1
|
Zheng F, Ye C, Ge R, Wang Y, Tian XL, Chen Q, Li YH, Zhu GQ, Zhou B. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci 2023; 330:122023. [PMID: 37579834 DOI: 10.1016/j.lfs.2023.122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Enhanced proliferation and migration of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling in hypertension. Adventitial fibroblasts (AFs)-derived extracellular vesicles (EVs) modulate vascular remodeling in spontaneously hypertensive rat (SHR). This study shows the important roles of EVs-mediated miR-21-3p transfer in VSMC proliferation and migration and underlying mechanisms in SHR. AFs and VSMCs were obtained from aorta of Wistar-Kyoto rat (WKY) and SHR. EVs were separated from AFs culture with ultracentrifugation method. MiR-21-3p content in the EVs of SHR was increased compared with those of WKY. MiR-21-3p mimic promoted VSMC proliferation and migration of WKY and SHR, while miR-21-3p inhibitor attenuated proliferation and migration only in the VSMCs of SHR. EVs of SHR stimulated VSMC proliferation and migration, which were attenuated by miR-21-3p inhibitor. Sorbin and SH3 domain containing 2 (SORBS2) mRNA and protein levels were reduced in the VSMCs of SHR. MiR-21-3p mimic inhibited, while miR-21-3p inhibitor promoted SORBS2 expressions in the VSMCs of both WKY and SHR. EVs of SHR reduced SORBS2 expression, which was prevented by miR-21-3p inhibitor. EVs of WKY had no significant effect on SORBS2 expressions. SORBS2 overexpression attenuated the roles of miR-21-3p mimic and EVs of SHR in promoting VSMC proliferation and migration of SHR. Overexpression of miR-21-3p in vivo promotes vascular remodeling and hypertension. These results indicate that miR-21-3p in the EVs of SHR promotes VSMC proliferation and migration via negatively regulating SORBS2 expression.
Collapse
Affiliation(s)
- Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rui Ge
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Wang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiao-Lei Tian
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
2
|
Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:12029. [PMID: 34769460 PMCID: PMC8584625 DOI: 10.3390/ijms222112029] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| |
Collapse
|
3
|
Xu Q, Li T, Chen H, Kong J, Zhang L, Yin H. Design and optimisation of a small-molecule TLR2/4 antagonist for anti-tumour therapy. RSC Med Chem 2021; 12:1771-1779. [PMID: 34778778 PMCID: PMC8528216 DOI: 10.1039/d1md00175b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
In anti-tumour therapy, the toll-like receptor 2/4 (TLR2/4) signalling pathway has been a double-edged sword. TLR2/4 agonists are commonly considered adjuvants for immune stimulation, whereas TLR2/4 antagonists demonstrate more feasibility for anti-tumour therapy under specific chronic inflammatory situations. In individuals with cancer retaliatory proliferation and metastasis after surgery, blocking the TLR2/4 signalling pathway may produce favourable prognosis for patients. Therefore, here, we developed a small-molecule co-inhibitor that targets the TLR2/4 signalling pathway. After high-throughput screening of a compound library containing 14 400 small molecules, followed by hit-to-lead structural optimisation, we finally obtained the compound TX-33, which has effective inhibitory properties against the TLR2/4 signalling pathways. This compound was found to significantly inhibit multiple pro-inflammatory cytokines released by RAW264.7 cells. This was followed by TX-33 demonstrating promising efficacy in subsequent anti-tumour experiments. The current results provide a novel understanding of the role of TLR2/4 in cancer and a novel strategy for anti-tumour therapy.
Collapse
Affiliation(s)
- Qun Xu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Hekai Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Jun Kong
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Hang Yin
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Beijing 100084 China
| |
Collapse
|
4
|
Extracellular vesicle-mediated miR135a-5p transfer in hypertensive rat contributes to vascular smooth muscle cell proliferation via targeting FNDC5. Vascul Pharmacol 2021; 140:106864. [PMID: 33865997 DOI: 10.1016/j.vph.2021.106864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Background Extracellular vesicles (EVs) from vascular adventitial fibroblasts (AFs) contribute to the proliferation of vascular smooth muscle cells (VSMCs) and vascular remodeling in spontaneously hypertensive rat (SHR). This study shows the crucial roles of EVs-mediated miR135a-5p transfer in VSMC proliferation and the underlying mechanisms in hypertension. Methods AFs and VSMCs were obtained from the aorta of Wistar-Kyoto rat (WKY) and SHR. EVs were isolated from the culture of AFs with ultracentrifugation method. Results MiR135a-5p level in SHR-EVs was significantly increased. MiR135a-5p inhibitor prevented the SHR-EVs-induced VSMC proliferation. Fibronectin type III domain containing 5 (FNDC5) was a target gene of miR135a-5p. FNDC5 level was lower in VSMCs of SHR. MiR135a-5p inhibitor not only increased FNDC5 expression, but reversed the SHR-EVs-induced FNDC5 downregulation in VSMCs of SHR. MiR135a-5p mimic inhibited FNDC5 expression, but failed to promote the SHR-EVs-induced FNDC5 downregulation in VSMCs of SHR. Exogenous FNDC5 prevented the SHR-EVs-induced VSMC proliferation of both WKY and SHR. Knockdown of miR135a-5p in fibroblasts completely prevented the upregulation of miR135a-5p in the EVs. The SHR-EVs from the miR135a-5p knockdown-treated fibroblasts lost their roles in inhibiting FNDC5 expression and promoting proliferation in VSMCs of both WKY and SHR. Conclusions Increased miR135a-5p in the SHR-EVs promoted VSMC proliferation of WKY and SHR via inhibiting FNDC5 expression. MiR135a-5p and FNDC5 are crucial targets for intervention of VSMC proliferation in hypertension.
