1
|
Granzier HL, Labeit S. Discovery of Titin and Its Role in Heart Function and Disease. Circ Res 2025; 136:135-157. [PMID: 39745989 DOI: 10.1161/circresaha.124.323051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing. Its I-band segment, which includes the N2B element and the PEVK (proline, glutamate, valine, and lysine-rich regions), serves as a viscoelastic spring, adjusting sarcomere length and force in response to cardiac stretch. The review details how alternative splicing of titin pre-mRNA produces different isoforms that greatly impact passive tension and cardiac function, under physiological and pathological conditions. Key posttranslational modifications, especially phosphorylation, play crucial roles in adjusting titin's stiffness, allowing for rapid adaptation to changing hemodynamic demands. Abnormal titin modifications and dysregulation of isoforms are linked to cardiac diseases such as heart failure with preserved ejection fraction, where increased stiffness impairs diastolic function. In addition, the review discusses the importance of the A-band region of titin in setting thick filament length and enhancing Ca²+ sensitivity, contributing to the Frank-Starling Mechanism of the heart. TTN truncating variants are frequently associated with dilated cardiomyopathy, and the review outlines potential disease mechanisms, including haploinsufficiency, sarcomere disarray, and altered thick filament regulation. Variants in TTN have also been linked to conditions such as peripartum cardiomyopathy and chemotherapy-induced cardiomyopathy. Therapeutic avenues are explored, including targeting splicing factors such as RBM20 (RNA binding motif protein 20) to adjust isoform ratios or using engineered heart tissues to study disease mechanisms. Advances in genetic engineering, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), offer promise for modifying TTN to treat titin-related cardiomyopathies. This comprehensive review highlights titin's structural, mechanical, and signaling roles in heart function and the impact of TTN mutations on cardiac diseases.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, The University of Arizona, Tucson (H.L.G.)
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.)
| |
Collapse
|
2
|
Jiang T, Zeng Q, Wang J. Unlocking the secrets of Cardiac development and function: the critical role of FHL2. Mol Cell Biochem 2024:10.1007/s11010-024-05142-6. [PMID: 39466483 DOI: 10.1007/s11010-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
FHL2 (Four-and-a-half LIM domain protein 2) is a crucial factor involved in cardiac morphogenesis, the process by which the heart develops its complex structure. It is expressed in various tissues during embryonic development, including the developing heart, and has been shown to play important roles in cell proliferation, differentiation, and migration. FHL2 interacts with multiple proteins to regulate cardiac development as a coactivator or a corepressor. It is involved in cardiac specification and determination of cell fate, cardiomyocyte growth, cardiac remodeling, myofibrillogenesis, and the regulation of HERG channels. Targeting FHL2 has therapeutic implications as it could improve cardiac function, control arrhythmias, alleviate heart failure, and maintain cardiac integrity in various pathological conditions. The identification of FHL2 as a signature gene in atrial fibrillation suggests its potential as a diagnostic marker and therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Clinical Laboratory, Hengyang Medical School, the Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Jing Wang
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- The First Clinical College, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
3
|
Agarwal S, Parija M, Naik S, Kumari P, Mishra SK, Adhya AK, Kashaw SK, Dixit A. Dysregulated gene subnetworks in breast invasive carcinoma reveal novel tumor suppressor genes. Sci Rep 2024; 14:15691. [PMID: 38977697 PMCID: PMC11231308 DOI: 10.1038/s41598-024-59953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/17/2024] [Indexed: 07/10/2024] Open
Abstract
Breast invasive carcinoma (BRCA) is the most malignant and leading cause of death in women. Global efforts are ongoing for improvement in early detection, prevention, and treatment. In this milieu, a comprehensive analysis of RNA-sequencing data of 1097 BRCA samples and 114 normal adjacent tissues is done to identify dysregulated genes in major molecular classes of BRCA in various clinical stages. Significantly enriched pathways in distinct molecular classes of BRCA have been identified. Pathways such as interferon signaling, tryptophan degradation, granulocyte adhesion & diapedesis, and catecholamine biosynthesis were found to be significantly enriched in Estrogen/Progesterone Receptor positive/Human Epidermal Growth Factor Receptor 2 negative, pathways such as RAR activation, adipogenesis, the role of JAK1/2 in interferon signaling, TGF-β and STAT3 signaling intricated in Estrogen/Progesterone Receptor negative/Human Epidermal Growth Factor Receptor 2 positive and pathways as IL-1/IL-8, TNFR1/TNFR2, TWEAK, and relaxin signaling were found in triple-negative breast cancer. The dysregulated genes were clustered based on their mutation frequency which revealed nine mutated clusters, some of which were well characterized in cancer while others were less characterized. Each cluster was analyzed in detail which led to the identification of NLGN3, MAML2, TTN, SYNE1, ANK2 as candidate genes in BRCA. They are central hubs in the protein-protein-interaction network, indicating their important regulatory roles. Experimentally, the Real-Time Quantitative Reverse Transcription PCR and western blot confirmed our computational predictions in cell lines. Further, immunohistochemistry corroborated the results in ~ 100 tissue samples. We could experimentally show that the NLGN3 & ANK2 have tumor-suppressor roles in BRCA as shown by cell viability assay, transwell migration, colony forming and wound healing assay. The cell viability and migration was found to be significantly reduced in MCF7 and MDA-MB-231 cell lines in which the selected genes were over-expressed as compared to control cell lines. The wound healing assay also demonstrated a significant decrease in wound closure at 12 h and 24 h time intervals in MCF7 & MDA-MB-231 cells. These findings established the tumor suppressor roles of NLGN3 & ANK2 in BRCA. This will have important ramifications for the therapeutics discovery against BRCA.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, India
| | - Monalisa Parija
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Sanoj Naik
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Pratima Kumari
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Sandip K Mishra
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India
| | - Amit K Adhya
- All India Institute of Medical Sciences, Bhubanesawar, 751019, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, India
| | - Anshuman Dixit
- Institute of Life Sciences, Nalco Square, Bhubanesawar, 751023, Odisha, India.
| |
Collapse
|
4
|
Zhu P, Li J, Yan F, Islam S, Lin X, Xu X. Allelic heterogeneity of TTNtv dilated cardiomyopathy can be modeled in adult zebrafish. JCI Insight 2024; 9:e175501. [PMID: 38412038 PMCID: PMC11128207 DOI: 10.1172/jci.insight.175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Feixiang Yan
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Banga S, Cardoso R, Castellani C, Srivastava S, Watkins J, Lima J. Cardiac MRI as an Imaging Tool in Titin Variant-Related Dilated Cardiomyopathy. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 52:86-93. [PMID: 36934006 DOI: 10.1016/j.carrev.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Dilated Cardiomyopathy is a common myocardial disease characterized by dilation and loss of function of one or both ventricles. A variety of etiologies have been implicated including genetic variation. Advancement in genetic sequencing, and diagnostic imaging allows for detection of genetic mutations in sarcomere protein titin (TTN) and high resolution assessment of cardiac function. This review article discusses the role of cardiac MRI in diagnosing dilated cardiomyopathy in patients with TTN variant related cardiomyopathy.
