1
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Liu S, Anderson PJ, Rajagopal S, Lefkowitz RJ, Rockman HA. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ Res 2024; 135:174-197. [PMID: 38900852 PMCID: PMC11192237 DOI: 10.1161/circresaha.124.323067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and β-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of β-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Medicine, Duke University Medical
Center
| | - Preston J. Anderson
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Duke Medical Scientist Training Program, Duke University,
Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical
Center
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
- Howard Hughes Medical Institute, Duke University Medical
Center, Durham, North Carolina 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
| |
Collapse
|
3
|
Kawaguchi S, Moukette B, Sepúlveda MN, Hayasaka T, Aonuma T, Haskell AK, Mah J, Liangpunsakul S, Tang Y, Conway SJ, Kim IM. SPRR1A is a key downstream effector of MiR-150 during both maladaptive cardiac remodeling in mice and human cardiac fibroblast activation. Cell Death Dis 2023; 14:446. [PMID: 37468478 PMCID: PMC10356860 DOI: 10.1038/s41419-023-05982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
MicroRNA-150 (miR-150) is conserved between rodents and humans, is significantly downregulated during heart failure (HF), and correlates with patient outcomes. We previously reported that miR-150 is protective during myocardial infarction (MI) in part by decreasing cardiomyocyte (CM) apoptosis and that proapoptotic small proline-rich protein 1a (Sprr1a) is a direct CM target of miR-150. We also showed that Sprr1a knockdown in mice improves cardiac dysfunction and fibrosis post-MI and that Sprr1a is upregulated in pathological mouse cardiac fibroblasts (CFs) from ischemic myocardium. However, the direct functional relationship between miR-150 and SPRR1A during both post-MI remodeling in mice and human CF (HCF) activation was not established. Here, using a novel miR-150 knockout;Sprr1a-hypomorphic (Sprr1ahypo/hypo) mouse model, we demonstrate that Sprr1a knockdown blunts adverse post-MI effects caused by miR-150 loss. Moreover, HCF studies reveal that SPRR1A is upregulated in hypoxia/reoxygenation-treated HCFs and is downregulated in HCFs exposed to the cardioprotective β-blocker carvedilol, which is inversely associated with miR-150 expression. Significantly, we show that the protective roles of miR-150 in HCFs are directly mediated by functional repression of profibrotic SPRR1A. These findings delineate a pivotal functional interaction between miR-150 and SPRR1A as a novel regulatory mechanism pertinent to CF activation and ischemic HF.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Bruno Moukette
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Marisa N Sepúlveda
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taiki Hayasaka
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatsuya Aonuma
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Cardiology, Nephrology, Pulmonology, and Neurology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Angela K Haskell
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jessica Mah
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Simon J Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Grogan A, Lucero EY, Jiang H, Rockman HA. Pathophysiology and pharmacology of G protein-coupled receptors in the heart. Cardiovasc Res 2023; 119:1117-1129. [PMID: 36534965 PMCID: PMC10202650 DOI: 10.1093/cvr/cvac171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 08/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs), comprising the largest superfamily of cell surface receptors, serve as fundamental modulators of cardiac health and disease owing to their key roles in the regulation of heart rate, contractile dynamics, and cardiac function. Accordingly, GPCRs are heavily pursued as drug targets for a wide variety of cardiovascular diseases ranging from heart failure, cardiomyopathy, and arrhythmia to hypertension and coronary artery disease. Recent advancements in understanding the signalling mechanisms, regulation, and pharmacological properties of GPCRs have provided valuable insights that will guide the development of novel therapeutics. Herein, we review the cellular signalling mechanisms, pathophysiological roles, and pharmacological developments of the major GPCRs in the heart, highlighting the β-adrenergic, muscarinic, and angiotensin receptors as exemplar subfamilies.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
| | - Emilio Y Lucero
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
| | - Haoran Jiang
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
- Cell Biology, Duke University Medical Center, DUMC 3104, 226 CARL Building, 12 Durham, NC 27710, USA