Collapse
|
5
|
Li W, Su SA, Chen J, Ma H, Xiang M. Emerging roles of fibroblasts in cardiovascular calcification. J Cell Mol Med 2020; 25:1808-1816. [PMID: 33369201 PMCID: PMC7882970 DOI: 10.1111/jcmm.16150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular calcification, a kind of ectopic mineralization in cardiovascular system, including atherosclerotic calcification, arterial medial calcification, valve calcification and the gradually recognized heart muscle calcification, is a complex pathophysiological process correlated with poor prognosis. Although several cell types such as smooth muscle cells have been proven critical in vascular calcification, the aetiology of cardiovascular calcification remains to be clarified due to the diversity of cellular origin. Fibroblasts, which possess remarkable phenotypic plasticity that allows rapid adaption to fluctuating environment cues, have been demonstrated to play important roles in calcification of vasculature, valve and heart though our knowledge of the mechanisms controlling fibroblast phenotypic switching in the calcified process is far from complete. Indeed, the lack of definitive fibroblast lineage‐tracing studies and typical expression markers of fibroblasts raise major concerns regarding the contributions of fibroblasts during all the stages of cardiovascular calcification. The goal of this review was to rigorously summarize the current knowledge regarding possible phenotypes exhibited by fibroblasts within calcified cardiovascular system and evaluate the potential therapeutic targets that may control the phenotypic transition of fibroblasts in cardiovascular calcification.
Collapse
Affiliation(s)
- Wudi Li
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-An Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Pansani TN, Basso FG, de Souza Costa CA. In vitro effects of photobiomodulation applied to gingival fibroblasts cultured on titanium and zirconia surfaces and exposed to LPS from Escherichia coli. Lasers Med Sci 2020; 35:2031-2038. [PMID: 32533469 DOI: 10.1007/s10103-020-03062-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/04/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM) therapy is used to stimulate cell proliferation and metabolism, as well as reduce inflammatory cytokine synthesis, which plays a main role in the long-term stability of implants. This study assessed the response of gingival fibroblasts cultured on titanium (Ti) and zirconia (ZrO2), submitted to PBM and exposed to lipopolysaccharide (LPS). Cells seeded on Ti and ZrO2 were irradiated (InGaAsP; 780 nm, 25 mW) 3 times, using 0.5, 1.5, and 3.0 J/cm2 doses, and exposed to Escherichia coli LPS (1 μg/mL). After 24 h, cell viability (alamarBlue, n = 8), interleukin 6 (IL-6) and 8 (IL-8) synthesis (ELISA, n = 6), and IL-6 and vascular endothelial growth factor (VEGF) gene expression (qPCR, n = 5) were assessed and statistically analyzed (one-way ANOVA, α = 0.05). Cell morphology was evaluated by fluorescence microscopy. Increased cell viability occurred in all groups cultured on Ti compared with that of the control, except for cells exposed to LPS. Fibroblasts cultured on ZrO2 and LPS-exposed exhibited reduced viability. PBM at 3.0 J/cm2 and 1.5 J/cm2 downregulated the IL-6 synthesis by fibroblasts seeded on Ti and ZrO2, as well as IL-8 synthesis by cells seeded on ZrO2. Fibroblasts seeded on both surfaces and LPS-exposed showed increased IL-6 gene expression; however, this activity was downregulated when fibroblasts were irradiated at 3.0 J/cm2. Enhanced VEGF gene expression by cells seeded on Ti and laser-irradiated (3.0 J/cm2). Distinct patterns of cytoskeleton occurred in laser-irradiated cells exposed to LPS. Specific parameters of PBM can biomodulate the inflammatory response of fibroblasts seeded on Ti or ZrO2 and exposed to LPS.
Collapse
Affiliation(s)
- Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, UNESP-Univ. Estadual Paulista, Araraquara, SP, Brazil
| | | | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, UNESP-Univ. Estadual Paulista, Humaita, 1680. Centro, Araraquara, SP, 14801-903, Brazil.
| |
Collapse
|
7
|
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res Ther 2020; 11:216. [PMID: 32503682 PMCID: PMC7275513 DOI: 10.1186/s13287-020-01728-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive vascular inflammation characterized by lipid deposition and plaque formation, for which vascular cell dysfunction and impaired immune responses are involved. Up to now, lipid-lowering drugs remain the main therapy for treating atherosclerosis; however, the surgical or interventional therapy is often applied, and yet, morbidity and mortality of such cardiovascular disease remain high worldwide. Over the past decades, an anti-inflammatory approach has become an important therapeutic target for dealing with atherosclerosis, as altered immune responses have been regarded as an essential player in the pathological process of vascular abnormality induced by hyperlipidemia. Interestingly, mesenchymal stem cells, one type of stem cells with the capabilities of self-renewal and multi-potential, have demonstrated their unique immunomodulatory function in the various pathological process, especially in atherosclerosis. While some controversies remain regarding their therapeutic efficacy and working mechanisms, our present review aims to summarize the current research progress on stem cell-based therapy, focusing on its immunomodulatory effects on the pathogenesis of atherosclerosis and how endothelial cells, smooth muscle cells, and other immune cells are regulated by MSC-based therapy.
