1
|
Sen S, Spasic A, Sinha A, Wang J, Bush M, Li J, Nešić D, Zhou Y, Angiulli G, Morgan P, Salas-Estrada L, Takagi J, Walz T, Coller BS, Filizola M. Structure-Based Discovery of a Novel Class of Small-Molecule Pure Antagonists of Integrin αVβ3. J Chem Inf Model 2022; 62:5607-5621. [PMID: 36279366 PMCID: PMC9767310 DOI: 10.1021/acs.jcim.2c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibitors of integrin αVβ3 have therapeutic promise for a variety of diseases. Most αVβ3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part via a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbβ3, we searched for pure αVβ3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically β3 E220. By in silico screening of two large chemical libraries for compounds interacting with β3 E220, we indeed discovered a novel molecule that does not contain an acidic carboxyl group and does not induce the high-affinity, ligand-binding state of the receptor. Functional and structural characterization of a chemically optimized version of this compound led to the discovery of a novel small-molecule pure αVβ3 antagonist that (i) does not prime the receptor to bind the ligand and does not induce hybrid domain swing-out or receptor extension as judged by antibody binding and negative-stain electron microscopy, (ii) binds at the RGD-binding site as predicted by metadynamics rescoring of induced-fit docking poses and confirmed by a cryo-electron microscopy structure of the compound-bound integrin, and (iii) coordinates the MIDAS metal ion via a quinoline moiety instead of an acidic carboxyl group.
Collapse
Affiliation(s)
- Soumyo Sen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Aleksandar Spasic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Anjana Sinha
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Jialing Wang
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Martin Bush
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Dragana Nešić
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Gabriella Angiulli
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Paul Morgan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| |
Collapse
|
2
|
Li J, Fukase Y, Shang Y, Zou W, Muñoz-Félix JM, Buitrago L, van Agthoven J, Zhang Y, Hara R, Tanaka Y, Okamoto R, Yasui T, Nakahata T, Imaeda T, Aso K, Zhou Y, Locuson C, Nesic D, Duggan M, Takagi J, Vaughan RD, Walz T, Hodivala-Dilke K, Teitelbaum SL, Arnaout MA, Filizola M, Foley MA, Coller BS. Novel Pure αVβ3 Integrin Antagonists That Do Not Induce Receptor Extension, Prime the Receptor, or Enhance Angiogenesis at Low Concentrations. ACS Pharmacol Transl Sci 2019; 2:387-401. [PMID: 32259072 PMCID: PMC7088984 DOI: 10.1021/acsptsci.9b00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 01/12/2023]
Abstract
The integrin αVβ3 receptor has been implicated in several important diseases, but no antagonists are approved for human therapy. One possible limitation of current small-molecule antagonists is their ability to induce a major conformational change in the receptor that induces it to adopt a high-affinity ligand-binding state. In response, we used structural inferences from a pure peptide antagonist to design the small-molecule pure antagonists TDI-4161 and TDI-3761. Both compounds inhibit αVβ3-mediated cell adhesion to αVβ3 ligands, but do not induce the conformational change as judged by antibody binding, electron microscopy, X-ray crystallography, and receptor priming studies. Both compounds demonstrated the favorable property of inhibiting bone resorption in vitro, supporting potential value in treating osteoporosis. Neither, however, had the unfavorable property of the αVβ3 antagonist cilengitide of paradoxically enhancing aortic sprout angiogenesis at concentrations below its IC50, which correlates with cilengitide's enhancement of tumor growth in vivo.
Collapse
Affiliation(s)
- Jihong Li
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Yoshiyuki Fukase
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Yi Shang
- Department
of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Wei Zou
- Washington
University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - José M. Muñoz-Félix
- Adhesion
and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute—a CR-UK Centre of Excellence,
Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Lorena Buitrago
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Johannes van Agthoven
- Leukocyte
Biology and Inflammation and Structural Biology Programs, Division
of Nephrology, Massachusetts General Hospital
and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Yixiao Zhang
- Laboratory
of Molecular Electron Microscopy, Rockefeller
University, 1230 York Avenue, New York, New York 10065, United
States
| | - Ryoma Hara
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Yuta Tanaka
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Rei Okamoto
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Takeshi Yasui
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Takashi Nakahata
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Toshihiro Imaeda
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Kazuyoshi Aso
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Yuchen Zhou
- Department
of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Charles Locuson
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, Massachusetts 02139-4169, United States
| | - Dragana Nesic
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Mark Duggan
- LifeSci
Consulting, LLC, 18243
SE Ridgeview Drive, Tequesta, Florida 33469, United
States
| | - Junichi Takagi
- Laboratory
of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Roger D. Vaughan
- Rockefeller
University Center for Clinical and Translational Science, Rockefeller University, 2130 York Avenue, New York, New York 10065, United States
| | - Thomas Walz
- Laboratory
of Molecular Electron Microscopy, Rockefeller
University, 1230 York Avenue, New York, New York 10065, United
States
| | - Kairbaan Hodivala-Dilke
- Adhesion
and Angiogenesis Laboratory, Centre for Tumour Biology, Barts Cancer Institute—a CR-UK Centre of Excellence,
Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Steven L. Teitelbaum
- Washington
University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - M. Amin Arnaout
- Leukocyte
Biology and Inflammation and Structural Biology Programs, Division
of Nephrology, Massachusetts General Hospital
and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Marta Filizola
- Department
of Pharmacological Sciences, Icahn School
of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Michael A. Foley
- Tri-Institutional
Therapeutics Discovery Institute, 413 East 69 Street, New York, New York 10021, United
States
| | - Barry S. Coller
- Allen and
Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
3
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
4
|
Kang CM, Liu DQ, Wang XY, Yu RL, Lv YT. The unbinding studies of vascular endothelial growth factor receptor-2 protein tyrosine kinase type II inhibitors. J Mol Graph Model 2015; 59:130-5. [PMID: 25989626 DOI: 10.1016/j.jmgm.2015.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase has two conformations, active and inactive conformations. Type II inhibitors bind to inactive conformation. It has two possible binding/unbinding paths. To explore the unbinding path of inhibitor 01-435 that was generated by fragment build in the binding pocket of VEGFR-2, molecular dynamics (MD) simulation was performed on the crystal structure of VEGFR-2 in complex with 01-435, then steered molecular dynamics (SMD) simulation was executed on the crystal structure of VEGFR-2 in complex with 01-435. Pull force, van der Waals and electrostatic interaction along the two paths were calculated by using SMD simulation. The SMD simulation results indicate that the more favorable path for inhibitor dissociation is along with the traditional ATP-channel rather than the allosteric-pocket-channel, which is mainly due to the less electrostatic interaction that the ligand suffers during dissociation process along the traditional ATP-channel.
Collapse
Affiliation(s)
- Cong-min Kang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Dong-qing Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xin-ying Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ri-lei Yu
- School of Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ying-tao Lv
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|