J, Schubert S, Photiadis J, Berger F, Klaassen S. Nationwide Registry-Based Analysis of Infective Endocarditis Risk After Pulmonary Valve Replacement. J Am Heart Assoc 2022; 11:e022231. [PMID: 35179045 PMCID: PMC9075093 DOI: 10.1161/jaha.121.022231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Infective endocarditis (IE) after pulmonary valve replacements in congenital heart disease is a significant concern. This study aimed to identify specific long-term risk factors for IE after percutaneous pulmonary valve implantation or surgical pulmonary valve replacement. Methods and Results All patients with congenital heart disease from the National Register for Congenital Heart Defects with at least 1 pulmonary valve replacement before January 2018 were included. A total of 1170 patients (56.3% men, median age at study inclusion 12 [interquartile range {Q1-Q3} 5-20 years]) received 1598 pulmonary valve replacements. IE occurred in 4.8% of patients during a follow-up of total 9397 patient-years (median 10 [Q1-Q3, 6-10] years per patient). After homograft implantation 7 of 558 (1.3%) patients developed IE, after heterograft implantation 31 of 723 (4.3%) patients, and after Melody valve implantation 18 of 241 (7.5%) patients. Edwards Sapien and mechanical valves were used less frequently and remained without IE. The incidence of IE in heterografts excluding Contegra valves was 7 of 278 (2.5%), whereas the incidence of IE in Contegra valves was 24 of 445 (5.4%). The risk of IE was not increased compared with homografts if Contegra valves were excluded from the heterografts (hazard ratio [HR], 2.60; P=0.075). The risk of IE was increased for bovine jugular vein valves, Contegra valves (HR, 6.72; P<0.001), and Melody valves (HR, 5.49; P<0.001), but did not differ between Melody valves and Contegra valves (HR, 1.01; P=0.978). Conclusions Bovine jugular vein valves have the highest risk of IE, irrespective of the mode of deployment, either surgical or percutaneous.
Collapse
Affiliation(s)
- Clara Stammnitz
- Department of Pediatric Cardiology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Competence Network for Congenital Heart Defects National Register for Congenital Heart Defects Berlin Germany
| | - Dörte Huscher
- Institute of Biometry and Clinical Epidemiology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrike M M Bauer
- Competence Network for Congenital Heart Defects National Register for Congenital Heart Defects Berlin Germany.,DZHK (German Centre for Cardiovascular Research) Berlin Germany
| | - Aleksandra Urban
- Competence Network for Congenital Heart Defects National Register for Congenital Heart Defects Berlin Germany
| | - Johannes Nordmeyer
- Department of Congenital Heart Disease - Pediatric Cardiology German Heart Center Berlin Berlin Germany
| | - Stephan Schubert
- Department of Congenital Heart Disease - Pediatric Cardiology German Heart Center Berlin Berlin Germany.,Center for Congenital Heart Disease/Pediatric Cardiology Heart- and Diabetes Center NRW University Clinic of Ruhr-University Bochum Bad Oeynhausen Germany
| | - Joachim Photiadis
- Department of Congenital Heart Surgery - Pediatric Heart Surgery German Heart Center Berlin Berlin Germany
| | - Felix Berger
- Department of Pediatric Cardiology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,Department of Congenital Heart Disease - Pediatric Cardiology German Heart Center Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany
| | - Sabine Klaassen
- Department of Pediatric Cardiology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin Berlin Germany.,Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | | |
Collapse
|
25
|
McElhinney DB, Zhang Y, Levi DS, Georgiev S, Biernacka EK, Goldstein BH, Shahanavaz S, Qureshi AM, Cabalka AK, Bauser-Heaton H, Torres AJ, Morray BH, Armstrong AK, Millan-Iturbe O, Peng LF, Aboulhosn JA, Rużyłło W, Berger F, Sondergaard L, Schranz D, Cheatham JP, Jones TK, Ewert P, Schubert S. Reintervention and Survival After Transcatheter Pulmonary Valve Replacement. J Am Coll Cardiol 2022; 79:18-32. [PMID: 34991785 DOI: 10.1016/j.jacc.2021.