Collapse
Affiliation(s)
- Ying Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.,Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
8
|
Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, Wang JJ, Han Y, Zhou YB, Zhang F, Sun HJ, Gao XY, Chen Q, Li YH, Kang YM, Zhu GQ. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 2019; 9:1698795. [PMID: 31839907 PMCID: PMC6896498 DOI: 10.1080/20013078.2019.1698795] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) plays crucial roles in vascular remodelling and stiffening in hypertension. Vascular adventitial fibroblasts are a key regulator of vascular wall function and structure. This study is designed to investigate the roles of adventitial fibroblasts-derived extracellular vesicles (EVs) in VSMC proliferation and vascular remodelling in normotensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR), an animal model of human essential hypertension. EVs were isolated from aortic adventitial fibroblasts of WKY (WKY-EVs) and SHR (SHR-EVs). Compared with WKY-EVs, miR155-5p content was reduced, while angiotensin-converting enzyme (ACE) content was increased in SHR-EVs. WKY-EVs inhibited VSMC proliferation of SHR, which was prevented by miR155-5p inhibitor. SHR-EVs promoted VSMC proliferation of both strains, which was enhanced by miR155-5p inhibitor, but abolished by captopril or losartan. Dual luciferase reporter assay showed that ACE was a target gene of miR155-5p. MiR155-5p mimic or overexpression inhibited VSMC proliferation and ACE upregulation of SHR. WKY-EVs reduced ACE mRNA and protein expressions while SHR-EVs only increased ACE protein level in VSMCs of both strains. However, the SHR-EVs-derived from the ACE knockdown-treated adventitial fibroblasts lost the roles in promoting VSMC proliferation and ACE upregulation. Systemic miR155-5p overexpression reduced vascular ACE, angiotensin II and proliferating cell nuclear antigen levels, and attenuated hypertension and vascular remodelling in SHR. Repetitive intravenous injection of SHR-EVs increased blood pressure and vascular ACE contents, and promoted vascular remodelling in both strains, while WKY-EVs reduced vascular ACE contents and attenuated hypertension and vascular remodelling in SHR. We concluded that WKY-EVs-mediated miR155-5p transfer attenuates VSMC proliferation and vascular remodelling in SHR via suppressing ACE expression, while SHR-EVs-mediated ACE transfer promotes VSMC proliferation and vascular remodelling.
Collapse
Affiliation(s)
- Xing-Sheng Ren
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Qiu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Jian Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Ya Gao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Benz K, Schöbel A, Dietz M, Maurer P, Jackowski J. Adhesion Behaviour of Primary Human Osteoblasts and Fibroblasts on Polyether Ether Ketone Compared with Titanium under In Vitro Lipopolysaccharide Incubation. MATERIALS 2019; 12:ma12172739. [PMID: 31461861 PMCID: PMC6747843 DOI: 10.3390/ma12172739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
The aim of this in vitro pilot study was to analyse the adhesion behaviour of human osteoblasts and fibroblasts on polyether ether ketone (PEEK) when compared with titanium surfaces in an inflammatory environment under lipopolysaccharide (LPS) incubation. Scanning electron microscopy (SEM) images of primary human osteoblasts/fibroblasts on titanium/PEEK samples were created. The gene expression of the LPS-binding protein (LBP) and the LPS receptor (toll-like receptor 4; TLR4) was measured by real-time polymerase chain reaction (PCR). Immunocytochemistry was used to obtain evidence for the distribution of LBP/TLR4 at the protein level of the extra-cellular-matrix-binding protein vinculin and the actin cytoskeleton. SEM images revealed that the osteoblasts and fibroblasts on the PEEK surfaces had adhesion characteristics comparable to those of titanium. The osteoblasts contracted under LPS incubation and a significantly increased LBP gene expression were detected. This was discernible at the protein level on all the materials. Whereas no increase of TLR4 was detected with regard to mRNA concentrations, a considerable increase in the antibody reaction was detected on all the materials. As is the case with titanium, the colonisation of human osteoblasts and fibroblasts on PEEK samples is possible under pro-inflammatory environmental conditions and the cellular inflammation behaviour towards PEEK is lower than that of titanium.
Collapse
Affiliation(s)
- Korbinian Benz
- Department of Oral Surgery and Dental Emergency Care, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany.
| | - Andreas Schöbel
- Department of Oral Surgery and Dental Emergency Care, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Marisa Dietz
- Department of Oral and Maxillofacial Surgery, Hospital North Dortmund, 44145 Dortmund, Germany
| | - Peter Maurer
- Private Practice Clinic for Oral Surgery, 66606 St. Wendel, Germany
| | - Jochen Jackowski
- Department of Oral Surgery and Dental Emergency Care, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| |
Collapse
|
10
|
Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J Hypertens 2019; 36:1104-1114. [PMID: 29303830 DOI: 10.1097/hjh.0000000000001654] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Phenotypic transformation of adventitial fibroblasts is important in the pathogenesis of hypertension. This study was designed to determine whether fibronectin type III domain containing 5 (FNDC5) alleviates the phenotypic transformation of adventitial fibroblasts in hypertension and the underlying mechanisms. METHODS AND RESULTS Experiments were carried out in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) and primary aortic adventitial fibroblasts. FNDC5 was downregulated and NLRP3 inflammasome was activated in aortic adventitia of SHR. FNDC5 overexpression attenuated adventitial fibroblasts phenotypic transformation, excessive synthesis and secretion of matrix components, NLRP3 inflammasome activation and inflammation in adventitial fibroblasts from SHR. Moreover, FNDC5 overexpression reduced NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production in adventitial fibroblasts from SHR. Similarly, exogenous FNDC5 inhibited adventitial fibroblasts phenotypic transformation, expression of matrix components, NLRP3 inflammasome activation and NOX2 expression in adventitial fibroblasts from SHR. FNDC5 overexpression in rats attenuated phenotypic transformation, inflammation and reactive oxygen species (ROS) production in the aortic adventitia of SHR. Furthermore, FNDC5 overexpression reduced blood pressure and alleviated vascular remodeling in SHR. CONCLUSION FNDC5 reduces NOX2-derived ROS production, NLRP3 inflammasome activation and phenotypic transformation in adventitial fibroblasts of SHR. FNDC5 plays a beneficial role in attenuating vascular inflammation, vascular remodeling and hypertension in SHR.