Collapse
Affiliation(s)
- Sandeep Banga
- Division of Cardiology, Michigan State University, Sparrow Hospital, Lansing, MI, USA.
| | | | - Carson Castellani
- Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shaurya Srivastava
- Division of Internal Medicine, Michigan State University, Lansing, MI, USA
| | - Jennifer Watkins
- Division of Cardiology, Michigan State University, Sparrow Hospital, Lansing, MI, USA
| | - Joao Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Averdunk L, Donkervoort S, Horn D, Waldmüller S, Syeda S, Neuhaus SB, Chao KR, van Riesen A, Gauck D, Haack T, Japp AS, Lee U, Bönnemann CG, Mayatepek E, Distelmaier F. Recognizable Pattern of Arthrogryposis and Congenital Myopathy Caused by the Recurrent TTN Metatranscript-only c.39974-11T > G Splice Variant. Neuropediatrics 2022; 53:309-320. [PMID: 35605965 DOI: 10.1055/a-1859-0800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Arthrogryposis is characterized by the presence of multiple contractures at birth and can be caused by pathogenic variants in TTN (Titin). Exons and variants that are not expressed in one of the three major isoforms of titin are referred to as "metatranscript-only" and have been considered to be only expressed during fetal development. Recently, the metatranscript-only variant (c.39974-11T > G) in TTN with a second truncating TTN variant has been linked to arthrogryposis multiplex congenita and myopathy. METHODS Via exome sequencing we identified the TTN c.39974-11T > G splice variant in trans with one of three truncating variants (p.Arg8922*, p.Lys32998Asnfs*63, p.Tyr10345*) in five individuals from three families. Clinical presentation and muscle ultrasound as well as MRI images were analyzed. RESULTS All five patients presented with generalized muscular hypotonia, reduced muscle bulk, and congenital contractures most prominently affecting the upper limbs and distal joints. Muscular hypotonia persisted and contractures improved over time. One individual, the recipient twin in the setting of twin-to-twin transfusion syndrome, died from severe cardiac hypertrophy 1 day after birth. Ultrasound and MRI imaging studies revealed a recognizable pattern of muscle involvement with striking fibrofatty involvement of the hamstrings and calves, and relative sparing of the femoral adductors and anterior segment of the thighs. CONCLUSION The recurrent TTN c.39974-11T > G variant consistently causes congenital arthrogryposis and persisting myopathy providing evidence that the metatranscript-only 213 to 217 exons impact muscle elasticity during early development and beyond. There is a recognizable pattern of muscle involvement, which is distinct from other myopathies and provides valuable clues for diagnostic work-up.
Collapse
Affiliation(s)
- Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Safoora Syeda
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Katherine R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Anne van Riesen
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Darja Gauck
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Anna S Japp
- Institute of Pathology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Unaa Lee
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| |
Collapse
|
8
|
Marcello M, Cetrangolo V, Savarese M, Udd B. Use of animal models to understand titin physiology and pathology. J Cell Mol Med 2022; 26:5103-5112. [PMID: 36065969 PMCID: PMC9575118 DOI: 10.1111/jcmm.17533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, increasing attention has been paid to titin (TTN) and its mutations. Heterozygous TTN truncating variants (TTNtv) increase the risk of a cardiomyopathy. At the same time, TTNtv and few missense variants have been identified in patients with mainly recessive skeletal muscle diseases. The pathogenic mechanisms underlying titin‐related diseases are still partly unknown. Similarly, the titin mechanical and functional role in the muscle contraction are far from being exhaustively clarified. In the last few years, several animal models carrying variants in the titin gene have been developed and characterized to study the structural and mechanical properties of specific titin domains or to mimic patients' mutations. This review describes the main animal models so far characterized, including eight mice models and three fish models (Medaka and Zebrafish) and discusses the useful insights provided by a thorough characterization of the cell‐, tissue‐ and organism‐phenotypes in these models.
Collapse
Affiliation(s)
| | | | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
9
|
Lin YH, Major JL, Liebner T, Hourani Z, Travers JG, Wennersten SA, Haefner KR, Cavasin MA, Wilson CE, Jeong MY, Han Y, Gotthardt M, Ferguson SK, Ambardekar AV, Lam MP, Choudhary C, Granzier HL, Woulfe KC, McKinsey TA. HDAC6 modulates myofibril stiffness and diastolic function of the heart. J Clin Invest 2022; 132:e148333. [PMID: 35575093 PMCID: PMC9106344 DOI: 10.1172/jci148333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2022] [Indexed: 01/26/2023] Open
Abstract
Passive stiffness of the heart is determined largely by extracellular matrix and titin, which functions as a molecular spring within sarcomeres. Titin stiffening is associated with the development of diastolic dysfunction (DD), while augmented titin compliance appears to impair systolic performance in dilated cardiomyopathy. We found that myofibril stiffness was elevated in mice lacking histone deacetylase 6 (HDAC6). Cultured adult murine ventricular myocytes treated with a selective HDAC6 inhibitor also exhibited increased myofibril stiffness. Conversely, HDAC6 overexpression in cardiomyocytes led to decreased myofibril stiffness, as did ex vivo treatment of mouse, rat, and human myofibrils with recombinant HDAC6. Modulation of myofibril stiffness by HDAC6 was dependent on 282 amino acids encompassing a portion of the PEVK element of titin. HDAC6 colocalized with Z-disks, and proteomics analysis suggested that HDAC6 functions as a sarcomeric protein deacetylase. Finally, increased myofibril stiffness in HDAC6-deficient mice was associated with exacerbated DD in response to hypertension or aging. These findings define a role for a deacetylase in the control of myofibril function and myocardial passive stiffness, suggest that reversible acetylation alters titin compliance, and reveal the potential of targeting HDAC6 to manipulate the elastic properties of the heart to treat cardiac diseases.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L. Major
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tim Liebner
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | - Joshua G. Travers
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sara A. Wennersten
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey R. Haefner
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria A. Cavasin
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Yu Han
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Scott K. Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amrut V. Ambardekar
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maggie P.Y. Lam
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chunaram Choudhary
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henk L. Granzier
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, USA
| | | | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Pezhouman A, Nguyen NB, Sercel AJ, Nguyen TL, Daraei A, Sabri S, Chapski DJ, Zheng M, Patananan AN, Ernst J, Plath K, Vondriska TM, Teitell MA, Ardehali R. Transcriptional, Electrophysiological, and Metabolic Characterizations of hESC-Derived First and Second Heart Fields Demonstrate a Potential Role of TBX5 in Cardiomyocyte Maturation. Front Cell Dev Biol 2021; 9:787684. [PMID: 34988079 PMCID: PMC8722677 DOI: 10.3389/fcell.2021.787684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be used as a source for cell delivery to remuscularize the heart after myocardial infarction. Despite their therapeutic potential, the emergence of ventricular arrhythmias has limited their application. We previously developed a double reporter hESC line to isolate first heart field (FHF: TBX5+NKX2-5+) and second heart field (SHF: TBX5-NKX2-5+) CMs. Herein, we explore the role of TBX5 and its effects on underlying gene regulatory networks driving phenotypical and functional differences between these two populations. Methods: We used a combination of tools and techniques for rapid and unsupervised profiling of FHF and SHF populations at the transcriptional, translational, and functional level including single cell RNA (scRNA) and bulk RNA sequencing, atomic force and quantitative phase microscopy, respirometry, and electrophysiology. Results: Gene ontology analysis revealed three biological processes attributed to TBX5 expression: sarcomeric structure, oxidative phosphorylation, and calcium ion handling. Interestingly, migratory pathways were enriched in SHF population. SHF-like CMs display less sarcomeric organization compared to FHF-like CMs, despite prolonged in vitro culture. Atomic force and quantitative phase microscopy showed increased cellular stiffness and decreased mass distribution over time in FHF compared to SHF populations, respectively. Electrophysiological studies showed longer plateau in action potentials recorded from FHF-like CMs, consistent with their increased expression of calcium handling genes. Interestingly, both populations showed nearly identical respiratory profiles with the only significant functional difference being higher ATP generation-linked oxygen consumption rate in FHF-like CMs. Our findings suggest that FHF-like CMs display more mature features given their enhanced sarcomeric alignment, calcium handling, and decreased migratory characteristics. Finally, pseudotime analyses revealed a closer association of the FHF population to human fetal CMs along the developmental trajectory. Conclusion: Our studies reveal that distinguishing FHF and SHF populations based on TBX5 expression leads to a significant impact on their downstream functional properties. FHF CMs display more mature characteristics such as enhanced sarcomeric organization and improved calcium handling, with closer positioning along the differentiation trajectory to human fetal hearts. These data suggest that the FHF CMs may be a more suitable candidate for cardiac regeneration.
