1
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Huang J, Zhou J, Dai Y, Liu Y, Li F, Gong S, Zhang Y, Kou J. Ruscogenin ameliorates dasatinib-induced intestinal barrier dysfunction via ErbB4/YAP and ROCK/MLC pathways. J Nat Med 2023; 77:735-747. [PMID: 37347409 DOI: 10.1007/s11418-023-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Dasatinib is effective in the treatment of chronic and acute myeloid leukemia, which could cause the side effect of gastrointestinal bleeding by overdose or longtime use. Ruscogenin (RUS) from the traditional Chinese medicine Ophiopogon japonicas could protect endothelial microvascular barrier function. In this study, the therapeutic effect and underlying mechanisms of RUS were investigated on intestinal barrier dysfunction induced by dasatinib. Male C57BL/6 J mice were given three doses of dasatinib (70, 140, 210 mg/kg, ig) and RUS (3, 10, 30 μg/kg, ip) to explore the effect of dasatinib on intestinal barrier and the intervention of RUS. It was proved that dasatinib could reduce intestinal blood flow, inhibit phosphorylation of EGFR family member v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4)/YES-associated protein (YAP) and activation of Rho-associated coiled coil-containing protein kinase (ROCK)/phosphorylation of (myosin light chain) MLC. RUS could significantly increase intestinal blood flow, improve intestinal injury, reduce Evans blue leakage and serum content of FITC-dextran 4 kDa, and increase the expression of connexin (ZO-1, Occludin and VE-cadherin). Meanwhile, the in vitro effect of RUS (0.01, 0.1, 1 μM) on the dysfunction of the endothelial barrier was observed in dasatinib (150 nM)-pretreated HUVECs. The results showed that RUS suppressed dasatinib-induced the leakage of Evans blue, and degradation of F-actin and connexin. Furthermore, RUS could significantly increase the phosphorylation of ErbB4 at Tyr1284 site and YAP at Ser397 site, and inhibit ROCK expression and phosphorylation of MLC at Ser19 site in vivo and in vitro. In conclusion, the present research proved that RUS could suppress the side effects of dasatinib-induced intestinal barrier dysfunction by regulating ErbB4/YAP and ROCK/MLC pathways.
Collapse
Affiliation(s)
- Juan Huang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Jianhao Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yujie Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yuankai Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Shuaishuai Gong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
3
|
Xia J, Li J, Deng M, Yin F, Liu J, Wang J. Diosmetin alleviates acute lung injury caused by lipopolysaccharide by targeting barrier function. Inflammopharmacology 2023:10.1007/s10787-023-01228-7. [PMID: 37074600 PMCID: PMC10113986 DOI: 10.1007/s10787-023-01228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023]
Abstract
Acute lung injury (ALI) is an acute and devastating disease caused by systemic inflammation e.g. patients infected with bacteria and viruses such as SARS-CoV-2 have an unacceptably high mortality rate. It has been well documented that endothelial cell damage and repair play a central role in the pathogenesis of ALI because of its barrier function. Nevertheless, the leading compounds that effectively accelerate endothelial cell repair and improve barrier dysfunction in ALI are largely unknown. In the present study, we found that diosmetin had promising characteristics to inhibit the inflammatory response and accelerate the repair of endothelial cells. Our results indicated that diosmetin accelerated wound healing and barrier repair by improving the expression of the barrier-related proteins, including zonula occludens-l (ZO-1) and occludin, in human umbilical vein endothelial cells (HUVECs) treated with lipopolysaccharide (LPS). Meanwhile, diosmetin administration significantly inhibited inflammatory response by decreasing the content of TNFα and IL-6 in the serum, alleviated lung injury by reducing lung wet/dry (W/D) ratio and histologic score, improved endothelial hyperpermeability by decreasing protein levels and neutrophil infiltration in the bronchoalveolar lavage fluid (BALF) and increasing ZO-1 and occludin expression in the lung tissues of LPS-treated mice. Mechanistically, diosmetin also mediated the expression of Rho A and ROCK1/2 in HUVECs treated with LPS, and fasudil, a Rho A inhibitor remarkably inhibited the role of diosmetin in ZO-1 and occludin proteins. All these findings of this study revealed that diosmetin can be an effective protector of lung injury and the Rho A/ROCK1/2 signal pathway plays a pivotal role in diosmetin accelerating barrier repair in ALI.