Collapse
|
11
|
Hu Z, Chen Z, Wang Y, Jiang J, Tse G, Xu W, Ge J, Sun B. Effects of granulocyte colony‑stimulating factor on rabbit carotid and porcine heart models of chronic obliterative arterial disease. Mol Med Rep 2019; 19:4569-4578. [PMID: 30942413 PMCID: PMC6522810 DOI: 10.3892/mmr.2019.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 03/01/2019] [Indexed: 11/16/2022] Open
Abstract
Previous studies suggest that granulocyte colony‑stimulating factor (G‑CSF) can promote bone marrow derived progenitor cells to mediate cardiovascular repair, potentially reversing mechanical dysfunction in chronic ischaemic heart disease and post myocardial infarction. Two models were used in the present study both using a surgical ameroid constrictor to induce arterial stenosis. The first model used the carotid artery of rabbits. They were divided into high fat diet (inducing atherosclerosis) or normal fat diet (control) groups. Each was subdivided into surgical exposure group without constrictor, ameroid constrictor receiving normal saline or receiving G‑CSF 15 µg/kg/day. Endothelial markers of endothelial nitric oxide synthase and endothelin 1 were increased by the use of ameroid constrictor in both atherosclerotic and non‑atherosclerotic mice, however were not further altered by G‑CSF. Scanning electron microscopy indicated that ameroid constrictor application altered endothelial morphology from an oval shape to a round shape and this was more prominent in the atherosclerotic compared with the non‑atherosclerotic group. G‑CSF injection increased the number of endothelial cells in all groups. The second model used the left coronary artery of pigs. They were equally divided into following groups, receiving normal saline (control), G‑CSF 2.5 µg/kg/day (low dose), 5 µg/kg/day (medium dose) and 10 µg/kg/day (high dose) for 5 days. G‑CSF at a low or high dose worsened intimal hyperplasia however at a medium dose improved it. In conclusion, G‑CSF had no effect in a rabbit carotid artery model of atherosclerosis. Its effects on the porcine heart were dose‑dependent; arterial disease worsened at a low or high dose, but improved at a medium dose.
Collapse
Affiliation(s)
- Zhaohui Hu
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Zhisong Chen
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Yiping Wang
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Jinfa Jiang
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Wenjun Xu
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Bing Sun
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
12
|
Yu L, Qu H, Yu Y, Li W, Zhao Y, Qiu G. LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells. J Cell Mol Med 2018; 22:6134-6147. [PMID: 30338912 PMCID: PMC6237555 DOI: 10.1111/jcmm.13892] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to explore the differential expression of long noncoding RNAs (lncRNA)‐PCAT1, miR‐145‐5p and TLR4 in osteogenic differentiation via the Toll‐like receptor (TLR) signalling pathway and consequently determine the potential molecular mechanism. The mRNAs and pathways related to the osteogenic differentiation in human adipose‐derived stem cells (hADSCs) were analysed by bioinformatics. The MiRanda and TargetScan database were employed to detect the potential binding sites of miRNAs on lncRNAs and mRNAs. The differential expression of lncRNA‐PCAT1, miR‐145‐5p and TLR4 were detected by qRT‐PCR. Rrelated protein expression was analysed by Western blot. The targeted relationships between lncRNA‐PCAT1, miR‐145‐5p and TLR4 were verified by dual‐luciferase reporter assay. Alkaline phosphatase (ALP) activity and ARS staining assays were used to measure the impacts exerted by lncRNA PCAT1, miR‐145‐5p and TLR4 mRNA on osteogenic differentiation. After the induction of osteoblast differentiation, the expression of lncRNA‐PCAT1 and TLR4 increased, while the expression of miR‐145‐5p decreased. Dual‐luciferase reporter assay confirmed the targeted relationship between lncRNA‐PCAT1, miR‐145‐5p, and TLR4. LncRNA‐PCAT1 negatively regulated miR‐145‐5p and positively regulated TLR4. Knockdown of lncRNA‐PCAT1 or TLR4 decreased the expression of osteogenic differentiation‐related proteins, reduced the ALP and ARS levels and the activity of the TLR signalling pathway. MiR‐145‐5p could reverse the effects of PCAT1 and TLR4 in hADSCs osteogenic differentiation. LncRNA‐PCAT1 negatively regulated miR‐145‐5p, which promoted TLR4 expression to promote osteogenic differentiation by activating the TLR signalling pathway.