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Transcatheter pulmonary valve (TPV) replacement (TPVR) has become the standard therapy for postoperative pulmonary outflow tract dysfunction in patients with a prosthetic conduit/valve, but there is limited information about risk factors for death or reintervention after this procedure. OBJECTIVES This study sought to evaluate mid- and long-term outcomes after TPVR in a large multicenter cohort. METHODS International registry focused on time-related outcomes after TPVR. RESULTS Investigators submitted data for 2,476 patients who underwent TPVR and were followed up for 8,475 patient-years. A total of 95 patients died after TPVR, most commonly from heart failure (n = 24). The cumulative incidence of death was 8.9% (95% CI: 6.9%-11.5%) 8 years after TPVR. On multivariable analysis, age at TPVR (HR: 1.04 per year; 95% CI: 1.03-1.06 per year; P < 0.001), a prosthetic valve in other positions (HR: 2.1; 95% CI: 1.2-3.7; P = 0.014), and an existing transvenous pacemaker/implantable cardioverter-defibrillator (HR: 2.1; 95% CI: 1.3-3.4; P = 0.004) were associated with death. A total of 258 patients underwent TPV reintervention. At 8 years, the cumulative incidence of any TPV reintervention was 25.1% (95% CI: 21.8%-28.5%) and of surgical TPV reintervention was 14.4% (95% CI: 11.9%-17.2%). Risk factors for surgical reintervention included age (0.95 per year [95% CI: 0.93-0.97 per year]; P < 0.001), prior endocarditis (2.5 [95% CI: 1.4-4.3]; P = 0.001), TPVR into a stented bioprosthetic valve (1.7 [95% CI: 1.2-2.5]; P = 0.007), and postimplant gradient (1.4 per 10 mm Hg [95% CI: 1.2-1.7 per 10 mm Hg]: P < 0.001). CONCLUSIONS These findings support the conclusion that survival and freedom from reintervention or surgery after TPVR are generally comparable to outcomes of surgical conduit/valve replacement across a wide age range.
Collapse
Affiliation(s)
| | - Yulin Zhang
- Stanford University School of Medicine, Palo Alto, California, USA
| | - Daniel S Levi
- Mattel Children's Hospital at UCLA, Los Angeles, California, USA
| | | | | | - Bryan H Goldstein
- Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shabana Shahanavaz
- Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | | | | | - Holly Bauser-Heaton
- Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Alejandro J Torres
- New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York, USA
| | - Brian H Morray
- Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | | | | | - Lynn F Peng
- Stanford University School of Medicine, Palo Alto, California, USA
| | - Jamil A Aboulhosn
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Witold Rużyłło
- The Cardinal Stefan Wyszyński Institute of Cardiology, Warsaw, Poland
| | | | - Lars Sondergaard
- Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Thomas K Jones
- Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
26
|
Hanser A, Michel J, Hornung A, Sieverding L, Hofbeck M. Coronary Artery Anomalies and Their Impact on the Feasibility of Percutaneous Pulmonary Valve Implantation. Pediatr Cardiol 2022; 43:8-16. [PMID: 34363499 PMCID: PMC8766387 DOI: 10.1007/s00246-021-02684-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Abstract
One of the major obstacles preventing successful percutaneous pulmonary valve implantation (PPVI) is related to the close proximity of coronary artery branches to the expected landing zone. The aim of this study was to assess the frequency of coronary artery anomalies (CAAs) especially those associated with major coronary branches crossing the right ventricular outflow tract (RVOT) and to describe their relevance for the feasibility of percutaneous pulmonary valve implantation (PPVI). In our retrospective single-center study 90 patients were evaluated who underwent invasive testing for PPVI in our institution from 1/2010 to 1/2020. CAAs were identified in seven patients (8%) associated with major branches crossing the RVOT due to origin of the left anterior descending (LAD) or a single coronary artery from the right aortic sinus. In 5/7 patients with CAAs balloon testing of the RVOT and selective coronary angiographies revealed a sufficiently large landing zone distal to the coronary artery branch. While unfavorable RVOT dimensions prevented PPVI in one, PPVI was performed successfully in the remaining four patients. The relatively short landing zone required application of the "folded" melody technique in two patients. All patients are doing well (mean follow-up 3 years). CAAs associated with major coronary branches crossing the RVOT can be expected in about 8% of patients who are potential candidates for PPVI. Since the LAD crossed the RVOT below the plane of the pulmonary valve successful distal implantation of the valve was possible in 4/7 patients. Therefore these coronary anomalies should not be considered as primary contraindications for PPVI.
