1
|
Paul S, Mukherjee T, Das K. Coagulation Protease-Driven Cancer Immune Evasion: Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2024; 16:1568. [PMID: 38672649 PMCID: PMC11048528 DOI: 10.3390/cancers16081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Blood coagulation and cancer are intrinsically connected, hypercoagulation-associated thrombotic complications are commonly observed in certain types of cancer, often leading to decreased survival in cancer patients. Apart from the common role in coagulation, coagulation proteases often trigger intracellular signaling in various cancers via the activation of a G protein-coupled receptor superfamily protease: protease-activated receptors (PARs). Although the role of PARs is well-established in the development and progression of certain types of cancer, their impact on cancer immune response is only just emerging. The present review highlights how coagulation protease-driven PAR signaling plays a key role in modulating innate and adaptive immune responses. This is followed by a detailed discussion on the contribution of coagulation protease-induced signaling in cancer immune evasion, thereby supporting the growth and development of certain tumors. A special section of the review demonstrates the role of coagulation proteases, thrombin, factor VIIa, and factor Xa in cancer immune evasion. Targeting coagulation protease-induced signaling might be a potential therapeutic strategy to boost the immune surveillance mechanism of a host fighting against cancer, thereby augmenting the clinical consequences of targeted immunotherapeutic regimens.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India;
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
2
|
Activated clotting factor X mediates mitochondrial alterations and inflammatory responses via protease-activated receptor signaling in alveolar epithelial cells. Eur J Pharmacol 2019; 869:172875. [PMID: 31877279 DOI: 10.1016/j.ejphar.2019.172875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
There is growing evidence for the contribution of the activated coagulation factor X (FXa) in the development of chronic inflammatory lung diseases. Therefore, we aimed to investigate effects of exogenous FXa on mitochondrial and metabolic function as well as the induction of inflammatory molecules in type II alveolar epithelial cells. Effects of FXa on epithelial cells were investigated in A549 cell line. Activation of extracellular signal-regulated kinase (ERK) and induction of inflammatory molecules were examined by immunoblot and gene expression analysis. Mitochondrial function was assessed by the measurement of oxygen consumption during maximal oxidative phosphorylation and quantitative determination of cardiolipin oxidation. Apoptosis was tested using a caspase 3 antibody. Metabolic activity and lactate dehydrogenase assay were applied for the detection of cellular viability. FXa activated ERK1/2 and induced an increase in the expression of pro-inflammatory cytokines, which was prevented by an inhibitor of FXa, edoxaban, or an inhibitor of protease-activated receptor 1, vorapaxar. Exposure to FXa caused mitochondrial alteration with restricted capacity for ATP generation, which was effectively prevented by edoxaban, vorapaxar and GB83 (inhibitor of protease-activated receptor 2). Of note, exposure to FXa did not initiate apoptosis in epithelial cells. FXa-dependent pro-inflammatory state and impairment of mitochondria did not reach the level of significance in lung epithelial cells. However, these effects might limit regenerative potency of lung epithelial cells, particular under clinical circumstances where lung injury causes exposure to clotting factors.
Collapse
|
3
|
β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Cell Death Dis 2019; 10:100. [PMID: 30718498 PMCID: PMC6361911 DOI: 10.1038/s41419-019-1375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and β-arrestin-mediated-biased signal transduction. We focused on the effect of β-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via β-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower β-arrestin-2 levels and more severe ischemic injury. The expression of β-arrestin-2 in capillaries and PDGF-β secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that β-arrestin-2-MAPK-PDGF-β signaling enhanced protection of endothelial function and barrier integrity after stroke.