Collapse
Affiliation(s)
- Lingjia Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Hao Qu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Yifeng Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical Medical College of Peking University, Xicheng District, Beijing, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| |
Collapse
|
13
|
Nunes KP, Bomfim GF, Toque HA, Szasz T, Clinton Webb R. Toll-like receptor 4 (TLR4) impairs nitric oxide contributing to Angiotensin II-induced cavernosal dysfunction. Life Sci 2017; 191:219-226. [DOI: 10.1016/j.lfs.2017.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
14
|
Ohkura SI, Usui S, Takashima SI, Takuwa N, Yoshioka K, Okamoto Y, Inagaki Y, Sugimoto N, Kitano T, Takamura M, Wada T, Kaneko S, Takuwa Y. Augmented sphingosine 1 phosphate receptor-1 signaling in cardiac fibroblasts induces cardiac hypertrophy and fibrosis through angiotensin II and interleukin-6. PLoS One 2017; 12:e0182329. [PMID: 28771545 PMCID: PMC5542600 DOI: 10.1371/journal.pone.0182329] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Cardiac fibroblasts, together with cardiomyocytes, occupy the majority of cells in the myocardium and are involved in myocardial remodeling. The lysophospholipid mediator sphigosine-1-phosphate (S1P) regulates functions of cardiovascular cells through multiple receptors including S1PR1–S1PR3. S1PR1 but not other S1P receptors was upregulated in angiotensin II-induced hypertrophic hearts. Therefore, we investigated a role of S1PR1 in fibroblasts for cardiac remodeling by employing transgenic mice that overexpressed S1PR1 under the control of α-smooth muscle actin promoter. In S1PR1-transgenic mouse heart, fibroblasts and/or myofibroblasts were hyperplastic, and those cells as well as vascular smooth muscle cells overexpressed S1PR1. Transgenic mice developed bi-ventricular hypertrophy by 12-week-old and diffuse interstitial fibrosis by 24-week-old without hemodynamic stress. Cardiac remodeling in transgenic mice was associated with greater ERK phosphorylation, upregulation of fetal genes, and systolic dysfunction. Transgenic mouse heart showed increased mRNA expression of angiotensin-converting enzyme and interleukin-6 (IL-6). Isolated fibroblasts from transgenic mice exhibited enhanced generation of angiotensin II, which in turn stimulated IL-6 release. Either an AT1 blocker or angiotensin-converting enzyme inhibitor prevented development of cardiac hypertrophy and fibrosis, systolic dysfunction and increased IL-6 expression in transgenic mice. Finally, administration of anti-IL-6 antibody abolished an increase in tyrosine phosphorylation of STAT3, a major signaling molecule downstream of IL-6, in the transgenic mouse heart and prevented development of cardiac hypertrophy in transgenic mice. These results demonstrate a promoting role of S1PR1 in cardiac fibroblasts for cardiac remodeling, in which angiotensin II—AT1 and IL-6 are involved.
Collapse
Affiliation(s)
- Sei-ichiro Ohkura
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Soichiro Usui
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Shin-ichiro Takashima
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yasuo Okamoto
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Naotoshi Sugimoto
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Teppei Kitano
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Masayuki Takamura
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
15
|
Sun D, Sun L, Xu Q, Wang H, Yang J, Yuan Y. Promoter Polymorphism of Toll-Like Receptor 4 is Associated with a Decreased Risk of Coronary Artery Disease: A Case-Control Study in the Chinese Han Population. Med Sci Monit 2017; 23:276-284. [PMID: 28092654 PMCID: PMC5266207 DOI: 10.12659/msm.899587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Coronary artery disease (CAD) is considered a chronic inflammatory disease of the blood vessels. Toll-like receptor 4 (TLR4) is a transmembrane receptor involved in inflammatory reactions. The aim of this study was to determine the association between polymorphisms in the promoter region and 3′-untranslated region (3′-UTR) of TLR4, and the associated CAD risk. Material/Methods This study enrolled 424 participants with CAD and 424 controls without CAD. The polymorphisms in the promoter region and 3′-UTR of TLR4 were identified from the HapMap database, including rs10116253, rs10983755, and rs11536889. Genomic DNA was extracted from peripheral blood. Polymerase chain reaction-restriction fragment length polymorphism was performed to identify genotype polymorphisms. Relative luciferase activity was measured using the dual-luciferase reporter assay system. Results TLR4 rs10116253 in the promoter region was associated with CAD risk. The variant (CC+TC) genotypes of rs10116253 were associated with a decreased CAD risk (OR 95% CI 0.73 (0.54–0.98), p=0.034). In the stratification analyses, the variant (CC+TC) genotypes of rs10116253 were observed to have a relationship with decreased CAD risk in the male subgroup (OR: 95% CI 0.68 (0.48–0.98), p=0.041). Moreover, the variant CC and (CC+TC) genotypes of rs10116253 were correlated with a decreased CAD risk in participants younger than 60-year-old (TC: OR (95% CI 0.62 (0.39–0.98), p=0.042; TC+CC: OR 95% CI 0.63 (0.41–0.98), p=0.039). Regarding rs10116253, the luciferase activity of the mutant C allele construct was lower than that of the wild T allele construct (5.215±0.009 vs. 5.304±0.041; p=0.087). Conclusions The results provided evidence of an association between the TLR4 rs10116253 in the promoter region and a reduced risk of CAD.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Liping Sun
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Qian Xu
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Honghu Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuan Yuan
- Department of Tumor Etiology and Screening, Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
16
|
Li J, Zhang H, Yang C, Li Y, Dai Z. An overview of osteocalcin progress. J Bone Miner Metab 2016; 34:367-79. [PMID: 26747614 DOI: 10.1007/s00774-015-0734-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
An increasing amount of data indicate that osteocalcin is an endocrine hormone which regulates energy metabolism, male fertility and brain development. However, the detailed functions and mechanism of osteocalcin are not well understood and conflicting results have been obtained from researchers worldwide. In the present review, we summarize the progress of osteocalcin studies over the past 40 years, focusing on the structure of carboxylated and undercarboxylated osteocalcin, new functions and putative receptors, the role of osteocalcin in bone remodeling, specific expression and regulation in osteoblasts, and new indices for clinical studies. The complexity of osteocalcin in completely, uncompletely and non-carboxylated forms may account for the discrepancies in its tertiary structure and clinical results. Moreover, the extensive expression of osteocalcin and its putative receptor GPRC6A imply that there are new physiological functions and mechanisms of action of osteocalcin to be explored. New discoveries related to osteocalcin function will assist its potential clinical application and physiological theory, but comprehensive investigations are required.