Collapse
Affiliation(s)
- Arash Pezhouman
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ngoc B. Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander J. Sercel
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thang L. Nguyen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ali Daraei
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shan Sabri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Douglas J. Chapski
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melton Zheng
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander N. Patananan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jason Ernst
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kathrin Plath
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thomas M. Vondriska
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael A. Teitell
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Reza Ardehali,
| |
Collapse
|
11
|
Radke MH, Badillo-Lisakowski V, Britto-Borges T, Kubli DA, Jüttner R, Parakkat P, Carballo JL, Hüttemeister J, Liss M, Hansen A, Dieterich C, Mullick AE, Gotthardt M. Therapeutic inhibition of RBM20 improves diastolic function in a murine heart failure model and human engineered heart tissue. Sci Transl Med 2021; 13:eabe8952. [PMID: 34851694 DOI: 10.1126/scitranslmed.abe8952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael H Radke
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Victor Badillo-Lisakowski
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | | | - René Jüttner
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Pragati Parakkat
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Jacobo Lopez Carballo
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Judith Hüttemeister
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Martin Liss
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | | | - Michael Gotthardt
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|
12
|
Abstract
The contraction-relaxation cycle of the heart is one of the most robust mechanical systems in the body that adapts rapidly to the body's needs by changing mechanical parameters. In many respects, we can consider the cardiac system as a complex machine and can use engineering approaches to describe its function. The classical physiology of the heart also focused on understanding function but the new molecular level tools in light microscopy and nanoengineering now enable a deeper understanding of the physiology. The field of mechanobiology has emerged with a focus on how mechanical activity alters biological systems at the molecular level and how those systems in turn control mechanical parameters. In the case of mechanical activity, there are clearly benefits of exercise for the heart, for cancer patients, and for aging but we do not understand the links at a molecular level. Why does regular exercise benefit the heart? We have some preliminary clues at a molecular level about the benefits of physical activity in the cases of cancer and aging; however, there is less known about how exercise affects cardiovascular performance. Unlike the omics approaches which generally link proteins to processes, a mechanobiological understanding of a process explains how forces and mechanical activity will regulate the process through modifications of protein activities. In other words, mechanical activity is an essential component of most biological systems that is transduced into biochemical changes in protein activity. Further, it follows logically that if a mechanical parameter of the cardiac system is typically controlled, then cellular mechanosensing systems must be able to directly or indirectly measure that parameter. The challenge is to understand how changes in activity of the heart are controlled in the short term and then how the system adapts to the integrated level of activity over the longer term. By way of introduction to molecular mechanobiology, I will present examples of mechanosensing from the molecular to the cellular scale and how they may be integrated at the cell and tissue levels. An important element of Mechanobiology at the system level is the physiological state of the cell: i.e., the cell in a senescent state, a cancer state, or a normal cell state (Sheetz 2019). The background for the mechanobiological approach is discussed in "The Cell as a Machine" (Sheetz and Yu, Cambridge Univ Press, 2018), which considers cell states and the molecular systems underlying the important cellular functions. A major challenge in mechanobiology is the understanding of the transduction of mechanical activity into changes in cell function. Of particular relevance here is the benefit of exercise to cardiac performance. This has been seen in many cases and there are a variety of factors that contribute. Further, exercise will benefit cancer patients and will reverse some of the adverse effects of aging. Exercise will cause increased cardiac activity that will be sensed by many mechanosensory systems from a molecular to a cellular level both in the heart and in the vasculature. At a molecular level in cardiac systems, proteins are able to measure stress and strain and to generate appropriate signals of the magnitude of stress and strain that can regulate the cellular contractility and other parameters. The protein sensors are generally passive systems that give a transient measure of local parameters such as the stress at cell-cell junctions during contraction and the strain of the sarcomeres during relaxation. Large stresses at the junctions can activate signaling systems that can reduce contractility or over time activate remodeling of the junctions to better support larger stresses. The proteins involved and their sensory mechanisms are not known currently; however, the mechanosensitive channel, Piezo1, has been implicated in the transduction process in the vasculature (Beech 2018). In the case of strain sensors, large stretches of titin during relaxation can unfold more titin domains that can send signals to the cell. Two different mechanisms of strain sensing are likely in titin. The titin kinase domain is activated by strain but the substrates of the kinase are not know in vivo (Linke 2018). In the backbone of titin are many Ig domains that unfold at different forces and unfolding could cause the binding of proteins that would then activate enzymatic pathways to alter the contractile cycle to give the proper level of strain (Ait-Mou et al. 2017; Granzier et al. 2014; Granzier et al. 2009). The cell-matrix adhesion protein, talin, has eleven cryptic binding sites for another adhesion protein, vinculin, that are revealed by the unfolding of domains in the talin molecule (Yao et al. 2016). Since some domains unfold at lower forces than others, small strains will preferentially unfold those domains, making the system an excellent sensor of the extent of stretch as expected for titin. Because there is an ordered array of many titin molecules, the sensing of strain can be very sensitive to small changes in sarcomere length. Needless to say, titin is only one part of the regulatory system that controls sarcomere length. As one goes more deeply into the working of the system, it is evident that many additional mechanosensory elements are involved in maintaining a functioning cardiac system.
Collapse
|
13
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Biquand A, Spinozzi S, Tonino P, Cosette J, Strom J, Elbeck Z, Knöll R, Granzier H, Lostal W, Richard I. Titin M-line insertion sequence 7 is required for proper cardiac function in mice. J Cell Sci 2021; 134:271843. [PMID: 34401916 DOI: 10.1242/jcs.258684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation-contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation-contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.
Collapse
Affiliation(s)
- Ariane Biquand
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Simone Spinozzi
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Zaher Elbeck
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden.,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - William Lostal
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| |
Collapse
|
15
|
Glavaški M, Velicki L. Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach. Life (Basel) 2021; 11:life11080785. [PMID: 34440529 PMCID: PMC8398249 DOI: 10.3390/life11080785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is much research on HCM, underlying molecular mechanisms are poorly understood, and research on the molecular mechanisms of its specific clinical presentations is scarce. Our aim was to explore the molecular mechanisms shared by HCM and its clinical presentations through the automated extraction of molecular mechanisms. Molecular mechanisms were congregated by a query of the INDRA database, which aggregates knowledge from pathway databases and combines it with molecular mechanisms extracted from abstracts and open-access full articles by multiple machine-reading systems. The molecular mechanisms were extracted from 230,072 articles on HCM and 19 HCM clinical presentations, and their intersections were found. Shared molecular mechanisms of HCM and its clinical presentations were represented as networks; the most important elements in the intersections’ networks were found, centrality scores for each element of each network calculated, networks with reduced level of noise generated, and cooperatively working elements detected in each intersection network. The identified shared molecular mechanisms represent possible mechanisms underlying different HCM clinical presentations. Applied methodology produced results consistent with the information in the scientific literature.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Correspondence: or
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
16
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
17
|
Paulus WJ, Zile MR. From Systemic Inflammation to Myocardial Fibrosis: The Heart Failure With Preserved Ejection Fraction Paradigm Revisited. Circ Res 2021; 128:1451-1467. [PMID: 33983831 PMCID: PMC8351796 DOI: 10.1161/circresaha.121.318159] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In accordance with the comorbidity-inflammation paradigm, comorbidities and especially metabolic comorbidities are presumed to drive development and severity of heart failure with preserved ejection fraction through a cascade of events ranging from systemic inflammation to myocardial fibrosis. Recently, novel experimental and clinical evidence emerged, which strengthens the validity of the inflammatory/profibrotic paradigm. This evidence consists among others of (1) myocardial infiltration by immunocompetent cells not only because of an obesity-induced metabolic load but also because of an arterial hypertension-induced hemodynamic load. The latter is sensed by components of the extracellular matrix like basal laminin, which also interact with cardiomyocyte titin; (2) expression in cardiomyocytes of inducible nitric oxide synthase because of circulating proinflammatory cytokines. This results in myocardial accumulation of degraded proteins because of a failing unfolded protein response; (3) definition by machine learning algorithms of phenogroups of patients with heart failure with preserved ejection fraction with a distinct inflammatory/profibrotic signature; (4) direct coupling in mediation analysis between comorbidities, inflammatory biomarkers, and deranged myocardial structure/function with endothelial expression of adhesion molecules already apparent in early preclinical heart failure with preserved ejection fraction (HF stage A, B). This new evidence paves the road for future heart failure with preserved ejection fraction treatments such as biologicals directed against inflammatory cytokines, stimulation of protein ubiquitylation with phosphodiesterase 1 inhibitors, correction of titin stiffness through natriuretic peptide-particulate guanylyl cyclase-PDE9 (phosphodiesterase 9) signaling and molecular/cellular regulatory mechanisms that control myocardial fibrosis.