| |
Collapse
|
5
|
Hua F, Zhu H, Yu W, Zheng Q, Zhang L, Liang W, Lin Y, Xiao F, Yi P, Xiong Y, Dong Y, Li H, Fang L, Liu H, Ying J, Wang X. β-arrestin1 regulates astrocytic reactivity via Drp1-dependent mitochondrial fission: implications in postoperative delirium. J Neuroinflammation 2023; 20:113. [PMID: 37170230 PMCID: PMC10173541 DOI: 10.1186/s12974-023-02794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Postoperative delirium (POD) is a frequent and debilitating complication, especially amongst high risk procedures, such as orthopedic surgery. This kind of neurocognitive disorder negatively affects cognitive domains, such as memory, awareness, attention, and concentration after surgery; however, its pathophysiology remains unknown. Multiple lines of evidence supporting the occurrence of inflammatory events have come forward from studies in human patients' brain and bio-fluids (CSF and serum), as well as in animal models for POD. β-arrestins are downstream molecules of guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). As versatile proteins, they regulate numerous pathophysiological processes of inflammatory diseases by scaffolding with inflammation-linked partners. Here we report that β-arrestin1, one type of β-arrestins, decreases significantly in the reactive astrocytes of a mouse model for POD. Using β-arrestin1 knockout (KO) mice, we find aggravating effect of β-arrestin1 deficiency on the cognitive dysfunctions and inflammatory phenotype of astrocytes in POD model mice. We conduct the in vitro experiments to investigate the regulatory roles of β-arrestin1 and demonstrate that β-arrestin1 in astrocytes interacts with the dynamin-related protein 1 (Drp1) to regulate mitochondrial fusion/fission process. β-arrestin1 deletion cancels the combination of β-arrestin1 and cellular Drp1, thus promoting the translocation of Drp1 to mitochondrial membrane to provoke the mitochondrial fragments and the subsequent mitochondrial malfunctions. Using β-arrestin1-biased agonist, cognitive dysfunctions of POD mice and pathogenic activation of astrocytes in the POD-linked brain region are reduced. We, therefore, conclude that β-arrestin1 is a promising target for the understanding of POD pathology and development of POD therapeutics.
Collapse
Affiliation(s)
- Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Weidong Liang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hua Li
- Department of Anesthesiology, First People's Hospital of Yihuang County, Fuzhou, 344400, Jiangxi, People's Republic of China
| | - Lanran Fang
- Department of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, People's Republic of China
| | - Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, 17# Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
6
|
Li YR, Fan HJ, Sun RR, Jia L, Yang LY, Zhang HF, Jin XM, Xiao BG, Ma CG, Chai Z. Wuzi Yanzong Pill Plays A Neuroprotective Role in Parkinson's Disease Mice via Regulating Unfolded Protein Response Mediated by Endoplasmic Reticulum Stress. Chin J Integr Med 2023; 29:19-27. [PMID: 36369612 DOI: 10.1007/s11655-022-3727-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the protective effects and its possible mechanism of Wuzi Yanzong Pill (WYP) on Parkinson's disease (PD) model mice. METHODS Thirty-six C57BL/6 male mice were randomly assigned to 3 groups including normal, PD, and PD+WYP groups, 12 mice in each group. One week of intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the classical PD model in mice. Meanwhile, mice in the PD+WYP group were administrated with 16 g/kg WYP, twice daily by gavage. After 14 days of administration, gait test, open field test and pole test were measured to evaluate the movement function. Tyrosine hydroxylase (TH) neurons in substantia nigra of midbrain and binding immunoglobulin heavy chain protein (GRP78) in striatum and cortex were observed by immunohistochemistry. The levels of TH, GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1α, XBP1, ATF6, CHOP, ASK1, p-JNK, Caspase-12, -9 and -3 in brain were detected by Western blot. RESULTS Compared with the PD group, WYP treatment ameliorated gait balance ability in PD mice (P<0.05). Similarly, WYP increased the total distance and average speed (P<0.05 or P<0.01), reduced rest time and pole time (P<0.05). Moreover, WYP significantly increased TH positive cells (P<0.01). Immunofluorescence showed WYP attenuated the levels of GRP78 in striatum and cortex. Meanwhile, WYP treatment significantly decreased the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1 α, XBP1, CHOP, Caspase-12 and Caspase-9 (P<0.05 or P<0.01). CONCLUSIONS WYP ameliorated motor symptoms and pathological lesion of PD mice, which may be related to the regulation of unfolded protein response-mediated signaling pathway and inhibiting the endoplasmic reticulum stress-mediated neuronal apoptosis pathway.