Collapse
Affiliation(s)
- Jiying Xia
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Hongguang Road 69, Ba'nan District, Chongqing, 400054, People's Republic of China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Junhong Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Hongguang Road 69, Ba'nan District, Chongqing, 400054, People's Republic of China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Mengsheng Deng
- Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Fei Yin
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Hongguang Road 69, Ba'nan District, Chongqing, 400054, People's Republic of China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Jianhui Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Hongguang Road 69, Ba'nan District, Chongqing, 400054, People's Republic of China.
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Jianmin Wang
- Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
4
|
Li G, Jiang X, Liang X, Hou Y, Zang J, Zhu B, Jia C, Niu K, Liu X, Xu X, Jiang R, Wang B. BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-κB pathway in acute lung injury mice model. Life Sci 2023; 313:121310. [PMID: 36549351 DOI: 10.1016/j.lfs.2022.121310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
AIMS The cell adhesion molecules (CAMs) that mediate neutrophil-endothelium cell adhesion are deeply involved in the pathogenesis of acute lung injury (ALI). B-cell receptor associated protein 31 (BAP31) has been reported to engage in the expression of some CAMs. This study was undertaken to explore whether BAP31 in endotheliocyte affects the pathological process of ALI by regulating CAMs, and its possible mechanism. MAIN METHODS Our study used the shBAP31 endothelium cell lines and endothelial-specific BAP31 conditional knockdown mice constructed via Cre/loxP system. Hematoxylin and eosin staining was used to observe the histopathological manifestations. The adhesion of neutrophils to vascular wall was examined by intravital microscopy. The nuclear translocation of NF-κB was observed by immunofluorescence staining assay. Flow cytometric, real-time polymerase chain reaction and Western blot assay were performed to determine the expression of CAMs and key proteins in MyD88/NF-κB-related signaling pathway. Luciferase reporter and chromatin immunoprecipitation assay were analyzed for transcriptional activity of ICAM-1 and VCAM-1. KEY FINDINGS Mechanistic investigations indicated that endothelium-specific BAP31 depletion dramatically reduced the capacity of neutrophils adherence to endothelial cells (ECs), which was mainly attributed to the significant downregulation of ICAM-1 (p < 0.05) and VCAM-1 (p < 0.05) expression. Interestingly, BAP31 knockdown apparently deactivated MyD88/TRAF6-mediated TAK1/NF-κB and PI3K/Akt signaling cascades, resulting in the inhibition of NF-κB activation and nuclear translocation. SIGNIFICANCE Our data furnished convincing evidence that BAP31 deficiency performs a mitigative effect on ALI by decreasing neutrophils-ECs adhesion. These findings identified BAP31 as a promising protein for regulating the pathogenesis process of ALI.
Collapse
Affiliation(s)
- Guoxun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaohan Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoyu Liang
- Southern Methodist University, Dallas, TX 75275, USA
| | - Yue Hou
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jingnan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Benzhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoli Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
5
|
Sertoli cell survival and barrier function are regulated by miR-181c/d-Pafah1b1 axis during mammalian spermatogenesis. Cell Mol Life Sci 2022; 79:498. [PMID: 36008729 PMCID: PMC9411099 DOI: 10.1007/s00018-022-04521-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Sertoli cells contribute to the formation of the blood-testis barrier (BTB), which is necessary for normal spermatogenesis. Recently, microRNAs (miRNAs) have emerged as posttranscriptional regulatory elements in BTB function during spermatogenesis. Our previous study has shown that miR-181c or miR-181d (miR-181c/d) is highly expressed in testes from boars at 60 days old compared with at 180 days old. Herein, we found that overexpression of miR-181c/d via miR-181c/d mimics in murine Sertoli cells (SCs) or through injecting miR-181c/d-overexpressing lentivirus in murine testes perturbs BTB function by altering BTB-associated protein distribution at the Sertoli cell-cell interface and F-actin organization, but this in vivo perturbation disappears approximately 6 weeks after the final treatment. We also found that miR-181c/d represses Sertoli cell proliferation and promotes its apoptosis. Moreover, miR-181c/d regulates Sertoli cell survival and barrier function by targeting platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (Pafah1b1) gene. Furthermore, miR-181c/d suppresses PAFAH1B1 expression, reduces the complex of PAFAH1B1 with IQ motif-containing GTPase activating protein 1, and inhibits CDC42/PAK1/LIMK1/Cofilin pathway which is required for F-actin stabilization. In total, our results reveal the regulatory axis of miR-181c/d-Pafah1b1 in cell survival and barrier function of Sertoli cells and provide additional insights into miRNA functions in mammalian spermatogenesis.