Collapse
|
4
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
5
|
Schuliga M, Jaffar J, Berhan A, Langenbach S, Harris T, Waters D, Lee PVS, Grainge C, Westall G, Knight D, Stewart AG. Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. Am J Physiol Lung Cell Mol Physiol 2017; 312:L772-L782. [DOI: 10.1152/ajplung.00553.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
In lung injury and disease, including idiopathic pulmonary fibrosis (IPF), extravascular factor X is converted into factor Xa (FXa), a coagulant protease with fibrogenic actions. Extracellular annexin A2 binds to FXa, augmenting activation of the protease-activated receptor-1 (PAR-1). In this study, the contribution of annexin A2 in lung injury and fibrosis was investigated. Annexin A2 immunoreactivity was observed in regions of fibrosis, including those associated with fibroblasts in lung tissue of IPF patients. Furthermore, annexin A2 was detected in the conditioned media and an EGTA membrane wash of human lung fibroblast (LF) cultures. Incubation with human plasma (5% vol/vol) or purified FXa (15–50 nM) evoked fibrogenic responses in LF cultures, with FXa increasing interleukin-6 (IL-6) production and cell number by 270 and 46%, respectively ( P < 0.05, n = 5–8). The fibrogenic actions of plasma or FXa were attenuated by the selective FXa inhibitor apixaban (10 μM, or antibodies raised against annexin A2 or PAR-1 (2 μg/ml). FXa-stimulated LFs from IPF patients ( n = 6) produced twice as much IL-6 as controls ( n = 10) ( P < 0.05), corresponding with increased levels of extracellular annexin A2. Annexin A2 gene deletion in mice reduced bleomycin-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 levels and cell number (* P < 0.05; n = 4–12). Lung fibrogenic gene expression and dry weight were reduced by annexin A2 gene deletion, but lung levels of collagen were not. Our data suggest that annexin A2 contributes to lung injury and fibrotic disease by mediating the fibrogenic actions of FXa. Extracellular annexin A2 is a potential target for the treatment of IPF.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Asres Berhan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Shenna Langenbach
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Trudi Harris
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - David Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia; and
| | - Glen Westall
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair G. Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Schuliga M, Royce SG, Langenbach S, Berhan A, Harris T, Keenan CR, Stewart AG. The Coagulant Factor Xa Induces Protease-Activated Receptor-1 and Annexin A2-Dependent Airway Smooth Muscle Cytokine Production and Cell Proliferation. Am J Respir Cell Mol Biol 2016; 54:200-9. [PMID: 26120939 DOI: 10.1165/rcmb.2014-0419oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During asthma exacerbation, plasma circulating coagulant factor X (FX) enters the inflamed airways and is activated (FXa). FXa may have an important role in asthma, being involved in thrombin activation and an agonist of protease-activated receptor-1 (PAR-1). Extracellular annexin A2 and integrins are also implicated in PAR-1 signaling. In this study, the potential role of PAR-1 in mediating the effects of FXa on human airway smooth muscle (ASM) cell cytokine production and proliferation was investigated. FXa (5-50 nM), but not FX, stimulated increases in ASM IL-6 production and cell number after 24- and 48-hour incubation, respectively (P < 0.05; n = 5). FXa (15 nM) also stimulated increases in the levels of mRNA for cytokines (IL-6), cell cycle-related protein (cyclin D1), and proremodeling proteins (FGF-2, PDGF-B, CTGF, SM22, and PAI-1) after 3-hour incubation (P < 0.05; n = 4). The actions of FXa were insensitive to inhibition by hirudin (1 U/ml), a selective thrombin inhibitor, but were attenuated by SCH79797 (100 nM), a PAR-1 antagonist, or Cpd 22 (1 μM), an inhibitor of integrin-linked kinase. The selective targeting of PAR-1, annexin A2, or β1-integrin by small interfering RNA and/or by functional blocking antibodies also attenuated FXa-evoked responses. In contrast, the targeting of annexin A2 did not inhibit thrombin-stimulated ASM function. In airway biopsies of patients with asthma, FXa and annexin A2 were detected in the ASM bundle by immunohistochemistry. These findings establish FXa as a potentially important asthma mediator, stimulating ASM function through actions requiring PAR-1 and annexin A2 and involving integrin coactivation.
Collapse
Affiliation(s)
- Michael Schuliga
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Simon G Royce
- 2 Department Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Shenna Langenbach
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Asres Berhan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Trudi Harris
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Christine R Keenan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Alastair G Stewart
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| |
Collapse
|
7
|
The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 2015; 2015:437695. [PMID: 25878399 PMCID: PMC4387953 DOI: 10.1155/2015/437695] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa), factor VIIa (FVIIa), tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells) or inflammatory cells (e.g., macrophages) via the proteolytic activation of protease-activated receptors (PARs). Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4) activating fibrin degradation products (FDPs) and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β). Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator) evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.
