1
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:ijms24076136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
2
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
3
|
DiGiacomo V, Maziarz M, Luebbers A, Norris JM, Laksono P, Garcia-Marcos M. Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Sci Signal 2020; 13:13/617/eaax8620. [PMID: 32019900 DOI: 10.1126/scisignal.aax8620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of deep-sequencing techniques has revealed that mutations in G protein-coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the "RGS-box." Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein-binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jillian M Norris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pandu Laksono
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
4
|
Doupnik CA. RGS Redundancy and Implications in GPCR-GIRK Signaling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:87-116. [PMID: 26422983 DOI: 10.1016/bs.irn.2015.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Regulators of G protein signaling (RGS proteins) are key components of GPCR complexes, interacting directly with G protein α-subunits to enhance their intrinsic GTPase activity. The functional consequence is an accelerated termination of G protein effectors including certain ion channels. RGS proteins have a profound impact on the membrane-delimited gating behavior of G-protein-activated inwardly rectifying K(+) (GIRK) channels as demonstrated in reconstitution assays and recent RGS knockout mice studies. Akin to GPCRs and G protein αβγ subunits, multiple RGS isoforms are expressed within single GIRK-expressing neurons, suggesting functional redundancy and/or specificity in GPCR-GIRK channel signaling. The extent and impact of RGS redundancy in neuronal GPCR-GIRK channel signaling is currently not fully appreciated; however, recent studies from RGS knockout mice are providing important new clues on the impact of individual endogenous RGS proteins and the extent of RGS functional redundancy. Incorporating "tools" such as engineered RGS-resistant Gαi/o subunits provide an important assessment method for determining the impact of all endogenous RGS proteins on a given GPCR response and an accounting benchmark to assess the impact of individual RGS knockouts on overall RGS redundancy within a given neuron. Elucidating the degree of regulation attributable to specific RGS proteins in GIRK channel function will aid in the assessment of individual RGS proteins as viable therapeutic targets in epilepsy, ataxia's, memory disorders, and a growing list of neurological disorders.
Collapse
Affiliation(s)
- Craig A Doupnik
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
5
|
Krishnaswamy PS, Egom EE, Moghtadaei M, Jansen HJ, Azer J, Bogachev O, Mackasey M, Robbins C, Rose RA. Altered parasympathetic nervous system regulation of the sinoatrial node in Akita diabetic mice. J Mol Cell Cardiol 2015; 82:125-35. [DOI: 10.1016/j.yjmcc.2015.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/21/2015] [Accepted: 02/26/2015] [Indexed: 11/26/2022]
|
6
|
Wydeven N, Posokhova E, Xia Z, Martemyanov KA, Wickman K. RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate. J Biol Chem 2013; 289:2440-9. [PMID: 24318880 DOI: 10.1074/jbc.m113.520742] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K(+) channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4(-/-), Rgs6(-/-), and Rgs4(-/-):Rgs6(-/-) mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6(-/-) mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6(-/-) and Gβ5(-/-) mice, suggest that the partial rescue of phenotypes in Rgs4(-/-):Rgs6(-/-) mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.
Collapse
Affiliation(s)
- Nicole Wydeven
- From the Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455 and
| | | | | | | | | |
Collapse
|
7
|
An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma. PLoS One 2012; 7:e28504. [PMID: 22253691 PMCID: PMC3257220 DOI: 10.1371/journal.pone.0028504] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022] Open
Abstract
In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.
Collapse
|
8
|
Damera G, Panettieri RA. Does airway smooth muscle express an inflammatory phenotype in asthma? Br J Pharmacol 2011; 163:68-80. [PMID: 21175578 PMCID: PMC3085869 DOI: 10.1111/j.1476-5381.2010.01165.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Indexed: 01/12/2023] Open
Abstract
In addition to hyperresponsiveness in asthma, airway smooth muscle (ASM) also manifests an inflammatory phenotype characterized by augmented expression of mediators that enhance inflammation, contribute to tissue remodelling and augment leucocyte trafficking and activity. Our present review summarizes contemporary understanding of ASM-derived mediators and their paracrine and autocrine actions in airway diseases.
Collapse
Affiliation(s)
- Gautam Damera
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Reynold A Panettieri
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Center of Excellence in Environmental Toxicology, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|