Collapse
Affiliation(s)
- Walter J Paulus
- Amsterdam University Medical Centers, The Netherlands (W.J.P.)
| | - Michael R Zile
- RHJ Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston (M.R.Z.)
| |
Collapse
|
18
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
19
|
Swist S, Unger A, Li Y, Vöge A, von Frieling-Salewsky M, Skärlén Å, Cacciani N, Braun T, Larsson L, Linke WA. Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z-disc anchored titin. Nat Commun 2020; 11:4479. [PMID: 32900999 PMCID: PMC7478974 DOI: 10.1038/s41467-020-18131-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The giant protein titin is thought to be required for sarcomeric integrity in mature myocytes, but direct evidence for this hypothesis is limited. Here, we describe a mouse model in which Z-disc-anchored TTN is depleted in adult skeletal muscles. Inactivation of TTN causes sarcomere disassembly and Z-disc deformations, force impairment, myocyte de-stiffening, upregulation of TTN-binding mechanosensitive proteins and activation of protein quality-control pathways, concomitant with preferential loss of thick-filament proteins. Interestingly, expression of the myosin-bound Cronos-isoform of TTN, generated from an alternative promoter not affected by the targeting strategy, does not prevent deterioration of sarcomere formation and maintenance. Finally, we demonstrate that loss of Z-disc-anchored TTN recapitulates muscle remodeling in critical illness ‘myosinopathy’ patients, characterized by TTN-depletion and loss of thick filaments. We conclude that full-length TTN is required to integrate Z-disc and A-band proteins into the mature sarcomere, a function that is lost when TTN expression is pathologically lowered. Titin is considered an integrator of muscle cell proteins but direct evidence is limited. Here, titin is inactivated in adult mouse muscles, which causes sarcomere disassembly, protein mis-expression and force impairment, recapitulating key alterations in critical illness myopathy patient muscles.
Collapse
Affiliation(s)
- Sandra Swist
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany.
| | - Andreas Unger
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Yong Li
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany
| | - Anja Vöge
- Department of Systems Physiology, Ruhr University Bochum, D-44780, Bochum, Germany
| | | | - Åsa Skärlén
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231, Bad Nauheim, Germany
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, D-48149, Munster, Germany.
| |
Collapse
|
20
|
Chen MP, Kiduko SA, Saad NS, Canan BD, Kilic A, Mohler PJ, Janssen PML. Stretching single titin molecules from failing human hearts reveals titin's role in blunting cardiac kinetic reserve. Cardiovasc Res 2020; 116:127-137. [PMID: 30778519 DOI: 10.1093/cvr/cvz043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 11/15/2022] Open
Abstract
AIMS Heart failure (HF) patients commonly experience symptoms primarily during elevated heart rates, as a result of physical activities or stress. A main determinant of diastolic passive tension, the elastic sarcomeric protein titin, has been shown to be associated with HF, with unresolved involvement regarding its role at different heart rates. To determine whether titin is playing a role in the heart rate (frequency-) dependent acceleration of relaxation (FDAR). W, we studied the FDAR responses in live human left ventricular cardiomyocytes and the corresponding titin-based passive tension (TPT) from failing and non-failing human hearts. METHODS AND RESULTS Using atomic force, we developed a novel single-molecule force spectroscopy approach to detect TPT based on the frequency-modulated cardiac cycle. Mean TPT reduced upon an increased heart rate in non-failing human hearts, while this reduction was significantly blunted in failing human hearts. These mechanical changes in the titin distal Ig domain significantly correlated with the frequency-dependent relaxation kinetics of human cardiomyocytes obtained from the corresponding hearts. Furthermore, the data suggested that the higher the TPT, the faster the cardiomyocytes relaxed, but the lower the potential of myocytes to speed up relaxation at a higher heart rate. Such poorer FDAR response was also associated with a lesser reduction or a bigger increase in TPT upon elevated heart rate. CONCLUSIONS Our study established a novel approach in detecting dynamic heart rate relevant tension changes physiologically on native titin domains. Using this approach, the data suggested that the regulation of kinetic reserve in cardiac relaxation and its pathological changes were associated with the intensity and dynamic changes of passive tension by titin.
Collapse
Affiliation(s)
- Mei-Pian Chen
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Salome A Kiduko
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Nancy S Saad
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Benjamin D Canan
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA
| | - Ahmet Kilic
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43210, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Hamilton Hall 207a, 1645 Neil Avenue, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, 473 W 12th Ave, Columbus, OH 43210 USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
21
|
van der Pijl RJ, Hudson B, Granzier-Nakajima T, Li F, Knottnerus AM, Smith J, Chung CS, Gotthardt M, Granzier HL, Ottenheijm CAC. Deleting Titin's C-Terminal PEVK Exons Increases Passive Stiffness, Alters Splicing, and Induces Cross-Sectional and Longitudinal Hypertrophy in Skeletal Muscle. Front Physiol 2020; 11:494. [PMID: 32547410 PMCID: PMC7274174 DOI: 10.3389/fphys.2020.00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219-225 deleted, the TtnΔ219-225 model (MGI: TtnTM 2.1Mgot ). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by ∼17% (sarcomere length 3.0 μm). In contrast, measured passive tension (sarcomere length 3.0 μm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in TtnΔ219-225 muscles: a larger isoform that represents the TtnΔ219-225 N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in TtnΔ219-225 soleus muscle (WT 240 ± 9; TtnΔ219-225 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; TtnΔ219-225 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. TtnΔ219-225 mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219-225 have high passive tension, due in part to alterations elsewhere in splicing of titin's spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin's C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Brian Hudson
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | | | - Frank Li
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne M Knottnerus
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - John Smith
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Charles S Chung
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Michael Gotthardt
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany.,Cardiology, Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Henk L Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Coen A C Ottenheijm
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
22
|
Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Biomolecules 2020; 10:biom10030442. [PMID: 32178433 PMCID: PMC7175236 DOI: 10.3390/biom10030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
: Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.
Collapse
|
23
|
Bolfer L, Estrada AH, Larkin C, Conlon TJ, Lourenco F, Taggart K, Suzuki-Hatano S, Pacak CA. Functional Consequences of PDK4 Deficiency in Doberman Pinscher Fibroblasts. Sci Rep 2020; 10:3930. [PMID: 32127618 PMCID: PMC7054397 DOI: 10.1038/s41598-020-60879-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
A splice site mutation in the canine pyruvate dehydrogenase kinase 4 (PDK4) gene has been shown to be associated with the development of dilated cardiomyopathy (DCM) in Doberman Pinchers (DPs). Subsequent studies have successfully demonstrated the use of dermal fibroblasts isolated from DPs as models for PDK4 deficiency and have shown activation of the intrinsic (mitochondrial mediated) apoptosis pathway in these cells under starvation conditions. For this study, we sought to further explore the functional consequences of PDK4 deficiency in DP fibroblasts representing PDK4wt/wt, PDK4wt/del, and PDK4del/del genotypes. Our results show that starvation conditions cause increased perinuclear localization of mitochondria and decreased cell proliferation, altered expression levels of pyruvate dehydrogenase phosphatase (PDP) and pyruvate dehydrogenase (PDH), dramatically increased PDH activity, and an impaired response to mitochondrial stress in affected cells. In sum, these results show the broad impact of PDK4 deficiency and reveal mechanistic pathways used by these cells in an attempt to compensate for the condition. Our data help to elucidate the mechanisms at play in this extremely prevalent DP disorder and provide further support demonstrating the general importance of metabolic flexibility in cell health.