Collapse
|
8
|
Rezaie AR. Protease-activated receptor signalling by coagulation proteases in endothelial cells. Thromb Haemost 2014; 112:876-82. [PMID: 24990498 DOI: 10.1160/th14-02-0167] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/01/2014] [Indexed: 12/18/2022]
Abstract
Endothelial cells express several types of integral membrane protein receptors, which upon interaction and activation by their specific ligands, initiate a signalling network that links extracellular cues in circulation to various biological processes within a plethora of cells in the vascular system. A small family of G-protein coupled receptors, termed protease-activated receptors (PAR1-4), can be specifically activated by coagulation proteases, thereby modulating a diverse array of cellular activities under various pathophysiological conditions. Thrombin and all vitamin K-dependent coagulation proteases, with the exception of factor IXa for which no PAR signalling has been attributed, can selectively activate cell surface PARs on the vasculature. Thrombin can activate PAR1, PAR3 and PAR4, but not PAR2 which can be specifically activated by factors VIIa and Xa. The mechanistic details of the specificity of PAR signalling by coagulation proteases are the subject of extensive investigation by many research groups worldwide. However, analysis of PAR signalling data in the literature has proved to be challenging since a single coagulation protease can elicit different signalling responses through activation of the same PAR receptor in endothelial cells. This article is focused on briefly reviewing the literature with respect to determinants of the specificity of PAR signalling by coagulation proteases with special emphasis on the mechanism of PAR1 signalling by thrombin and activated protein C in endothelial cells.
Collapse
Affiliation(s)
- Alireza R Rezaie
- Alireza R. Rezaie, PhD, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA, Tel.: +1 314 977 9240, Fax:+1 314 977 9205, E-mail:
| |
Collapse
|
9
|
Gleeson EM, O'Donnell JS, Hams E, Ní Áinle F, Kenny BA, Fallon PG, Preston RJS. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from lipopolysaccharide-stimulated myeloid cells. Haematologica 2013; 99:185-93. [PMID: 23872307 DOI: 10.3324/haematol.2013.086918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated, receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumor necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumor necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, the findings of this study support a novel function for factor Xa as an endogenous, receptor-associated protein-sensitive, protease-activated receptor 2-dependent regulator of myeloid cell pro-inflammatory cytokine production.
Collapse
|
10
|
Rana S, Yang L, Hassanian SM, Rezaie AR. Determinants of the specificity of protease-activated receptors 1 and 2 signaling by factor Xa and thrombin. J Cell Biochem 2012; 113:977-84. [PMID: 22034092 DOI: 10.1002/jcb.23427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Factor Xa (FXa) elicits intracellular signaling responses through the activation of protease-activated receptor 2 (PAR2) and possibly also through PAR1 in endothelial cells. In this study, we investigated FXa signaling in endothelial cells when the protease was either in free form or assembled into the prothrombinase complex. Furthermore, we prepared several wild-type and mutant PAR1 and PAR2 cleavage-reporter constructs in which their exodomains were fused to cDNA encoding for a soluble alkaline phosphatase (ALP). In the mutants, P2 residues were exchanged between PAR1 and PAR2 cleavage-reporter constructs and the hirudin-like binding site (HLBS) of PAR1 was inserted into the homologous site of PAR2. In non-transfected cells, FXa elicited a protective response which could be blocked by a specific anti-PAR2 but not by an anti-PAR1 antibody. A similar protective activity was observed for FXa in the prothrombinase complex. Further studies revealed that neither the Gla- nor EGF1-domain of FXa is required for its signaling activity, however, the N-terminus Arg-86 and Lys-87 of the EGF2-domain were essential. In the cleavage-reporter transfected cells, FXa cleaved the PAR2 construct effectively, however, replacing its P2-Gly with P2-Pro of PAR1 impaired its cleavage by FXa but improved it by thrombin. A PAR2 construct containing both P2-Pro and HLBS of PAR1 was poorly cleaved by FXa, but effectively by thrombin. A PAR1 construct containing P2 and P3 residues of PAR2 was poorly cleaved by thrombin but effectively by FXa. These results provide new insight into mechanisms through which coagulation proteases specifically interact with their target PAR receptors.