Collapse
Affiliation(s)
- Anja Hanser
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Jörg Michel
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Andreas Hornung
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Ludger Sieverding
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany
| | - Michael Hofbeck
- Department of Pediatric Cardiology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tuebingen, Germany.
| |
Collapse
|
27
|
Jones TK, McElhinney DB, Vincent JA, Hellenbrand WE, Cheatham JP, Berman DP, Zahn EM, Khan DM, Rhodes JF, Weng S, Bergersen LJ. Long-Term Outcomes After Melody Transcatheter Pulmonary Valve Replacement in the US Investigational Device Exemption Trial. Circ Cardiovasc Interv 2021; 15:e010852. [PMID: 34930015 PMCID: PMC8765216 DOI: 10.1161/circinterventions.121.010852] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Supplemental Digital Content is available in the text. Background: The Melody valve was developed to extend the useful life of previously implanted right ventricular outflow tract (RVOT) conduits or bioprosthetic pulmonary valves, while preserving RV function and reducing the lifetime burden of surgery for patients with complex congenital heart disease. Methods: Enrollment for the US Investigational Device Exemption study of the Melody valve began in 2007. Extended follow-up was completed in 2020. The primary outcome was freedom from transcatheter pulmonary valve (TPV) dysfunction (freedom from reoperation, reintervention, moderate or severe pulmonary regurgitation, and/or mean RVOT gradient >40 mm Hg). Secondary end points included stent fracture, catheter reintervention, surgical conduit replacement, and death. Results: One hundred seventy-one subjects with RVOT conduit or bioprosthetic pulmonary valve dysfunction were enrolled. One hundred fifty underwent Melody TPV replacement. Median age was 19 years (Q1–Q3: 15–26). Median discharge mean RVOT Doppler gradient was 17 mm Hg (Q1–Q3: 12–22). The 149 patients implanted >24 hours were followed for a median of 8.4 years (Q1–Q3: 5.4–10.1). At 10 years, estimated freedom from mortality was 90%, from reoperation 79%, and from any reintervention 60%. Ten-year freedom from TPV dysfunction was 53% and was significantly shorter in children than in adults. Estimated freedom from TPV-related endocarditis was 81% at 10 years (95% CI, 69%–89%), with an annualized rate of 2.0% per patient-year. Conclusions: Ten-year outcomes from the Melody Investigational Device Exemption trial affirm the benefits of Melody TPV replacement in the lifetime management of patients with RVOT conduits and bioprosthetic pulmonary valves by providing sustained symptomatic and hemodynamic improvement in the majority of patients. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00740870.
Collapse
Affiliation(s)
- Thomas K Jones
- Division of Cardiology, Seattle Children's Hospital, University of Washington School of Medicine (T.K.J.)
| | - Doff B McElhinney
- Department of Cardiothoracic Surgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, CA (D.B.M.)
| | - Julie A Vincent
- Division of Pediatric Cardiology, Columbia University Medical Center, New York, NY (J.A.V.)
| | - William E Hellenbrand
- Division of Cardiology, Department of Pediatrics, Yale School of Medicine, New Haven, CT (W.E.H.)
| | - John P Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH (J.P.C., D.P.B.)
| | - Darren P Berman
- The Heart Center, Nationwide Children's Hospital, Columbus, OH (J.P.C., D.P.B.)
| | - Evan M Zahn
- Guerin Family Congenital Heart Program, The Heart Institute and Department of Pediatrics, Cedars-Sinai Heart Institute, Los Angeles, CA (E.M.Z.)
| | - Danyal M Khan
- Department of Pediatric Cardiology, Niklaus Children's Hospital, Miami, FL (D.M.K.)
| | - John F Rhodes
- Congenital Heart Center, Medical University of South Carolina, Charleston (J.F.R.)
| | - Shicheng Weng
- Structural Heart and Aortic Clinical Department, Medtronic, Mounds View, MN (S.W.)
| | - Lisa J Bergersen
- Department of Cardiology, Boston Children's Hospital, MA (L.J.B.)
| |
Collapse
|
28
|
Ewert P. Kathetergestützte Pulmonalklappenimplantation bei Erwachsenen mit angeborenem Herzfehler. AKTUELLE KARDIOLOGIE 2021. [DOI: 10.1055/a-1544-3084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungViele angeborene Herzfehler erfordern einen biologischen Pulmonalklappenersatz. Aufgrund
der Klappendegenerationen ist im Laufe des Lebens eine kumulative Zahl an Re-Operationen
notwendig. Durch zunehmende Verwachsungen wird jede weitere Re-Operation allerdings für den
Chirurgen komplizierter, für den Patienten risikoreicher und für das Herz belastender. Das
Ziel, auch Patienten mit komplexen angeborenen Herzfehlern ein möglichst unbeschwertes Leben
mit guter kardialer Funktion bis ins hohe Alter zu gewährleisten, erhält deshalb durch die
katheterinterventionelle Klappenimplantation eine neue Dimension. Aufgrund der guten
Ergebnisse und der geringen Belastung für den Patienten ist es im Einzelfall sogar
gerechtfertigt, die Indikation zum Eingriff früher zu stellen als zur Operation. Für die Therapie
angeborener Herzfehler zählt die kathetergestützte Pulmonalklappenimplantation daher zu einer
der wichtigsten Innovationen der letzten 20 Jahre.