Collapse
Affiliation(s)
- Luiz Bolfer
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Amara H Estrada
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Chelsea Larkin
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA.,Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Thomas J Conlon
- CR Scientific and Compliance Consulting, LLC, Gainesville, FL, 32608, USA
| | - Francisco Lourenco
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Kathryn Taggart
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA. .,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
25
|
Radke MH, Polack C, Methawasin M, Fink C, Granzier HL, Gotthardt M. Deleting Full Length Titin Versus the Titin M-Band Region Leads to Differential Mechanosignaling and Cardiac Phenotypes. Circulation 2020; 139:1813-1827. [PMID: 30700140 DOI: 10.1161/circulationaha.118.037588] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect. METHODS To study titin deficiency versus dysfunction, the authors generated and compared striated muscle specific knockouts (KOs) with progressive postnatal loss of the complete titin protein by removing exon 2 (E2-KO) or an M-band truncation that eliminates proper sarcomeric integration, but retains all other functional domains (M-band exon 1/2 [M1/2]-KO). The authors evaluated cardiac function, cardiomyocyte mechanics, and the molecular basis of the phenotype. RESULTS Skeletal muscle atrophy with reduced strength, severe sarcomere disassembly, and lethality from 2 weeks of age were shared between the models. Cardiac phenotypes differed considerably: loss of titin leads to dilated cardiomyopathy with combined systolic and diastolic dysfunction-the absence of M-band titin to cardiac atrophy and preserved function. The elastic properties of M1/2-KO cardiomyocytes are maintained, while passive stiffness is reduced in the E2-KO. In both KOs, we find an increased stress response and increased expression of proteins linked to titin-based mechanotransduction (CryAB, ANKRD1, muscle LIM protein, FHLs, p42, Camk2d, p62, and Nbr1). Among them, FHL2 and the M-band signaling proteins p62 and Nbr1 are exclusively upregulated in the E2-KO, suggesting a role in the differential pathology of titin truncation versus deficiency of the full-length protein. The differential stress response is consistent with truncated titin contributing to the mechanical properties in M1/2-KOs, while low titin levels in E2-KOs lead to reduced titin-based stiffness and increased strain on the remaining titin molecules. CONCLUSIONS Progressive depletion of titin leads to sarcomere disassembly and atrophy in striated muscle. In the complete knockout, remaining titin molecules experience increased strain, resulting in mechanically induced trophic signaling and eventually dilated cardiomyopathy. The truncated titin in M1/2-KO helps maintain the passive properties and thus reduces mechanically induced signaling. Together, these findings contribute to the molecular understanding of why titin mutations differentially affect cardiac growth and have implications for genotype-phenotype relations that support a personalized medicine approach to the diverse titinopathies.
Collapse
Affiliation(s)
- Michael H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.).,DZHK: German Centre for Cardiovascular Research, Partner Site, Berlin, Germany (M.H.R., M.G.)
| | - Christopher Polack
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.)
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (M.M., H.G.). The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Claudia Fink
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.)
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (M.M., H.G.). The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.).,DZHK: German Centre for Cardiovascular Research, Partner Site, Berlin, Germany (M.H.R., M.G.)
| |
Collapse
|
26
|
Gannon MP, Link MS. Phenotypic variation and targeted therapy of hypertrophic cardiomyopathy using genetic animal models. Trends Cardiovasc Med 2019; 31:20-31. [PMID: 31862214 DOI: 10.1016/j.tcm.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) has a variable clinical presentation due to the diversity of causative genetic mutations. Animal models allow in vivo study of genotypic expression through non-invasive imaging, pathologic sampling, and force analysis. This review focuses on the spontaneous and induced mutations in various animal models affecting mainly sarcomere proteins. The sarcomere is comprised of thick (myosin) filaments and related proteins including myosin heavy chain and myosin binding protein-C; thin (actin) filament proteins and their associated regulators including tropomyosin, troponin I, troponin C, and troponin T. The regulatory milieu including transcription factors and cell signaling also play a significant role. Animal models provide a layered approach of understanding beginning with the causative mutation as a foundation. The functional consequences of protein energy utilization and calcium sensitivity in vivo and ex vivo can be studied. Beyond pathophysiologic disruption of sarcomere function, these models demonstrate the clinical sequalae of diastolic dysfunction, heart failure, and arrhythmogenic death. Through this cascade of understanding the mutation followed by their functional significance, targeted therapies have been developed and are briefly discussed.
Collapse
Affiliation(s)
- Michael P Gannon
- National Heart, Lung and Blood Institute, National Institutes of Health, US Department of Health and Human Services, Bldg 10, Rm B1D416, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Mark S Link
- University of Texas Southwestern Medical Center, USA
| |
Collapse
|
27
|
Higashikuse Y, Mittal N, Arimura T, Yoon SH, Oda M, Enomoto H, Kaneda R, Hattori F, Suzuki T, Kawakami A, Gasch A, Furukawa T, Labeit S, Fukuda K, Kimura A, Makino S. Perturbation of the titin/MURF1 signaling complex is associated with hypertrophic cardiomyopathy in a fish model and in human patients. Dis Model Mech 2019; 12:dmm.041103. [PMID: 31628103 PMCID: PMC6899042 DOI: 10.1242/dmm.041103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/25/2019] [Indexed: 11/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a hereditary disease characterized by cardiac hypertrophy with diastolic dysfunction. Gene mutations causing HCM have been found in about half of HCM patients, while the genetic etiology and pathogenesis remain unknown for many cases of HCM. To identify novel mechanisms underlying HCM pathogenesis, we generated a cardiovascular-mutant medaka fish, non-spring heart (nsh), which showed diastolic dysfunction and hypertrophic myocardium. The nsh homozygotes had fewer myofibrils, disrupted sarcomeres and expressed pathologically stiffer titin isoforms. In addition, the nsh heterozygotes showed M-line disassembly that is similar to the pathological changes found in HCM. Positional cloning revealed a missense mutation in an immunoglobulin (Ig) domain located in the M-line–A-band transition zone of titin. Screening of mutations in 96 unrelated patients with familial HCM, who had no previously implicated mutations in known sarcomeric gene candidates, identified two mutations in Ig domains close to the M-line region of titin. In vitro studies revealed that the mutations found both in medaka fish and in familial HCM increased binding of titin to muscle-specific ring finger protein 1 (MURF1) and enhanced titin degradation by ubiquitination. These findings implicate an impaired interaction between titin and MURF1 as a novel mechanism underlying the pathogenesis of HCM. Summary: The authors identified and characterized a medaka mutation in titin that leads to a phenotype similar to hypertrophic cardiomyopathy. Similar mutations were also observed in human patients.
Collapse
Affiliation(s)
- Yuta Higashikuse
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan.,Division of Basic Biological Sciences, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Nishant Mittal
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takuro Arimura
- Laboratory of Genome Diversity, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Sung Han Yoon
- Department of Interventional Cardiology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, AHSP A9229, Los Angeles, CA 90048, USA
| | - Mayumi Oda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirokazu Enomoto
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ruri Kaneda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Fumiyuki Hattori
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Suzuki
- Division of Basic Biological Sciences, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Atsushi Kawakami
- Department of Biological Information, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Alexander Gasch
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, Mannheim 68167, Germany
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, Mannheim 68167, Germany
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akinori Kimura
- Laboratory of Genome Diversity, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shinji Makino
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan .,Keio University Health Centre, 35-Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
28
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
29
|
van der Pijl RJ, Granzier HL, Ottenheijm CAC. Diaphragm contractile weakness due to reduced mechanical loading: role of titin. Am J Physiol Cell Physiol 2019; 317:C167-C176. [PMID: 31042425 DOI: 10.1152/ajpcell.00509.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. Only during controlled mechanical ventilation, as occurs during thoracic surgery and in the intensive care unit, is mechanical loading of the diaphragm arrested. Animal studies indicate that the diaphragm is highly sensitive to unloading, causing rapid muscle fiber atrophy and contractile weakness; unloading-induced diaphragm atrophy and contractile weakness have been suggested to contribute to the difficulties in weaning patients from ventilator support. The molecular triggers that initiate the rapid unloading atrophy of the diaphragm are not well understood, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere, titin is considered to play an important role in the stress-response machinery. Titin is a giant protein that acts as a mechanosensor regulating muscle protein expression in a sarcomere strain-dependent fashion. Thus titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin and its biomechanical sensing and signaling might be involved in the development of mechanical unloading-induced diaphragm weakness.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona.,Department of Physiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona.,Department of Physiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Mijailovich SM, Stojanovic B, Nedic D, Svicevic M, Geeves MA, Irving TC, Granzier HL. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity. J Gen Physiol 2019; 151:680-704. [PMID: 30948421 PMCID: PMC6504291 DOI: 10.1085/jgp.201812165] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/15/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
Various mutations in the structural proteins nebulin and titin that are present in human disease are known to affect the contractility of striated muscle. Loss of nebulin is associated with reduced actin filament length and impairment of myosin binding to actin, whereas titin is thought to regulate muscle passive elasticity and is likely involved in length-dependent activation. Here, we sought to assess the modulation of muscle function by these sarcomeric proteins by using the computational platform muscle simulation code (MUSICO) to quantitatively separate the effects of structural changes, kinetics of cross-bridge cycling, and calcium sensitivity of the thin filaments. The simulations show that variation in thin filament length cannot by itself account for experimental observations of the contractility in nebulin-deficient muscle, but instead must be accompanied by a decreased myosin binding rate. Additionally, to match the observed calcium sensitivity, the rate of TnI detachment from actin needed to be increased. Simulations for cardiac muscle provided quantitative estimates of the effects of different titin-based passive elasticities on muscle force and activation in response to changes in sarcomere length and interfilament lattice spacing. Predicted force-pCa relations showed a decrease in both active tension and sensitivity to calcium with a decrease in passive tension and sarcomere length. We conclude that this behavior is caused by partial redistribution of the muscle load between active muscle force and titin-dependent passive force, and also by redistribution of stretch along the thin filament, which together modulate the release of TnI from actin. These data help advance understanding of how nebulin and titin mutations affect muscle function.