Collapse
Affiliation(s)
- Soumendra Rana
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
11
|
Manithody C, Yang L, Rezaie AR. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells. Biochemistry 2012; 51:2551-7. [PMID: 22409427 DOI: 10.1021/bi300200p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | | | | |
Collapse
|
12
|
Tissue factor and glycoprotein C on herpes simplex virus type 1 are protease-activated receptor 2 cofactors that enhance infection. Blood 2012; 119:3638-45. [PMID: 22374699 DOI: 10.1182/blood-2011-08-376814] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The coagulation system provides physiologic host defense, but it can also be exploited by pathogens for infection. On the HSV1 surface, host-cell-derived tissue factor (TF) and virus-encoded glycoprotein C (gC) can stimulate protease activated receptor 1 (PAR1)-enhanced infection by triggering thrombin production. Using novel engineered HSV1 variants deficient in either TF and/or gC, in the present study, we show that activated coagulation factors X (FXa) or VII (FVIIa) directly affect HSV1 infection of human umbilical vein endothelial cells in a manner that is dependent on viral TF and gC. The combination of FXa and FVIIa maximally enhanced infection for TF(+)/gC(+) HSV1 and receptor desensitization and Ab inhibition demonstrated that both proteases act on PAR2. Inhibitory TF Abs showed that the required TF source was viral. Individually, TF or gC partly enhanced the effect of FXa, but not FVIIa, revealing gC as a novel PAR2 cofactor for FVIIa. In sharp contrast, thrombin enhanced infection via PAR1 independently of viral TF and gC. Thrombin combined with FXa/FVIIa enhanced infection, suggesting that PAR1 and PAR2 are independently involved in virus propagation. These results show that HSV1 surface cofactors promote cellular PAR2-mediated infection, indicating a novel mode by which pathogens exploit the initiation phase of the host hemostatic system.
Collapse
|
13
|
Montes R, Puy C, Molina E, Hermida J. Is EPCR a multi-ligand receptor? Pros and cons. Thromb Haemost 2012; 107:815-26. [PMID: 22318610 DOI: 10.1160/th11-11-0766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
In the last decade, the endothelial cell protein C/activated protein C receptor (EPCR) has received considerable attention. The role initially attributed to EPCR, i.e. the enhancement of protein C (PC) activation by the thrombin-thrombomodulin complex on the surface of the large vessels, although important, did not go beyond the haemostasis scenario. However, the discovery of the cytoprotective, anti-inflammatory and anti-apoptotic features of the activated PC (APC) and the required involvement of EPCR for APC to exert such actions did place the receptor in a privileged position in the crosstalk between coagulation and inflammation. The last five years have shown that PC/APC are not the only molecules able to interact with EPCR. Factor VII/VIIa (FVII/VIIa) and factor Xa (FXa), two other serine proteases that play a central role in haemostasis and are also involved in signalling processes influencing wound healing, tissue remodelling, inflammation or metastasis, have been reported to bind to EPCR. These observations have paved the way for an exploration of unsuspected new roles for the receptor. This review aims to offer a new image of EPCR in the light of its extended panel of ligands. A brief update of what is known about the APC-evoked EPCR-dependent cell signalling mechanisms is provided, but special care has been taken to assemble all the information available about the interaction of EPCR with FVII/VIIa and FXa.
Collapse
Affiliation(s)
- Ramón Montes
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
14
|
Regulation of thrombin-induced plasminogen activator inhibitor-1 in 4T1 murine breast cancer cells. Blood Coagul Fibrinolysis 2012; 22:576-82. [PMID: 21799402 DOI: 10.1097/mbc.0b013e3283497647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protease-activated receptor-1 (PAR-1) and PAR-2 are overexpressed in cancer cells and activation of these receptors contributes to malignancy. We have recently shown that thrombin activates PAR-1, which induces transactivation of PAR-2, resulting in increased plasminogen activator inhibitor-1 (PAI-1) expression in 4T1 murine mammary adenocarcinoma cells. Our goal was to analyze the signal transduction pathways that regulate thrombin-induced PAI-1 expression. We found that thrombin stimulation activates the ERK1/2-ELK1-EGR1 pathway in 4T1 cells. Furthermore, inhibition of p42/p44 MAPK signaling reduced PAI-1 expression. These results begin to delineate the mechanism by which thrombin activates a PAR-1/PAR-2 complex to induce PAI-1 expression in the 4T1 murine breast cancer cell line.
Collapse
|
15
|
Woodbury DJ, Rees CA, Thompson A, Meiners P, Adams A. An assay to quantitate reducible cysteines from nanograms of GST-fusion proteins. Anal Biochem 2011; 417:165-73. [DOI: 10.1016/j.ab.2011.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
16
|
Abstract
The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis.