Collapse
|
6
|
A mutation in Nischarin causes otitis media via LIMK1 and NF-κB pathways. PLoS Genet 2017; 13:e1006969. [PMID: 28806779 PMCID: PMC5570507 DOI: 10.1371/journal.pgen.1006969] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/24/2017] [Accepted: 08/08/2017] [Indexed: 01/18/2023] Open
Abstract
Otitis media (OM), inflammation of the middle ear (ME), is a common cause of conductive hearing impairment. Despite the importance of the disease, the aetiology of chronic and recurrent forms of middle ear inflammatory disease remains poorly understood. Studies of the human population suggest that there is a significant genetic component predisposing to the development of chronic OM, although the underlying genes are largely unknown. Using N-ethyl-N-nitrosourea mutagenesis we identified a recessive mouse mutant, edison, that spontaneously develops a conductive hearing loss due to chronic OM. The causal mutation was identified as a missense change, L972P, in the Nischarin (NISCH) gene. edison mice develop a serous or granulocytic effusion, increasingly macrophage and neutrophil rich with age, along with a thickened, inflamed mucoperiosteum. We also identified a second hypomorphic allele, V33A, with only modest increases in auditory thresholds and reduced incidence of OM. NISCH interacts with several proteins, including ITGA5 that is thought to have a role in modulating VEGF-induced angiogenesis and vascularization. We identified a significant genetic interaction between Nisch and Itga5; mice heterozygous for Itga5-null and homozygous for edison mutations display a significantly increased penetrance and severity of chronic OM. In order to understand the pathological mechanisms underlying the OM phenotype, we studied interacting partners to NISCH along with downstream signalling molecules in the middle ear epithelia of edison mouse. Our analysis implicates PAK1 and RAC1, and downstream signalling in LIMK1 and NF-κB pathways in the development of chronic OM. Otitis media (OM) is the most common cause of deafness in children and is primarily characterised by inflammation of the middle ear. It is the most common cause of surgery in children in the developed world, with many children developing recurrent and chronic forms of OM undergoing tympanostomy tube insertion. There is evidence that a significant genetic component contributes towards the development of recurrent and chronic forms of OM. The mouse has been a powerful tool for identifying the genes involved in chronic OM. In this study we identified and characterised edison, a novel mouse model of chronic OM that shares important features with the chronic disease in humans. A mutation in the Nisch gene causes edison mice to spontaneously develop OM following birth and subsequently develop chronic OM, with an associated hearing loss. Our molecular analysis of the mutation reveals the underlying pathological mechanisms and pathways involved in OM in the edison mouse, involving PAK1, RAC1 and downstream signalling in LIMK1 and NF-κB pathways. Identification of the edison mutant provides an important genetic disease model of chronic OM and implicates a new gene and genetic pathways involved in predisposition to OM.
Collapse
|
7
|
Schnoor M, García Ponce A, Vadillo E, Pelayo R, Rossaint J, Zarbock A. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell Mol Life Sci 2017; 74:1985-1997. [PMID: 28154894 PMCID: PMC11107778 DOI: 10.1007/s00018-016-2449-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023]
Abstract
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.