Collapse
Affiliation(s)
- Srboljub M Mijailovich
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA .,Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Boban Stojanovic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Djordje Nedic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Marina Svicevic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | |
Collapse
|
31
|
Kellermayer D, Smith JE, Granzier H. Titin mutations and muscle disease. Pflugers Arch 2019; 471:673-682. [PMID: 30919088 DOI: 10.1007/s00424-019-02272-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
The introduction of next-generation sequencing technology has revealed that mutations in the gene that encodes titin (TTN) are linked to multiple skeletal and cardiac myopathies. The most prominent of these myopathies is dilated cardiomyopathy (DCM). Over 60 genes are linked to the etiology of DCM, but by far, the leading cause of DCM is mutations in TTN with truncating variants in TTN (TTNtvs) associated with familial DCM in ∼ 20% of the cases. Titin is a large (3-4 MDa) and abundant protein that forms the third myofilament type of striated muscle where it spans half the sarcomere, from the Z-disk to the M-line. The underlying mechanisms by which titin mutations induce disease are poorly understood and targeted therapies are not available. Here, we review what is known about TTN mutations in muscle disease, with a major focus on DCM. We highlight that exon skipping might provide a possible therapeutic avenue to address diseases that arise from TTNtvs.
Collapse
Affiliation(s)
- Dalma Kellermayer
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA. .,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
32
|
A missense variant in the titin gene in Doberman pinscher dogs with familial dilated cardiomyopathy and sudden cardiac death. Hum Genet 2019; 138:515-524. [DOI: 10.1007/s00439-019-01973-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022]
|
33
|
The power of the force: mechano-physiology of the giant titin. Emerg Top Life Sci 2018; 2:681-686. [PMID: 33530662 DOI: 10.1042/etls20180046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/18/2023]
Abstract
Titin - the largest protein in the human body - spans half of the muscle sarcomere from the Z-disk to the M-band through a single polypeptide chain. More than 30 000 amino acid residues coded from a single gene (TTN, in humans Q8WZ42) form a long filamentous protein organized in individual globular domains concatenated in tandem. Owing to its location and close interaction with the other muscle filaments, titin is considered the third filament of muscle, after the thick-myosin and the thin-actin filaments.
Collapse
|
34
|
van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, Ottenheijm C. Titin-based mechanosensing modulates muscle hypertrophy. J Cachexia Sarcopenia Muscle 2018; 9:947-961. [PMID: 29978560 PMCID: PMC6204599 DOI: 10.1002/jcsm.12319] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Titin is an elastic sarcomeric filament that has been proposed to play a key role in mechanosensing and trophicity of muscle. However, evidence for this proposal is scarce due to the lack of appropriate experimental models to directly test the role of titin in mechanosensing. METHODS We used unilateral diaphragm denervation (UDD) in mice, an in vivo model in which the denervated hemidiaphragm is passively stretched by the contralateral, innervated hemidiaphragm and hypertrophy rapidly occurs. RESULTS In wildtype mice, the denervated hemidiaphragm mass increased 48 ± 3% after 6 days of UDD, due to the addition of both sarcomeres in series and in parallel. To test whether titin stiffness modulates the hypertrophy response, RBM20ΔRRM and TtnΔIAjxn mouse models were used, with decreased and increased titin stiffness, respectively. RBM20ΔRRM mice (reduced stiffness) showed a 20 ± 6% attenuated hypertrophy response, whereas the TtnΔIAjxn mice (increased stiffness) showed an 18 ± 8% exaggerated response after UDD. Thus, muscle hypertrophy scales with titin stiffness. Protein expression analysis revealed that titin-binding proteins implicated previously in muscle trophicity were induced during UDD, MARP1 & 2, FHL1, and MuRF1. CONCLUSIONS Titin functions as a mechanosensor that regulates muscle trophicity.
Collapse
Affiliation(s)
- Robbert van der Pijl
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Joshua Strom
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Stefan Conijn
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Siegfried Labeit
- Department of Integrative PathophysiologyMedical Faculty MannheimMannheimGermany
- Myomedix GmbHNeckargemuendGermany
| | - Henk Granzier
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Coen Ottenheijm
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
35
|
Four and a half LIM domain protein signaling and cardiomyopathy. Biophys Rev 2018; 10:1073-1085. [PMID: 29926425 DOI: 10.1007/s12551-018-0434-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 01/10/2023] Open
Abstract
Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the "stressed" cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs' signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.
Collapse
|
36
|
Liss M, Radke MH, Eckhard J, Neuenschwander M, Dauksaite V, von Kries JP, Gotthardt M. Drug discovery with an RBM20 dependent titin splice reporter identifies cardenolides as lead structures to improve cardiac filling. PLoS One 2018; 13:e0198492. [PMID: 29889873 PMCID: PMC5995442 DOI: 10.1371/journal.pone.0198492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023] Open
Abstract
Diastolic dysfunction is increasingly prevalent in our ageing society and an important contributor to heart failure. The giant protein titin could serve as a therapeutic target, as its elastic properties are a main determinant of cardiac filling in diastole. This study aimed to develop a high throughput pharmacological screen to identify small molecules that affect titin isoform expression through differential inclusion of exons encoding the elastic PEVK domains. We used a dual luciferase splice reporter assay that builds on the titin splice factor RBM20 to screen ~34,000 small molecules and identified several compounds that inhibit the exclusion of PEVK exons. These compounds belong to the class of cardenolides and affect RBM20 dependent titin exon exclusion but did not affect RBFOX1 mediated splicing of FMNL3. We provide evidence that cardenolides do not bind to the RNA interacting domain of RBM20, but reduce RBM20 protein levels and alter transcription of select splicing factors that interact with RBM20. Cardenolides affect titin isoform expression. Understanding their mode of action and harnessing the splice effects through chemical modifications that suppress the effects on ion homeostasis and more selectively affect cardiac splicing has the potential to improve cardiac filling and thus help patients with diastolic heart failure, for which currently no targeted therapy exists.
Collapse
Affiliation(s)
- Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael H. Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jamina Eckhard
- Screening Unit, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Vita Dauksaite
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
37
|
Charton K, Suel L, Henriques SF, Moussu JP, Bovolenta M, Taillepierre M, Becker C, Lipson K, Richard I. Exploiting the CRISPR/Cas9 system to study alternative splicing in vivo: application to titin. Hum Mol Genet 2018; 25:4518-4532. [PMID: 28173117 DOI: 10.1093/hmg/ddw280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 11/12/2022] Open
Abstract
The giant protein titin is the third most abundant protein in striated muscle. Mutations in its gene are responsible for diseases affecting the cardiac and/or the skeletal muscle. Titin has been reported to be expressed in multiple isoforms with considerable variability in the I-band, ensuring the modulation of the passive mechanical properties of the sarcomere. In the M-line, only the penultimate Mex5 exon coding for the specific is7 domain has been reported to be subjected to alternative splicing. Using the CRISPR-Cas9 editing technology, we generated a mouse model where we stably prevent the expression of alternative spliced variant(s) carrying the corresponding domain. Interestingly, the suppression of the domain induces a phenotype mostly in tissues usually expressing the isoform that has been suppressed, indicating that it fulfills (a) specific function(s) in these tissues allowing a perfect adaptation of the M-line to physiological demands of different muscles.