Collapse
Affiliation(s)
- Jinqiao Li
- China Astronaut Research and Training Center, State Key Lab of Space Medicine Fundamentals and Application, P.O.Box 1053-23#, No. 26, Beijing Road, Haidian District, Beijing, 100094, China
| | - Hongyu Zhang
- China Astronaut Research and Training Center, State Key Lab of Space Medicine Fundamentals and Application, P.O.Box 1053-23#, No. 26, Beijing Road, Haidian District, Beijing, 100094, China
| | - Chao Yang
- China Astronaut Research and Training Center, State Key Lab of Space Medicine Fundamentals and Application, P.O.Box 1053-23#, No. 26, Beijing Road, Haidian District, Beijing, 100094, China
| | - Yinghui Li
- China Astronaut Research and Training Center, State Key Lab of Space Medicine Fundamentals and Application, P.O.Box 1053-23#, No. 26, Beijing Road, Haidian District, Beijing, 100094, China
| | - Zhongquan Dai
- China Astronaut Research and Training Center, State Key Lab of Space Medicine Fundamentals and Application, P.O.Box 1053-23#, No. 26, Beijing Road, Haidian District, Beijing, 100094, China.
| |
Collapse
|
17
|
|
18
|
Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats. J Mol Med (Berl) 2015; 93:1341-54. [DOI: 10.1007/s00109-015-1318-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
19
|
Hernanz R, Martínez-Revelles S, Palacios R, Martín A, Cachofeiro V, Aguado A, García-Redondo L, Barrús MT, de Batista PR, Briones AM, Salaices M, Alonso MJ. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. Br J Pharmacol 2015; 172:3159-76. [PMID: 25712370 DOI: 10.1111/bph.13117] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Toll-like receptor 4 (TLR4) signalling contributes to inflammatory cardiovascular diseases, but its role in hypertension and the associated vascular damage is not known. We investigated whether TLR4 activation contributed to angiotensin II (AngII)-induced hypertension and the associated vascular structural, mechanical and functional alterations. EXPERIMENTAL APPROACH AngII was infused (1.44 mg · kg(-1) · day(-1), s.c.) for 2 weeks in C57BL6 mice, treated with a neutralizing anti-TLR4 antibody or IgG (1 μg · day(-1); systolic BP (SBP) and aortic cytokine levels were measured. Structural, mechanical and contractile properties of aortic and mesenteric arterial segments were measured with myography and histology. RT-PCR and Western blotting were used to analyse these tissues and cultured vascular smooth muscle cells (VSMC) from hypertensive rats (SHR). KEY RESULTS Aortic TLR4 mRNA levels were raised by AngII infusion. Anti-TLR4 antibody treatment of AngII-treated mice normalised: (i) increased SBP and TNF-α, IL-6 and CCL2 levels; (ii) vascular structural and mechanical changes; (iii) altered aortic phenylephrine- and ACh-induced responses; (iv) increased NOX-1 mRNA levels, superoxide anion production and NAD(P)H oxidase activity and effects of catalase, apocynin, ML-171 and Mito-TEMPO on vascular responses; and (v) reduced NO release and effects of L-NAME on phenylephrine-induced contraction. In VSMC, the MyD88 inhibitor ST-2825 reduced AngII-induced NAD(P)H oxidase activity. The TLR4 inhibitor CLI-095 reduced AngII-induced increased phospho-JNK1/2 and p65 NF-κB subunit nuclear protein expression. CONCLUSIONS AND IMPLICATIONS TLR4 up-regulation by AngII contributed to the inflammation, endothelial dysfunction, vascular remodelling and stiffness associated with hypertension by mechanisms involving oxidative stress. MyD88-dependent activation and JNK/NF-κB signalling pathways participated in these alterations.
Collapse
Affiliation(s)
- R Hernanz
- Dept. of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - S Martínez-Revelles
- Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,Dept. of Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| | - R Palacios
- Dept. of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - A Martín
- Dept. of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - V Cachofeiro
- Dept. of Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - A Aguado
- Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,Dept. of Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| | - L García-Redondo
- Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,Dept. of Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| | - M T Barrús
- Dept. of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - P R de Batista
- Dept. of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - A M Briones
- Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,Dept. of Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Salaices
- Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain.,Dept. of Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| | - M J Alonso
- Dept. of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
20
|
Lanham SA, Cagampang FR, Oreffo ROC. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins. Endocrinology 2014; 155:4749-61. [PMID: 25279792 DOI: 10.1210/en.2014-1188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.