Collapse
Affiliation(s)
- Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| | - Alexander García Ponce
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720, Mexico City, Mexico
| | - Jan Rossaint
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
8
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
9
|
Corcoran JA, McCormick C. Viral activation of stress-regulated Rho-GTPase signaling pathway disrupts sites of mRNA degradation to influence cellular gene expression. Small GTPases 2015; 6:178-85. [PMID: 26480288 PMCID: PMC4905259 DOI: 10.1080/21541248.2015.1093068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023] Open
Abstract
Viruses are useful tools that often reveal previously unrecognized levels of control within a cell. By studying the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), we discovered a new signaling axis in endothelial cells (ECs) that links actin cytoskeleton dynamics to post-transcriptional control of gene expression. Translational repression and rapid decay of mRNAs containing AU-rich elements (AREs) occurs in cytoplasmic RNA granules known as processing bodies (PBs). Rho-GTPase activity influences PB dynamics but mechanistic details remain obscure. We have previously shown that the KSHV Kaposin B protein blocks the degradation of ARE-mRNAs that encode potent cytokines and angiogenic factors, at least in part by preventing PB formation. Moreover, Kaposin B is sufficient to cause marked alterations in endothelial cell physiology including the formation of long parallel actin stress fibers and accelerated migration and angiogenic phenotypes. All of these phenotypes depend on Kaposin B-mediated activation of a non-canonical signaling pathway comprising the stress-inducible kinase MK2, hsp27, p115RhoGEF and RhoA. Accelerated endothelial cell migration and angiogenesis depends on the subsequent activation of the RhoA-dependent kinase ROCK, but PB disruption is ROCK-independent. In this Commentary, we discuss implications of the activation of this signaling axis, and propose mechanistic links between RhoA activation and PB dynamics.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology; Dalhousie University; Halifax NS, Canada
| |
Collapse
|
10
|
Rho-kinase activation contributes to Lps-induced impairment of endothelial nitric oxide synthase activation by endothelin-1 in cultured hepatic sinusoidal endothelial cells. Shock 2015; 42:554-61. [PMID: 25243430 DOI: 10.1097/shk.0000000000000252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study is to understand the role of rho-kinase (ROCK-2) in the regulation of liver microcirculation after inflammatory stress. Endothelin-1 (ET-1)-induced nitric oxide (NO) is essential in the regulation of blood flow in hepatic sinusoids. Lipopolysaccharide (LPS) inhibits this ET-1-induced NO production and disrupts liver microcirculation; however, the exact molecular mechanism is unknown. Liver sinusoidal endothelial cells were isolated, pretreated with 10 ng/mL LPS for 6 h, and treated with 10 μM Y27632 (ROCK-2 inhibitor) for 30 min and 10 nM ET-1 for 30 min. Lipopolysaccharide induced RhoA membrane translocation that was attenuated by methyl-β-cyclodextrin (cholesterol sequester) or targeted mutation of caveolin-1. Lipopolysaccharide increased ROCK-2 expressions (+60%) and ROCK-2 activity (+36%). Endothelin-1 increased endothelial NO synthase (eNOS) activity (+70%), but LPS inhibited this ET-1-mediated eNOS response. Treatment with Y27632 restored ET-1-mediated eNOS activity (+61%) and stimulated NO production in the perinuclear region after LPS pretreatment. This treatment reduced cofilin-Ser3 phosphorylation (-73%), increased vasodilator-stimulated phosphoprotein-Ser239 phosphorylation (+88%), and stimulated globular actin/eNOS association. Lipopolysaccharide induces Rho/ROCKs signaling pathway to disrupt the ET-1-mediated eNOS activation in liver sinusoidal endothelial cells. Rho-kinase ROCK-2 inhibition restores ET-1-mediated NO production after the LPS pretreatment, in part, through an increase in actin depolymerization.