Collapse
Affiliation(s)
- Yan-Rong Li
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Jie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Rui-Rui Sun
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Lu Jia
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Li-Yang Yang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Fei Zhang
- Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Xiao-Ming Jin
- Department of Anatomy and Cell Biology, Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200025, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
7
|
MiR-150 blunts cardiac dysfunction in mice with cardiomyocyte loss of β 1-adrenergic receptor/β-arrestin signaling and controls a unique transcriptome. Cell Death Dis 2022; 8:504. [PMID: 36585403 PMCID: PMC9803679 DOI: 10.1038/s41420-022-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
The β1-adrenergic receptor (β1AR) is found primarily in hearts (mainly in cardiomyocytes [CMs]) and β-arrestin-mediated β1AR signaling elicits cardioprotection through CM survival. We showed that microRNA-150 (miR-150) is upregulated by β-arrestin-mediated β1AR signaling and that CM miR-150 inhibits maladaptive remodeling post-myocardial infarction. Here, we investigate whether miR-150 rescues cardiac dysfunction in mice bearing CM-specific abrogation of β-arrestin-mediated β1AR signaling. Using CM-specific transgenic (TG) mice expressing a mutant β1AR (G protein-coupled receptor kinase [GRK]-β1AR that exhibits impairment in β-arrestin-mediated β1AR signaling), we first generate a novel double TG mouse line overexpressing miR-150. We demonstrate that miR-150 is sufficient to improve cardiac dysfunction in CM-specific GRK-β1AR TG mice following chronic catecholamine stimulation. Our genome-wide circular RNA, long noncoding RNA (lncRNA), and mRNA profiling analyses unveil a subset of cardiac ncRNAs and genes as heretofore unrecognized mechanisms for beneficial actions of β1AR/β-arrestin signaling or miR-150. We further show that lncRNA Gm41664 and GDAP1L1 are direct novel upstream and downstream regulators of miR-150. Lastly, CM protective actions of miR-150 are attributed to repressing pro-apoptotic GDAP1L1 and are mitigated by pro-apoptotic Gm41664. Our findings support the idea that miR-150 contributes significantly to β1AR/β-arrestin-mediated cardioprotection by regulating unique ncRNA and gene signatures in CMs.
Collapse
|
8
|
Sykes DA, Jiménez‐Rosés M, Reilly J, Fairhurst RA, Charlton SJ, Veprintsev DB. Exploring the kinetic selectivity of drugs targeting the β 1 -adrenoceptor. Pharmacol Res Perspect 2022; 10:e00978. [PMID: 35762357 PMCID: PMC9237807 DOI: 10.1002/prp2.978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
In this study, we report the β1 -adrenoceptor binding kinetics of several clinically relevant β1/2 -adrenoceptor (β1/2 AR) agonists and antagonists. [3 H]-DHA was used to label CHO-β1 AR for binding studies. The kinetics of ligand binding was assessed using a competition association binding method. Ligand physicochemical properties, including logD7.4 and the immobilized artificial membrane partition coefficient (KIAM ), were assessed using column-based methods. Protein Data Bank (PDB) structures and hydrophobic and electrostatic surface maps were constructed in PyMOL. We demonstrate that the hydrophobic properties of a molecule directly affect its kinetic association rate (kon ) and affinity for the β1 AR. In contrast to our findings at the β2 -adrenoceptor, KIAM , reflecting both hydrophobic and electrostatic interactions of the drug with the charged surface of biological membranes, was no better predictor than simple hydrophobicity measurements such as clogP or logD7.4 , at predicting association rate. Bisoprolol proved kinetically selective for the β1 AR subtype, dissociating 50 times slower and partly explaining its higher measured affinity for the β1 AR. We speculate that the association of positively charged ligands at the β1 AR is curtailed somewhat by its predominantly neutral/positive charged extracellular surface. Consequently, hydrophobic interactions in the ligand-binding pocket dominate the kinetics of ligand binding. In comparison at the β2 AR, a combination of hydrophobicity and negative charge attracts basic, positively charged ligands to the receptor's surface promoting the kinetics of ligand binding. Additionally, we reveal the potential role kinetics plays in the on-target and off-target pharmacology of clinically used β-blockers.