Collapse
Affiliation(s)
- S A Lanham
- Bone and Joint Research Group (S.A.L., R.O.C.O.) and Maternal, Pregnancy, and Child Research Group (F.R.C.), Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | | | | |
Collapse
|
21
|
De Batista PR, Palacios R, Martín A, Hernanz R, Médici CT, Silva MASC, Rossi EM, Aguado A, Vassallo DV, Salaices M, Alonso MJ. Toll-like receptor 4 upregulation by angiotensin II contributes to hypertension and vascular dysfunction through reactive oxygen species production. PLoS One 2014; 9:e104020. [PMID: 25093580 PMCID: PMC4122400 DOI: 10.1371/journal.pone.0104020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/06/2014] [Indexed: 12/16/2022] Open
Abstract
Hypertension is considered as a low-grade inflammatory disease, with adaptive immunity being an important mediator of this pathology. TLR4 may have a role in the development of several cardiovascular diseases; however, little is known about its participation in hypertension. We aimed to investigate whether TLR4 activation due to increased activity of the renin-angiotensin system (RAS) contributes to hypertension and its associated endothelial dysfunction. For this, we used aortic segments from Wistar rats treated with a non-specific IgG (1 µg/day) and SHRs treated with losartan (15 mg/kg·day), the non-specific IgG or the neutralizing antibody anti-TLR4 (1 µg/day), as well as cultured vascular smooth muscle cells (VSMC) from Wistar and SHRs. TLR4 mRNA levels were greater in the VSMC and aortas from SHRs compared with Wistar rats; losartan treatment reduced those levels in the SHRs. Treatment of the SHRs with the anti-TLR4 antibody: 1) reduced the increased blood pressure, heart rate and phenylephrine-induced contraction while it improved the impaired acetylcholine-induced relaxation; 2) increased the potentiation of phenylephrine contraction after endothelium removal; and 3) abolished the inhibitory effects of tiron, apocynin and catalase on the phenylephrine-induced response as well as its enhancing effect of acetylcholine-induced relaxation. In SHR VSMCs, angiotensin II increased TLR4 mRNA levels, and losartan reduced that increase. CLI-095, a TLR4 inhibitor, mitigated the increases in NAD(P)H oxidase activity, superoxide anion production, migration and proliferation that were induced by angiotensin II. In conclusion, TLR4 pathway activation due to increased RAS activity is involved in hypertension, and by inducing oxidative stress, this pathway contributes to the endothelial dysfunction associated with this pathology. These results suggest that TLR4 and innate immunity may play a role in hypertension and its associated end-organ damage.
Collapse
Affiliation(s)
- Priscila R. De Batista
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Roberto Palacios
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Angela Martín
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Raquel Hernanz
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Cindy T. Médici
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Marito A. S. C. Silva
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Emilly M. Rossi
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Andrea Aguado
- Dept. of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Dalton V. Vassallo
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Mercedes Salaices
- Dept. of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (MJA); (MS)
| | - María J. Alonso
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
- * E-mail: (MJA); (MS)
| |
Collapse
|
22
|
Yin K, Agrawal DK. High-density lipoprotein: a novel target for antirestenosis therapy. Clin Transl Sci 2014; 7:500-11. [PMID: 25043950 DOI: 10.1111/cts.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation, and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport, many vascular protective effects of HDL, including protection of endothelium, antiinflammation, antithrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for antirestenosis.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
23
|
Yiqihuoxuejiedu formula inhibits vascular remodeling by reducing proliferation and secretion of adventitial fibroblast after balloon injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:849167. [PMID: 24987435 PMCID: PMC4058465 DOI: 10.1155/2014/849167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/28/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022]
Abstract
Vascular remodeling occurs in atherosclerosis, hypertension, and restenosis after percutaneous coronary intervention. Adventitial remodeling may be a potential therapeutic target. Yiqihuoxuejiedu formula uses therapeutic principles from Chinese medicine to supplement Qi, activate blood circulation, and resolve toxin and it has been shown to inhibit vascular stenosis. To investigate effects and mechanisms of the formula on inhibiting vascular remodeling, especially adventitial remodeling, rats with a balloon injury to their common carotid artery were used and were treated for 7 or 28 days after injury. The adventitial area and α -SMA expression increased at 7 days after injury, which indicated activation and proliferation of adventitial fibroblasts. Yiqihuoxuejiedu formula reduced the adventitial areas at 7 days, attenuated the neointima and vessel wall area, stenosis percent, and α -SMA expression in the neointima, and reduced collagen content and type I/III collagen ratio in the adventitia at 28 days. Yiqihuoxuejiedu formula had more positive effects than Captopril in reducing intimal proliferation and diminishing stenosis, although Captopril lowered neointimal α -SMA expression and reduced the collagen content at 28 days. Yiqihuoxuejiedu formula has inhibitory effects on positive and negative remodeling by reducing adventitial and neointimal proliferation, reducing content, and elevating adventitial compliance.
Collapse
|
24
|
Protein kinase Cε-calcineurin cosignaling downstream of toll-like receptor 4 downregulates fibrosis and induces wound healing gene expression in cardiac myofibroblasts. Mol Cell Biol 2013; 34:574-94. [PMID: 24298017 DOI: 10.1128/mcb.01098-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The pathways which regulate resolution of inflammation and contribute to positive remodeling of the myocardium following injury are poorly understood. Here we show that protein kinase C epsilon (PKCε) cooperates with the phosphatase calcineurin (CN) to potentiate induction of cardioprotective gene expression while suppressing expression of fibrosis markers. This was achieved by detailed analysis of the regulation of cyclooxygenase 2 (COX-2) expression as a marker gene and by using gene expression profiling to identify genes regulated by coexpression of CN-Aα/PKCε in adult rat cardiac myofibroblasts (ARVFs) on a larger scale. GeneChip analysis of CN-Aα/PKCε-coexpressing ARVFs showed that COX-2 provides a signature for wound healing and is associated with downregulation of fibrosis markers, including connective tissue growth factor (CTGF), fibronectin, and collagens Col1a1, Col3a1, Col6a3, Col11a1, Col12a1, and Col14a1, with concomitant upregulation of cardioprotection markers, including COX-2 itself, lipocalin 2 (LCN2), tissue inhibitor of metalloproteinase 1 (TIMP-1), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS). In primary rat cardiomyocyte cultures Toll-like receptor 4 (TLR4) agonist- or PKCε/CN-dependent COX-2 induction occurred in coresident fibroblasts and was blocked by selective inhibition of CN or PKC α/ε or elimination of fibroblasts. Furthermore, ectopic expression of PKCε and CN in ARVFs showed that the effects on COX-2 expression are mediated by specific NFAT sites within the COX-2 promoter as confirmed by site-directed mutagenesis and chromatin immunoprecipitation (ChIP). Therefore, PKCε may negatively regulate adverse myocardial remodeling by cooperating with CN to downregulate fibrosis and induce transcription of cardioprotective wound healing genes, including COX-2.