Collapse
|
11
|
Stepaniants S, Wang IM, Boie Y, Mortimer J, Kennedy B, Elliott M, Hayashi S, Luo H, Wong J, Loy L, Coulter S, Roberts CJ, Hogg JC, Sin DD, O'Neill G, Crackower M, Morris M, Paré PD, Obeidat M. Genes related to emphysema are enriched for ubiquitination pathways. BMC Pulm Med 2014; 14:187. [PMID: 25432663 PMCID: PMC4280711 DOI: 10.1186/1471-2466-14-187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/19/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Increased small airway resistance and decreased lung elasticity contribute to the airflow limitation in chronic obstructive pulmonary disease (COPD). The lesion that corresponds to loss of lung elasticity is emphysema; the small airway obstruction is due to inflammatory narrowing and obliteration. Despite their convergence in altered physiology, different mechanisms contribute to these processes. The relationships between gene expression and these specific phenotypes may be more revealing than comparison with lung function. METHODS We measured the ratio of alveolar surface area to lung volume (SA/V) in lung tissue from 43 smokers. Two samples from 21 subjects, in which SA/V differed by >49 cm2/mL were profiled to select genes whose expression correlated with SA/V. Significant genes were tested for replication in the 22 remaining subjects. RESULTS The level of expression of 181 transcripts was related to SA/V ( p < 0.05). When these genes were tested in the 22 remaining subjects as a replication, thirty of the 181 genes remained significantly associated with SA/V (P < 0.05) and the direction of association was the same in 164/181. Pathway and network analysis revealed enrichment of genes involved in protein ubiquitination, and western blotting showed altered expression of genes involved in protein ubiquitination in obstructed individuals. CONCLUSION This study implicates modified protein ubiquitination and degradation as a potentially important pathway in the pathogenesis of emphysema.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter D Paré
- University of British Columbia Centre for Heart and Lung Innovation, St Paul's Hospital, 1081 Burrard St, Vancouver V6Z 1Y6, BC, Canada.
| | | |
Collapse
|
12
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
13
|
Abstract
This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.
Collapse
Affiliation(s)
- Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
14
|
Fox ED, Heffernan DS, Cioffi WG, Reichner JS. Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R226. [PMID: 24099563 PMCID: PMC4057230 DOI: 10.1186/cc13049] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/06/2013] [Indexed: 12/30/2022]
Abstract
Introduction Sepsis is characterized by systemic immune activation and neutrophil-mediated endothelial barrier integrity compromise, contributing to end-organ dysfunction. Studies evaluating endothelial barrier dysfunction induced by neutrophils from septic patients are lacking, despite its clinical significance. We hypothesized that septic neutrophils would cause characteristic patterns of endothelial barrier dysfunction, distinct from experimental stimulation of normal neutrophils, and that treatment with the immunomodulatory drug β-glucan would attenuate this effect. Methods Blood was obtained from critically ill septic patients. Patients were either general surgery patients (Primary Sepsis (PS)) or those with sepsis following trauma (Secondary Sepsis (SS)). Those with acute respiratory distress syndrome (ARDS) were identified. Healthy volunteers served as controls. Neutrophils were purified and aliquots were untreated, or treated with fMLP or β-glucan. Endothelial cells were grown to confluence and activated with tissue necrosis factor (TNF)-α . Electric Cell-substrate Impedance Sensing (ECIS) was used to determine monolayer resistance after neutrophils were added. Groups were analyzed by two-way analysis of variance (ANOVA). Results Neutrophils from all septic patients, as well as fMLP-normal neutrophils, reduced endothelial barrier integrity to a greater extent than untreated normal neutrophils (normalized resistance of cells from septic patients at 30 mins = 0.90 ± 0.04; at 60 mins = 0.73 ± 0.6 and at 180 mins = 0.56 ± 0.05; p < 0.05 vs normal). Compared to untreated PS neutrophils, fMLP-treated PS neutrophils caused further loss of barrier function at all time points; no additive effect was noted in stimulation of SS neutrophils beyond 30 min. Neutrophils from ARDS patients caused greater loss of barrier integrity than those from non-ARDS patients, despite similarities in age, sex, septic source, and neutrophil count. Neutrophils obtained after resolution of sepsis caused less barrier dysfunction at all time points. β-glucan treatment of septic patients’ neutrophils attenuated barrier compromise, rendering the effect similar to that induced by neutrophils obtained once sepsis had resolved. Conclusions Neutrophils from septic patients exert dramatic compromise of endothelial barrier integrity. This pattern is mimicked by experimental activation of healthy neutrophils. The effect of septic neutrophils on the endothelium depends upon the initial inflammatory event, correlates with organ dysfunction and resolution of sepsis, and is ameliorated by β-glucan.