Collapse
Affiliation(s)
- Peter Ewert
- Klinik für Angeborene Herzfehler und Kinderkardiologie, Deutsches Herzzentrum München, München, Deutschland
| |
Collapse
|
29
|
Fadel BM, Mohty D, Alassas K, Alhalees Z. The role of transcatheter approaches for the treatment of pulmonary homograft dysfunction. Ann Cardiothorac Surg 2021; 10:521-523. [PMID: 34422567 DOI: 10.21037/acs-2020-rp-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/23/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Bahaa M Fadel
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia
| | - Dania Mohty
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia.,CHU Limoges, Limoges, France
| | | | - Zohair Alhalees
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Le Ruz R, Plessis J, Houeijeh A, Baruteau AE, Le Gloan L, Warin Fresse K, Karsenty C, Petit J, Godart F, Hascoët S, Guérin P. Edwards SAPIEN XT transcatheter pulmonary valve implantation: 5-year follow-up in a French Registry. Catheter Cardiovasc Interv 2021; 98:990-999. [PMID: 34227735 DOI: 10.1002/ccd.29862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES This study sought to investigate patient intermediate-term outcomes after transcatheter pulmonary valve replacement (TPVR) with Edwards SAPIEN valve. BACKGROUND The Edwards SAPIEN valve, initially designed for percutaneous aortic valve replacement, has been approved for TPVR in patients with dysfunctional right ventricular outflow tracts (RVOT), but only short-term follow-up has been reported. METHODS From 2011 to 2016, 62 patients undergoing successful TPVR using the SAPIEN XT valve were consecutively included into the study. Primary efficacy and safety endpoints were defined as freedom from valve-reintervention and freedom from infective endocarditis at last follow-up, respectively. RESULTS The primary efficacy outcome was met for 87.1% patients after a mean follow-up of 4.6 ± 1.8 years, corresponding to a freedom of reintervention at 5 years of 89% (95% CI 74.8-95.6%). Reinterventions were exclusively due to recurrent obstruction, no significant valvular regurgitation was observed. One case of infective endocarditis was reported, corresponding to a rate of 0.35% per patient-year (95% CI 0.01-2.00%). At 5 years, freedom from infective endocarditis was 98.4% (95% CI 89.1-99.8%). Six patients died or were transplanted due to advanced cardiac failure, without relationship with TPVR. In univariate analysis, reintervention was associated with young age, a smaller tube-graft, a higher pulmonary valve gradient after the procedure and a ratio of largest implanted stent diameter to invasive balloon conduit diameter over 1.35. CONCLUSIONS This study documents the mid-term safety and efficacy of the Edwards SAPIEN XT valve in patients with dysfunctional RVOT, and identifies a patient profile associated with an uncertain benefit-risk balance.