Collapse
|
25
|
Owens CD, Gasper WJ, Rahman AS, Conte MS. Vein graft failure. J Vasc Surg 2013; 61:203-16. [PMID: 24095042 DOI: 10.1016/j.jvs.2013.08.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Abstract
After the creation of an autogenous lower extremity bypass graft, the vein must undergo a series of dynamic structural changes to stabilize the arterial hemodynamic forces. These changes, which are commonly referred to as remodeling, include an inflammatory response, the development of a neointima, matrix turnover, and cellular proliferation and apoptosis. The sum total of these processes results in dramatic alterations in the physical and biomechanical attributes of the arterialized vein. The most clinically obvious and easily measured of these is lumen remodeling of the graft. However, although somewhat less precise, wall thickness, matrix composition, and endothelial changes can be measured in vivo within the healing vein graft. Recent translational work has demonstrated the clinical relevance of remodeling as it relates to vein graft patency and the systemic factors influencing it. By correlating histologic and molecular changes in the vein, insights into potential therapeutic strategies to prevent bypass failure and areas for future investigation are explored.
Collapse
Affiliation(s)
- Christopher D Owens
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif.
| | - Warren J Gasper
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif
| | - Amreen S Rahman
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, University of California San Francisco Medical Center, San Francisco, Calif
| |
Collapse
|
26
|
Kato H, Fu YY, Zhu J, Wang L, Aafaqi S, Rahkonen O, Slorach C, Traister A, Leung CH, Chiasson D, Mertens L, Benson L, Weisel RD, Hinz B, Maynes JT, Coles JG, Caldarone CA. Pulmonary vein stenosis and the pathophysiology of "upstream" pulmonary veins. J Thorac Cardiovasc Surg 2013; 148:245-53. [PMID: 24084286 DOI: 10.1016/j.jtcvs.2013.08.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/10/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Surgical and catheter-based interventions on pulmonary veins are associated with pulmonary vein stenosis (PVS), which can progress diffusely through the "upstream" pulmonary veins. The mechanism has been rarely studied. We used a porcine model of PVS to assess disease progression with emphasis on the potential role of endothelial-mesenchymal transition (EndMT). METHODS Neonatal piglets underwent bilateral pulmonary vein banding (banded, n = 6) or sham operations (sham, n = 6). Additional piglets underwent identical banding and stent implantation in a single-banded pulmonary vein 3 weeks postbanding (stented, n = 6). At 7 weeks postbanding, hemodynamics and upstream PV pathology were assessed. RESULTS Banded piglets developed pulmonary hypertension. The upstream pulmonary veins exhibited intimal thickening associated with features of EndMT, including increased transforming growth factor (TGF)-β1 and Smad expression, loss of endothelial and gain of mesenchymal marker expression, and coexpression of endothelial and mesenchymal markers in banded pulmonary vein intimal cells. These immunopathologic changes and a prominent myofibroblast phenotype in the remodeled pulmonary veins were consistently identified in specimens from patients with PVS, in vitro TGF-β1-stimulated cells isolated from piglet and human pulmonary veins, and human umbilical vein endothelial cells. After stent implantation, decompression of a pulmonary vein was associated with reappearance of endothelial marker expression, suggesting the potential for plasticity in the observed pathologic changes, followed by rapid in-stent restenosis. CONCLUSIONS Neonatal pulmonary vein banding in piglets recapitulates critical aspects of clinical PVS and highlights a pathologic profile consistent with EndMT, supporting the rationale for evaluating therapeutic strategies designed to exploit reversibility of upstream pulmonary vein pathology.
Collapse
Affiliation(s)
- Hideyuki Kato
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - Yaqin Yana Fu
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - Jiaquan Zhu
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - Lixing Wang
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - Shabana Aafaqi
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - Otto Rahkonen
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cameron Slorach
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Traister
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - Chung Ho Leung
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - David Chiasson
- Division of Pathology and Paediatric Laboratory Medicine, Laboratory of Tissue Repair and Regeneration, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Luc Mertens
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lee Benson
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard D Weisel
- Division of Cardiac Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Jason T Maynes
- Division of Anaesthesia and Pain Medicine and Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Coles
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada
| | - Christopher A Caldarone
- Division of Cardiovascular Surgery, Hospital for Sick Children, Labatt Family Heart Center and University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Spagnuolo V, Cocorullo D, Galli L, Bigoloni A, Galli A, Rubinacci A, Mignogna G, Carbone A, Lazzarin A, Castagna A. Plasma fibroblast growth factor 23 and osteocalcin serum levels are associated with cardiovascular risk in HIV-1-infected patients receiving antiretroviral treatment. J Antimicrob Chemother 2013; 68:2960-3. [DOI: 10.1093/jac/dkt264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|