Collapse
|
17
|
Functional intersection of the kallikrein-related peptidases (KLKs) and thrombostasis axis. Biol Chem 2010; 391:311-20. [PMID: 20128685 DOI: 10.1515/bc.2010.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific interactions between these two protease families appears to be complex, and much work remains to elucidate it. Complete understanding how this functional network resolves over time, given specific initial conditions, and how it might be controllably manipulated, will probably contribute to the emergence of novel diagnostics and therapeutic agents for major diseases.
Collapse
|
18
|
Pendurthi UR, Rao LVM. Factor VIIa interaction with endothelial cells and endothelial cell protein C receptor. Thromb Res 2010; 125 Suppl 1:S19-22. [PMID: 20156643 PMCID: PMC2838982 DOI: 10.1016/j.thromres.2010.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma coagulation factor VIIa (FVIIa) initiates the coagulation cascade by binding to its cofactor, tissue factor (TF) on cell surfaces, which eventually leads to fibrin deposition and platelet activation. Recent studies showed that FVIIa also binds to endothelial cell protein C receptor (EPCR), a known cellular receptor for anticoagulant protein C\activated protein C, on the endothelium. The present article reviews our current knowledge of FVIIa interaction with EPCR and discusses the potential significance of this interaction in hemostasis, treatment of bleeding disorders with pharmacological doses of FVIIa and FVIIa clearance.
Collapse
Affiliation(s)
- Usha R Pendurthi
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, TX 75708, USA.
| | | |
Collapse
|
19
|
Schuepbach RA, Riewald M. Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost 2010; 8:379-88. [PMID: 19895674 PMCID: PMC3103137 DOI: 10.1111/j.1538-7836.2009.03682.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Coagulation is intrinsically tied to inflammation, and both proinflammatory and anti-inflammatory responses are modulated by coagulation protease signaling through protease-activated receptor-1 (PAR1). Activated factor X (FXa) can elicit cellular signaling through PAR1, but little is known about the role of cofactors in this pathway. Endothelial protein C receptor (EPCR) supports PAR1 signaling by the protein C pathway, and in the present study we tested whether EPCR mediates surface recruitment and signaling of FXa. METHODS AND RESULTS Here, we show that FXa binds to overexpressed as well as native endothelial EPCR. PAR1 cleavage by FXa as analyzed with conformation-sensitive antibodies and a tagged PAR1 reporter construct was strongly enhanced if EPCR was available. Anti-EPCR failed to affect the tissue factor-dependent activation of FX, but high concentrations of FXa decreased EPCR-dependent protein C activation. Most importantly, the FXa-mediated induction of Erk1/2 activation, expression of the transcript for connective tissue growth factor and barrier protection in endothelial cells required binding to EPCR. CONCLUSIONS Our results demonstrate that EPCR plays an unexpected role in supporting cell surface recruitment, PAR1 activation, and signaling by FXa.
Collapse
Affiliation(s)
- R A Schuepbach
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
20
|
Vitamin-K-abhängige Gerinnungsfaktoren. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Love HD, Booton SE, Boone BE, Breyer JP, Koyama T, Revelo MP, Shappell SB, Smith JR, Hayward SW. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer. PLoS One 2009; 4:e8384. [PMID: 20027305 PMCID: PMC2793011 DOI: 10.1371/journal.pone.0008384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/18/2009] [Indexed: 01/13/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) and prostate carcinoma (CaP) are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ) human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1) highly expressed in prostate, 2) had significant expression changes in response to androgens, and, 3) encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.