Collapse
Affiliation(s)
- Karine Charton
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France
| | - Laurence Suel
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France
| | - Sara F Henriques
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France,University of Evry-Val-D’Essone, Evry, France
| | - Jean-Paul Moussu
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Matteo Bovolenta
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Miguel Taillepierre
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Céline Becker
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Karelia Lipson
- SEAT - SErvice des Animaux Transgéniques CNRS -TAAM -phenomin UPS44 Bâtiment G 7, rue Guy Môquet 94800 Villejuif, France
| | - Isabelle Richard
- INSERM, U951, INTEGRARE research unit Evry, France,Généthon, Evry, France
| |
Collapse
|
38
|
Affiliation(s)
- Wolfgang A. Linke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Göttingen, 37073 Göttingen, Germany
- Cardiac Mechanotransduction Group, Clinic for Cardiology and Pneumology, University Medical Center, 37073 Göttingen, Germany
| |
Collapse
|
39
|
Frank(ly), Star(t)ling: A structural protein contributes to changes in left ventricular performance with cardiomyopathies? J Thorac Cardiovasc Surg 2018; 156:215-216. [PMID: 29395195 DOI: 10.1016/j.jtcvs.2017.12.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/18/2017] [Indexed: 11/22/2022]
|
40
|
Pang SM, Le S, Yan J. Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol Cell 2017; 110:65-76. [DOI: 10.1111/boc.201700061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Si Ming Pang
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
| | - Shimin Le
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
- Department of Physics; National University of Singapore; 117542 Singapore
| | - Jie Yan
- Mechanobiology Institute; National University of Singapore; 117411 Singapore
- Department of Physics; National University of Singapore; 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; 117546 Singapore
| |
Collapse
|
41
|
Abstract
Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management.
Collapse
Affiliation(s)
- Elizabeth M McNally
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| | - Luisa Mestroni
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| |
Collapse
|
42
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
43
|
Zhang C, Zhang H, Wu G, Luo X, Zhang C, Zou Y, Wang H, Hui R, Wang J, Song L. Titin-Truncating Variants Increase the Risk of Cardiovascular Death in Patients With Hypertrophic Cardiomyopathy. Can J Cardiol 2017; 33:1292-1297. [PMID: 28822653 DOI: 10.1016/j.cjca.2017.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Titin-truncating variants (TTNtv) have been detected in a variety of cardiomyopathies and represent the most common cause of dilated cardiomyopathy. However, their significance in hypertrophic cardiomyopathy (HCM) is still unclear. METHODS The titin gene (TTN) was sequenced for truncating variants in a cohort of 529 Chinese patients with HCM and 307 healthy controls. Baseline and follow-up clinical data (for 4.7 ± 3.2 years) from these patients were obtained. RESULTS We identified 13 and 8 TTNtv in patients with HCM (13 of 529 [2.5%]) and controls (8 of 307 [2.6%]), respectively. The prevalence of TTNtv in patients with HCM and in healthy controls was comparable (P = 0.895). There were no significant differences in baseline characteristics between patients with and those without TTNtv. However, during follow-up, patients with TTNtv (3 of 13 [23.1%]) were more likely to experience cardiovascular death compared with those without TTNtv (39 of 516 [7.6%]) [adjusted hazard ratio, 6.88; 95% confidence interval, 2.04-23.20; P = 0.002). CONCLUSIONS Our study suggests that TTNtv might be a genetic modifier of HCM and confer an increased risk for cardiovascular death.
Collapse
Affiliation(s)
- Ce Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongju Zhang
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota, USA; Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Guixin Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Channa Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubao Zou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
44
|
Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophys Rev 2017; 9:207-223. [PMID: 28510119 PMCID: PMC5498329 DOI: 10.1007/s12551-017-0265-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome defined by the inability of the heart to pump enough blood to meet the body's metabolic demands. Major causes of HF are cardiomyopathies (diseases of the myocardium associated with mechanical and/or electrical dysfunction), among which the most common form is dilated cardiomyopathy (DCM). DCM is defined by ventricular chamber enlargement and systolic dysfunction with normal left ventricular wall thickness, which leads to progressive HF. Over 60 genes are linked to the etiology of DCM. Titin (TTN) is the largest known protein in biology, spanning half the cardiac sarcomere and, as such, is a basic structural and functional unit of striated muscles. It is essential for heart development as well as mechanical and regulatory functions of the sarcomere. Next-generation sequencing (NGS) in clinical DCM cohorts implicated truncating variants in titin (TTNtv) as major disease alleles, accounting for more than 25% of familial DCM cases, but these variants have also been identified in 2-3% of the general population, where these TTNtv blur diagnostic and clinical utility. Taking into account the published TTNtv and their association to DCM, it becomes clear that TTNtv harm the heart with position-dependent occurrence, being more harmful when present in the A-band TTN, presumably with dominant negative/gain-of-function mechanisms. However, these insights are challenged by the depiction of position-independent toxicity of TTNtv acting via haploinsufficient alleles, which are sufficient to induce cardiac pathology upon stress. In the current review, we provide an overview of TTN and discuss studies investigating various TTN mutations. We also present an overview of different mechanisms postulated or experimentally validated in the pathogenicity of TTNtv. DCM-causing genes are also discussed with respect to non-truncating mutations in the etiology of DCM. One way of understanding pathogenic variants is probably to understand the context in which they may or may not affect protein-protein interactions, changes in cell signaling, and substrate specificity. In this regard, we also provide a brief overview of TTN interactions in situ. Quantitative models in the risk assessment of TTNtv are also discussed. In summary, we highlight the importance of gene-environment interactions in the etiology of DCM and further mechanistic studies used to delineate the pathways which could be targeted in the management of DCM.
Collapse
|
45
|
Hanashima A, Hashimoto K, Ujihara Y, Honda T, Yobimoto T, Kodama A, Mohri S. Complete primary structure of the I-band region of connectin at which mechanical property is modulated in zebrafish heart and skeletal muscle. Gene 2017; 596:19-26. [PMID: 27725266 DOI: 10.1016/j.gene.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Connectin, also called titin, is the largest protein with a critical function as a molecular spring during contraction and relaxation of striated muscle; its mutation leads to severe myopathy and cardiomyopathy. To uncover the cause of this pathogenesis, zebrafish have recently been used as disease models because they are easier to genetically modify than mice. Although the gene structures and putative primary structures of zebrafish connectin have been determined, the actual primary structures of zebrafish connectin in heart and skeletal muscles remain unclear because of its large size and the PCR amplification-associated difficulties. In this research, using RT-PCR amplification from zebrafish heart and skeletal muscles, we determined the complete primary structures of zebrafish connectin in the I-band region at which mechanical property is modulated by alternative splicing. Our results showed that the domain structures of zebrafish connectins were largely similar to those of human connectins; however, the splicing pathways in the middle-Ig segment and the PEVK segment were highly diverse in every isoform. We also found that a set of 10 Ig domains in the middle-Ig segment of zebrafish connectin had been triplicated in human connectin. Because these triplicate regions are expressed in human leg and diaphragm, our findings may provide insight into the establishment of walking with limbs and lung respiration during tetrapod evolution.
Collapse
Affiliation(s)
- Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | - Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yoshihiro Ujihara
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Takeshi Honda
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Tomoko Yobimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
46
|
Hinze F, Dieterich C, Radke MH, Granzier H, Gotthardt M. Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy. J Mol Med (Berl) 2016; 94:1349-1358. [PMID: 27889803 PMCID: PMC5143357 DOI: 10.1007/s00109-016-1483-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/09/2016] [Accepted: 11/01/2016] [Indexed: 01/14/2023]
Abstract
Abstract Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin’s elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target. We adjusted RBM20-dependent cardiac isoform expression in the titin N2B knockout mouse with increased ventricular stiffness. A ~50 % reduction of RBM20 activity does not only maintain cardiac filling in diastole but also ameliorates cardiac atrophy and thus improves cardiac function in the N2B-deficient heart. Reduced RBM20 activity partially normalized gene expression related to muscle development and fatty acid metabolism. The adaptation of cardiac growth was related to hypertrophy signaling via four-and-a-half lim-domain proteins (FHLs) that translate mechanical input into hypertrophy signals. We provide a novel link between cardiac isoform expression and trophic signaling via FHLs and suggest cardiac splicing as a therapeutic target in diastolic dysfunction. Key message Increasing the length of titin isoforms improves ventricular filling in heart disease. FHL proteins are regulated via RBM20 and adapt cardiac growth. RBM20 is a therapeutic target in diastolic dysfunction.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1483-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Hinze
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology and Department of Cardiology, Angiology, and Pneumology, Heidelberg University, Analysezentrum III, INF 669, 69120, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Heidelberg, Germany
| | - Michael H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Arizona Health Sciences Center, 1501 N. Campbell, PO Box 245051, Tucson, AZ, 85724, USA
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
47
|
Tiffany H, Sonkar K, Gage MJ. The insertion sequence of the N2A region of titin exists in an extended structure with helical characteristics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:1-10. [PMID: 27742555 DOI: 10.1016/j.bbapap.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
The giant sarcomere protein titin is the third filament in muscle and is integral to maintaining sarcomere integrity as well as contributing to both active and passive tension. Titin is a multi-domain protein that contains regions of repeated structural elements. The N2A region sits at the boundary between the proximal Ig region of titin that is extended under low force and the PEVK region that is extended under high force. Multiple binding interactions have been associated with the N2A region and it has been proposed that this region acts as a mechanical stretch sensor. The focus of this work is a 117 amino acid portion of the N2A region (N2A-IS), which resides between the proximal Ig domains and the PEVK region. Our work has shown that the N2A-IS region is predicted to contain helical structure in the center while both termini are predicted to be disordered. Recombinantly expressed N2A-IS protein contains 13% α-helical structure, as measured via circular dichroism. Additional α-helical structure can be induced with 2,2,2-trifluoroethanol, suggesting that there is transient helical structure that might be stabilized in the context of the entire N2A region. The N2A-IS region does not exhibit any cooperativity in either thermal or chemical denaturation studies while size exclusion chromatography and Fluorescence Resonance Energy Transfer demonstrates that the N2A-IS region has an extended structure. Combined, these results lead to a model of the N2A-IS region having a helical core with extended N- and C-termini.