Collapse
Affiliation(s)
- Robin Le Ruz
- Centre Hospitalier Universitaire de Nantes, Institut du Thorax, Fédération des Cardiopathies Congénitales, Service de Cardiologie, Nantes, France
| | - Julien Plessis
- Centre Hospitalier Universitaire de Nantes, Institut du Thorax, Fédération des Cardiopathies Congénitales, Service de Cardiologie, Nantes, France
| | - Ali Houeijeh
- Centre Hospitalier Régional Universitaire de Lille, Service de Cardiologie Infantile et Congénitale, Nantes, France.,Hôpital Marie Lannelongue, Pole de Chirurgie des Cardiopathies Congénitales, Groupe hospitalier Paris Saint Joseph, M3C- Centre de Reference Malformations Cardiaques Congénitales Complexes, Université Paris-Saclayl, Paris, France
| | - Alban-Elouen Baruteau
- Centre Hospitalier Universitaire de Nantes, Institut du Thorax, Fédération des Cardiopathies Congénitales, Service de Cardiologie, Nantes, France.,L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France.,Department of Pediatric Cardiology and Pediatric Cardiac Surgery, M3C Regional Reference Center, CHU Nantes, Nantes, France.,Department of Congenital Cardiology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Laurianne Le Gloan
- Centre Hospitalier Universitaire de Nantes, Institut du Thorax, Fédération des Cardiopathies Congénitales, Service de Cardiologie, Nantes, France
| | - Karine Warin Fresse
- Centre Hospitalier Universitaire de Nantes, Institut du Thorax, Fédération des Cardiopathies Congénitales, Service de Cardiologie, Nantes, France
| | - Clément Karsenty
- Hôpital Marie Lannelongue, Pole de Chirurgie des Cardiopathies Congénitales, Groupe hospitalier Paris Saint Joseph, M3C- Centre de Reference Malformations Cardiaques Congénitales Complexes, Université Paris-Saclayl, Paris, France.,Paediatric and Congenital Cardiology, Children's Hospital, CHU Toulouse, Toulouse University, Toulouse, France
| | - Jérôme Petit
- Hôpital Marie Lannelongue, Pole de Chirurgie des Cardiopathies Congénitales, Groupe hospitalier Paris Saint Joseph, M3C- Centre de Reference Malformations Cardiaques Congénitales Complexes, Université Paris-Saclayl, Paris, France
| | - François Godart
- Centre Hospitalier Régional Universitaire de Lille, Service de Cardiologie Infantile et Congénitale, Nantes, France
| | - Sébastien Hascoët
- Hôpital Marie Lannelongue, Pole de Chirurgie des Cardiopathies Congénitales, Groupe hospitalier Paris Saint Joseph, M3C- Centre de Reference Malformations Cardiaques Congénitales Complexes, Université Paris-Saclayl, Paris, France.,INSERM UMR-S999, Hôpital Marie Lannelongue, Université Paris-Saclay, Paris, France
| | - Patrice Guérin
- Centre Hospitalier Universitaire de Nantes, Institut du Thorax, Fédération des Cardiopathies Congénitales, Service de Cardiologie, Nantes, France
| |
Collapse
|
31
|
|
32
|
Lenoir M, Chenu C, Amrous A, Casalta AC, Guidon C, Aldebert P, Macé L. Right ventricular remodelling after endo-exclusion during pulmonary valve replacement: evaluation by cardiac magnetic resonance. Eur J Cardiothorac Surg 2021; 60:1104-1111. [PMID: 33880522 DOI: 10.1093/ejcts/ezab185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Pulmonary valve replacement (PVR) performed for pulmonary valve regurgitation is the most common indication for reoperation during mid-to-long-term follow-up after tetralogy of Fallot repair. An aneurysmal dilation of the infundibulum is often associated secondary to the infundibulotomy performed in the first operation. The right ventricular outflow tract reconstruction with endo-exclusion aims to exclude the non-contractile segments of the dilated right ventricular. This study intends to assess the safety and efficiency of the endo-exclusion technique. METHODS Between January 2010 and December 2018, 86 patients underwent a PVR with (n = 46) or without (n = 40) endo-exclusion. The current study compares the outcomes in terms of survival, reintervention, structural valve deterioration, right ventricular function (volume and right ventricular ejection fraction) and pulmonary valve gradient. The median follow-up time was 4.45 years (1.9 months to 9.87 years). RESULTS There was no 30-day mortality. There was no difference in the freedom from reintervention at 7 years (without endo-exclusion, 97%, versus with endo-exclusion, 94%, log-rank = 0.68) or in the freedom from structural pulmonary valve deterioration at 7 years (without endo-exclusion, 94%, versus with endo-exclusion, 89%, log-rank = 0.94). No significant difference was observed in the indexed right ventricular end-diastolic volume (102.2 ± 34 ml/m2 in the PVR without endo-exclusion group and 93.3 ± 22 ml/m2 in the PVR with endo-exclusion group, P = 0.61). No significant difference was observed in the right ventricular function (right ventricular ejection fraction: 46 ± 11% in the PVR without endo-exclusion group and 46 ± 9% in the PVR with endo-exclusion group, P = 0.88). CONCLUSIONS PVR with or without endo-exclusion is a safe and effective procedure. PVR with endo-exclusion allows implantation without structural deformation of the valve and therefore excellent short- and medium-term results.