Collapse
Affiliation(s)
- Harold D. Love
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - S. Erin Booton
- Dermatology Division, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Braden E. Boone
- Vanderbilt Microarray Shared Resource, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Joan P. Breyer
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- The Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Monica P. Revelo
- Department of Pathology and Laboratory Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Scott B. Shappell
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Avero Diagnostics, Dallas, Texas, United States of America
| | - Jeffrey R. Smith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Medical Research Service, VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- The Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
22
|
Bao H, Jiang M, Zhu M, Sheng F, Ruan J, Ruan C. Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol 2009; 90:177-185. [PMID: 19585213 DOI: 10.1007/s12185-009-0356-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 04/22/2009] [Accepted: 05/17/2009] [Indexed: 12/31/2022]
Abstract
The abnormal expression of Annexin II (AnxA2, A2) has been associated with the development of tumors; however, its expression and function in multiple myeloma (MM) is less known. We compared the expression of AnxA2 in primary myeloma cells from MM patients with that in normal plasma cells from normal subjects and found that myeloma cells from patients had higher expression of AnxA2. Expression of AnxA2 was also significantly higher in MM cell lines U266 and RPMI8226, compared with other hematologic tumor cell lines. Transfecting U266 and RPMI8226 cells with the small interfering RNA (siRNA) that targets human AnxA2 led to significant downregulation of AnxA2 expression, which resulted in the decreased proliferation, invasive potential and increased apoptosis of U266 and RPMI8226 cell lines. Silencing AnxA2 gene by siRNA also inhibited the expression of pro-angiogenic molecules including VEGF-C, VEGF-R2, MMP-2, MMP-9, MT1-MMP and TIMP-2 in the two cell lines. Our data suggested that the AnxA2 is overexpressed in MM patients and myeloma cell lines U266 and RPMI8226, and that AnxA2 overexpression appeared to affect the proliferation, apoptosis, invasive potential and production of pro-angiogenic factors in MM cell lines U266 and RPMI8226.
Collapse
Affiliation(s)
- Hongyu Bao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215007, China.,Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215007, China.,Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Mingqing Zhu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215007, China.,Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Fei Sheng
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215007, China.,Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jia Ruan
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, USA
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215007, China.
| |
Collapse
|
23
|
Menzies KE, Mackman N, Taubman MB. Role of Tissue Factor in Cancer. Cancer Invest 2009. [DOI: 10.1080/07357900802656665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Dassah M, Deora AB, He K, Hajjar KA. The endothelial cell annexin A2 system and vascular fibrinolysis. Gen Physiol Biophys 2009; 28 Spec No Focus:F20-F28. [PMID: 20093722 PMCID: PMC3014645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vascular endothelial cell surface expression of annexin A2 and its binding partner p11 is a key element in maintaining fibrinolytic balance on blood vessel surfaces. In the recent decade, investigators have made significant progress toward understanding the mechanisms that regulate heterotetrameric (A2*p11)(2) receptor translocation from the cytoplasm to the outer cell surface. Accumulating evidence now shows that heterotetrameric (A2*p11)(2) cell surface expression is a dynamic process that modulates plasmin activation during periods of vascular stress or injury, and is independent of the classical endoplasmic reticulum-Golgi pathway. Translocation of heterotetrameric (A2*p11)(2) is facilitated both by src-kinase mediated phosphorylation of A2 at tyrosine 23, and by expression of and partnering with p11. In the absence of A2 both in vivo and in vitro, p11 is expressed at very low levels in endothelial cells, because unpartnered p11 is polyubiquitinated and rapidly degraded through a proteasome-dependent mechanism. A2 directly binds and stabilizes intracellular p11 by masking an autonomous polyubiquitination signal on p11. This modulatory role of A2 binding prevents accumulation of unpartnered p11 within the endothelial cell, and ultimately suggests that the regulation of heterotetrameric (A2*p11)(2) receptor surface expression is precisely attuned to the intracellular level of p11.
Collapse
Affiliation(s)
- MaryAnn Dassah
- Department of Cell and Developmental Biology Weill Cornell Medical College, New York, NY 10065
| | - Arun B. Deora
- Department of Cell and Developmental Biology Weill Cornell Medical College, New York, NY 10065
| | - Kaili He
- Department of Cell and Developmental Biology Weill Cornell Medical College, New York, NY 10065
| | - Katherine A. Hajjar
- Department of Cell and Developmental Biology Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
25
|
Hollenberg MD, Oikonomopoulou K, Hansen KK, Saifeddine M, Ramachandran R, Diamandis EP. Kallikreins and proteinase-mediated signaling: proteinase-activated receptors (PARs) and the pathophysiology of inflammatory diseases and cancer. Biol Chem 2008; 389:643-51. [PMID: 18627296 DOI: 10.1515/bc.2008.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1-4) by exposing a 'tethered' receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.
Collapse
Affiliation(s)
- Morley D Hollenberg
- Proteinases and Inflammation Network, Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, Calgary T2N 4N1, AB, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Salvatore V Pizzo
- Duke University Medical Center, Chair, Department of Pathology, M301 Davison Bldg, Box 3712, Durham, NC 27710-0001, USA.
| |
Collapse
|