Collapse
|
15
|
Majima T, Takeuchi K, Sano K, Hirashima M, Zankov DP, Tanaka-Okamoto M, Ishizaki H, Miyoshi J, Ogita H. An Adaptor Molecule Afadin Regulates Lymphangiogenesis by Modulating RhoA Activity in the Developing Mouse Embryo. PLoS One 2013; 8:e68134. [PMID: 23840823 PMCID: PMC3694064 DOI: 10.1371/journal.pone.0068134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/26/2013] [Indexed: 12/22/2022] Open
Abstract
Afadin is an intracellular binding partner of nectins, cell-cell adhesion molecules, and plays important roles in the formation of cell-cell junctions. Afadin-knockout mice show early embryonic lethality, therefore little is known about the function of afadin during organ development. In this study, we generated mice lacking afadin expression in endothelial cells, and found that the majority of these mice were embryonically lethal as a result of severe subcutaneous edema. Defects in the lymphatic vessels of the skin were observed, although the morphology in the blood vessels was almost normal. Severe disruption of VE-cadherin-mediated cell-cell junctions occurred only in lymphatic endothelial cells, but not in blood endothelial cells. Knockout of afadin did not affect the differentiation and proliferation of lymphatic endothelial cells. Using in vitro assays with blood and lymphatic microvascular endothelial cells (BMVECs and LMVECs, respectively), knockdown of afadin caused elongated cell shapes and disruption of cell-cell junctions among LMVECs, but not BMVECs. In afadin-knockdown LMVECs, enhanced F-actin bundles at the cell periphery and reduced VE-cadherin immunostaining were found, and activation of RhoA was strongly increased compared with that in afadin-knockdown BMVECs. Conversely, inhibition of RhoA activation in afadin-knockdown LMVECs restored the cell morphology. These results indicate that afadin has different effects on blood and lymphatic endothelial cells by controlling the levels of RhoA activation, which may critically regulate the lymphangiogenesis of mouse embryos.
Collapse
Affiliation(s)
- Takashi Majima
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Keisuke Takeuchi
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Shiga, Japan
| | - Keigo Sano
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masanori Hirashima
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Dimitar P. Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Shiga, Japan
| | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Hiroyoshi Ishizaki
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Shiga, Japan
- * E-mail:
| |
Collapse
|
16
|
Prospective and management: acute nonimmunologic inhalation injuries. J Occup Environ Med 2013; 55:853-5. [PMID: 23787576 DOI: 10.1097/jom.0b013e318229a6a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Occupational Medicine Forum is prepared by the ACOEM Occupational and Environmental Medical Practice Committee and does not necessarily represent an official ACOEM position. The Forum is intended for health professionals and is not intended to provide medical or legal advice, including illness prevention, diagnosis or treatment, or regulatory compliance. Such advice should be obtained directly from a physician and/or attorney.
Collapse
|
17
|
Chavez A, Smith M, Mehta D. New Insights into the Regulation of Vascular Permeability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:205-48. [DOI: 10.1016/b978-0-12-386037-8.00001-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:512-24. [PMID: 20581053 DOI: 10.2353/ajpath.2010.100168] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II-dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester, Rochester, New York, USA.
| | | | | |
Collapse
|
19
|
Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda) 2010; 25:16-26. [PMID: 20134025 DOI: 10.1152/physiol.00034.2009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tight junctions are heteromeric protein complexes that act as signaling centers by mediating the bidirectional transmission of information between the environment and the cell interior to control paracellular permeability and differentiation. Insight into tight junction-associated signaling mechanisms is of fundamental importance for our understanding of the physiology of epithelia and endothelia in health and disease.
Collapse
Affiliation(s)
- Steve Terry
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
20
|
Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res 2010; 87:243-53. [DOI: 10.1093/cvr/cvq086] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|