Collapse
Affiliation(s)
- Marien Lenoir
- Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille Univ, Marseille, France
| | - Caroline Chenu
- Congenital Heart Surgery, Royal Brompton Hospital, London, UK
| | - Amine Amrous
- Cardiac Surgery, Mokhtar Djeghri Hospital, Constantine, Algeria
| | - Anne-Claire Casalta
- Congenital Cardiology, La Timone Children Hospital, APHM, Aix Marseille Univ, Marseille, France
| | - Catherine Guidon
- Department of Cardiovascular Critical Care Medicine, La Timone Adult Hospital, APHM, Aix Marseille Univ, Marseille, France
| | - Philippe Aldebert
- Congenital Cardiology, La Timone Children Hospital, APHM, Aix Marseille Univ, Marseille, France
| | - Loïc Macé
- Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille Univ, Marseille, France
| |
Collapse
|
33
|
McElhinney DB. Prevention and management of endocarditis after transcatheter pulmonary valve replacement: current status and future prospects. Expert Rev Med Devices 2020; 18:23-30. [PMID: 33246368 DOI: 10.1080/17434440.2021.1857728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Transcatheter pulmonary valve replacement (TPVR) has become an important tool in the management of congenital heart disease with abnormalities of the right ventricular outflow tract. Endocarditis is one of the most serious adverse long-term outcomes and among the leading causes of death in patients with congenital heart disease and after (TPVR).Areas covered: This review discusses the current state knowledge about the risk factors for and outcomes of endocarditis after transcatheter pulmonary valve replacement in patients with congenital and acquired heart disease. It also addresses practical measures for mitigating endocarditis risk, as well as diagnosing and managing endocarditis when it does occur.Expert opinion: With increasing understanding of the risk factors for and management and outcomes of endocarditis in patients who have undergone TPVR, we continue to learn how to utilize TPVR most effectively in this complex population of patients.
Collapse
Affiliation(s)
- Doff B McElhinney
- Departments of Cardiothoracic Surgery and Pediatrics (Cardiology), Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
34
|
Eicken A, Ewert P. Size Matters-New Percutaneous Catheter Treatment for Large Dysfunctional Right Ventricular Outflow Tracts: Alterra Plus Sapien. JACC Cardiovasc Interv 2020; 13:2525-2527. [PMID: 33069645 DOI: 10.1016/j.jcin.2020.06.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Eicken
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technische Universität München, Munich, Germany.
| | - Peter Ewert
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Early Outcomes of Percutaneous Pulmonary Valve Implantation with Pulsta and Melody Valves: The First Report from Korea. J Clin Med 2020; 9:jcm9092769. [PMID: 32859019 PMCID: PMC7565703 DOI: 10.3390/jcm9092769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
Percutaneous pulmonary valve implantation (PPVI) is used to treat pulmonary stenosis (PS) or pulmonary regurgitation (PR). We described our experience with PPVI, specifically valve-in-valve transcatheter pulmonary valve replacement using the Melody valve and novel self-expandable systems using the Pulsta valve. We reviewed data from 42 patients undergoing PPVI. Twenty-nine patients had Melody valves in mostly bioprosthetic valves, valved conduits, and homografts in the pulmonary position. Following Melody valve implantation, the peak right ventricle-to-pulmonary artery gradient decreased from 51.3 ± 11.5 to 16.7 ± 3.3 mmHg and right ventricular systolic pressure fell from 70.0 ± 16.8 to 41.3 ± 17.8 mmHg. Thirteen patients with native right ventricular outflow tract (RVOT) lesions and homograft underwent PPVI with the new self-expandable Pulsta valve—a nitinol wire stent mounted with a trileaflet porcine pericardial valve. Following Pulsta valve implantation, cardiac magnetic resonance imaging showed a decreased PR fraction and that the right ventricular end-diastolic volume index decreased from 166.1 ± 11.9 to 123.6 ± 12.4 mL/m2. There were no mortality, severe procedural morbidity, or valve-related complications. At the mean 14.2 month (4–57 months) follow-up, no patients had more than mild PR. PPVI using Melody and Pulsta valves was first shown to provide excellent early outcomes without serious adverse event in most patients with RVOT dysfunction in Korea.
Collapse
|
36
|
Quintessenza J. Commentary: Pulmonary valve replacement: A good option with room for improvement. J Thorac Cardiovasc Surg 2020; 161:363. [PMID: 32800362 DOI: 10.1016/j.jtcvs.2020.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Affiliation(s)
- James Quintessenza
- Department of Cardiovascular Surgery, Johns Hopkins All Children's Heart Institute, St Petersburg, Fla.
| |
Collapse
|