Collapse
Affiliation(s)
- Holly Tiffany
- Department of Biology, Northern Arizona University, Flagstaff, AZ, United States
| | - Kanchan Sonkar
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew J Gage
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States; Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, United States; Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, United States.
| |
Collapse
|
48
|
Methawasin M, Strom JG, Slater RE, Fernandez V, Saripalli C, Granzier H. Experimentally Increasing the Compliance of Titin Through RNA Binding Motif-20 (RBM20) Inhibition Improves Diastolic Function In a Mouse Model of Heart Failure With Preserved Ejection Fraction. Circulation 2016; 134:1085-1099. [PMID: 27630136 DOI: 10.1161/circulationaha.116.023003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Left ventricular (LV) stiffening contributes to heart failure with preserved ejection fraction (HFpEF), a syndrome with no effective treatment options. Increasing the compliance of titin in the heart has become possible recently through inhibition of the splicing factor RNA binding motif-20. Here, we investigated the effects of increasing the compliance of titin in mice with diastolic dysfunction. METHODS Mice in which the RNA recognition motif (RRM) of one of the RNA binding motif-20 alleles was floxed and that expressed the MerCreMer transgene under control of the αMHC promoter (referred to as cRbm20ΔRRM mice) were used. Mice underwent transverse aortic constriction (TAC) surgery and deoxycorticosterone acetate (DOCA) pellet implantation. RRM deletion in adult mice was triggered by injecting raloxifene (cRbm20ΔRRM-raloxifene), with dimethyl sulfoxide (DMSO)-injected mice (cRbm20ΔRRM-DMSO) as the control. Diastolic function was investigated with echocardiography and pressure-volume analysis; passive stiffness was studied in LV muscle strips and isolated cardiac myocytes before and after elimination of titin-based stiffness. Treadmill exercise performance was also studied. Titin isoform expression was evaluated with agarose gels. RESULTS cRbm20ΔRRM-raloxifene mice expressed large titins in the hearts, called supercompliant titin (N2BAsc), which, within 3 weeks after raloxifene injection, made up ≈45% of total titin. TAC/DOCA cRbm20ΔRRM-DMSO mice developed LV hypertrophy and a marked increase in LV chamber stiffness as shown by both pressure-volume analysis and echocardiography. LV chamber stiffness was normalized in TAC/DOCA cRbm20ΔRRM-raloxifene mice that expressed N2BAsc. Passive stiffness measurements on muscle strips isolated from the LV free wall revealed that extracellular matrix stiffness was equally increased in both groups of TAC/DOCA mice (cRbm20ΔRRM-DMSO and cRbm20ΔRRM-raloxifene). However, titin-based muscle stiffness was reduced in the mice that expressed N2BAsc (TAC/DOCAcRbm20ΔRRM-raloxifene). Exercise testing demonstrated significant improvement in exercise tolerance in TAC/DOCA mice that expressed N2BAsc. CONCLUSIONS Inhibition of the RNA binding motif-20-based titin splicing system upregulates compliant titins, which improves diastolic function and exercise tolerance in the TAC/DOCA model. Titin holds promise as a therapeutic target for heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Mei Methawasin
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Joshua G Strom
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Rebecca E Slater
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Vanessa Fernandez
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Chandra Saripalli
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Henk Granzier
- From Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson.
| |
Collapse
|
49
|
Bull M, Methawasin M, Strom J, Nair P, Hutchinson K, Granzier H. Alternative Splicing of Titin Restores Diastolic Function in an HFpEF-Like Genetic Murine Model (TtnΔIAjxn). Circ Res 2016; 119:764-72. [PMID: 27470639 DOI: 10.1161/circresaha.116.308904] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Patients with heart failure with preserved ejection fraction (HFpEF) experience elevated filling pressures and reduced ventricular compliance. The splicing factor RNA-binding motif 20 (RBM20) regulates the contour length of titin's spring region and thereby determines the passive stiffness of cardiomyocytes. Inhibition of RBM20 leads to super compliant titin isoforms (N2BAsc) that reduce passive stiffness. OBJECTIVE To determine the therapeutic potential of upregulating compliant titin isoforms in an HFpEF-like state in the mouse. METHODS AND RESULTS Constitutive and inducible cardiomyocyte-specific RBM20-inhibited mice were produced on a Ttn(ΔIAjxn) background to assess the effect of upregulating compliant titin at the cellular and organ levels. Genetic deletion of the I-band-A-band junction (IAjxn) in titin increases strain on the spring region and causes a HFpEF-like syndrome in the mouse without pharmacological or surgical intervention. The increased strain represents a mechanical analog of deranged post-translational modification of titin that results in increased passive myocardial stiffness in patients with HFpEF. On inhibition of RBM20 in Ttn(ΔIAjxn) mice, compliant titin isoforms were expressed, diastolic function was normalized, exercise performance was improved, and pathological hypertrophy was attenuated. CONCLUSIONS We report for the first time a benefit from upregulating compliant titin isoforms in a murine model with HFpEF-like symptoms. Constitutive and inducible RBM20 inhibition improves diastolic function resulting in greater tolerance to exercise. No effective therapies exists for treating this pervasive syndrome; therefore, our data on RBM20 inhibition are clinically significant.
Collapse
Affiliation(s)
- Mathew Bull
- From the Department of Cellular and Molecular Medicine (M.B., M.M., J.S., P.N., K.H., H.G.) and Sarver Molecular Cardiovascular Research Program (M.B., M.M., J.S., P.N., K.H., H.G.), University of Arizona, Tucson
| | - Mei Methawasin
- From the Department of Cellular and Molecular Medicine (M.B., M.M., J.S., P.N., K.H., H.G.) and Sarver Molecular Cardiovascular Research Program (M.B., M.M., J.S., P.N., K.H., H.G.), University of Arizona, Tucson
| | - Joshua Strom
- From the Department of Cellular and Molecular Medicine (M.B., M.M., J.S., P.N., K.H., H.G.) and Sarver Molecular Cardiovascular Research Program (M.B., M.M., J.S., P.N., K.H., H.G.), University of Arizona, Tucson
| | - Pooja Nair
- From the Department of Cellular and Molecular Medicine (M.B., M.M., J.S., P.N., K.H., H.G.) and Sarver Molecular Cardiovascular Research Program (M.B., M.M., J.S., P.N., K.H., H.G.), University of Arizona, Tucson
| | - Kirk Hutchinson
- From the Department of Cellular and Molecular Medicine (M.B., M.M., J.S., P.N., K.H., H.G.) and Sarver Molecular Cardiovascular Research Program (M.B., M.M., J.S., P.N., K.H., H.G.), University of Arizona, Tucson
| | - Henk Granzier
- From the Department of Cellular and Molecular Medicine (M.B., M.M., J.S., P.N., K.H., H.G.) and Sarver Molecular Cardiovascular Research Program (M.B., M.M., J.S., P.N., K.H., H.G.), University of Arizona, Tucson.
| |
Collapse
|
50
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|