Collapse
Affiliation(s)
- David A. Sykes
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Mireia Jiménez‐Rosés
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - John Reilly
- Novartis Institutes for BioMedical ResearchBaselSwitzerland
| | | | - Steven J. Charlton
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Dmitry B. Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
9
|
Zhang Y, Ding Y, Li M, Yuan J, Yu Y, Bi X, Hong H, Ye J, Liu P. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharm Sin B 2022; 12:2374-2390. [PMID: 35646533 PMCID: PMC9136534 DOI: 10.1016/j.apsb.2021.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and β-myosin heavy chain (β-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 3′ UTR, 3′ untranslated region
- ANF, atrial natriuretic factor
- ATG4B
- ATG4B, autophagy related gene 4B
- Autophagic flux
- Autophagy
- BNP, brain natriuretic polypeptide
- Baf A1, bafilomycin A1
- CQ, Chloroquine
- EF, ejection fraction
- FS, fractional shortening
- GFP, green fluorescent protein
- HE, hematoxylin–eosin
- ISO, isoprenaline
- IVS,d: interventricular septal wall dimension at end-diastole, IVS,s: interventricular septal well dimension at end-systole
- Isoprenaline
- LC3
- LC3, microtubule-associated protein 1 light chain 3
- LV Vol,d, left ventricular end-diastolic volume
- LV Vol,s, left ventricular end-systolic volume
- LVID,d, left ventricular end-diastolic internal diameter
- LVID,s, left ventricular end-systolic internal diameter
- LVPW,d, left ventricular end-diastolic posterior wall thickness
- LVPW,s, left ventricular end-systolic posterior wall thickness
- Mice
- NS, normal saline
- Neonatal rat cardiomyocytes
- PSR, Picric–Sirius red
- Pathological cardiac hypertrophy
- mTOR, mammalian target of rapamycin
- miR-34c-5p
- miRNA, microRNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- β-AR, β-adrenergic receptor
- β-MHC, beta-myosin heavy chain
Collapse
|
10
|
Aonuma T, Moukette B, Kawaguchi S, Barupala NP, Sepúlveda MN, Frick K, Tang Y, Guglin M, Raman SV, Cai C, Liangpunsakul S, Nakagawa S, Kim IM. MiR-150 Attenuates Maladaptive Cardiac Remodeling Mediated by Long Noncoding RNA MIAT and Directly Represses Profibrotic Hoxa4. Circ Heart Fail 2022; 15:e008686. [PMID: 35000421 PMCID: PMC9018469 DOI: 10.1161/circheartfailure.121.008686] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND MicroRNA-150 (miR-150) plays a protective role in heart failure (HF). Long noncoding RNA, myocardial infarction-associated transcript (MIAT) regulates miR-150 function in vitro by direct interaction. Concurrent with miR-150 downregulation, MIAT is upregulated in failing hearts, and gain-of-function single-nucleotide polymorphisms in MIAT are associated with increased risk of myocardial infarction (MI) in humans. Despite the correlative relationship between MIAT and miR-150 in HF, their in vivo functional relationship has never been established, and molecular mechanisms by which these 2 noncoding RNAs regulate cardiac protection remain elusive. METHODS We use MIAT KO (knockout), Hoxa4 (homeobox a4) KO, MIAT TG (transgenic), and miR-150 TG mice. We also develop DTG (double TG) mice overexpressing MIAT and miR-150. We then use a mouse model of MI followed by cardiac functional, structural, and mechanistic studies by echocardiography, immunohistochemistry, transcriptome profiling, Western blotting, and quantitative real-time reverse transcription-polymerase chain reaction. Moreover, we perform expression analyses in hearts from patients with HF. Lastly, we investigate cardiac fibroblast activation using primary adult human cardiac fibroblasts and in vitro assays to define the conserved MIAT/miR-150/HOXA4 axis. RESULTS Using novel mouse models, we demonstrate that genetic overexpression of MIAT worsens cardiac remodeling, while genetic deletion of MIAT protects hearts against MI. Importantly, miR-150 overexpression attenuates the detrimental post-MI effects caused by MIAT. Genome-wide transcriptomic analysis of MIAT null mouse hearts identifies Hoxa4 as a novel downstream target of the MIAT/miR-150 axis. Hoxa4 is upregulated in cardiac fibroblasts isolated from ischemic myocardium and subjected to hypoxia/reoxygenation. HOXA4 is also upregulated in patients with HF. Moreover, Hoxa4 deficiency in mice protects the heart from MI. Lastly, protective actions of cardiac fibroblast miR-150 are partially attributed to the direct and functional repression of profibrotic Hoxa4. CONCLUSIONS Our findings delineate a pivotal functional interaction among MIAT, miR-150, and Hoxa4 as a novel regulatory mechanism pertinent to ischemic HF.
Collapse
Affiliation(s)
- Tatsuya Aonuma
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bruno Moukette
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nipuni P. Barupala
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marisa N. Sepúlveda
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyle Frick
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Maya Guglin
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subha V. Raman
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenleng Cai
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA;,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Il-man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA;,Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA;,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA;,Address for correspondence: Il-man Kim, PhD, Associate Professor, Department of Anatomy, Cell Biology and Physiology, Wells Center for Pediatric Research, Krannert Institute of Cardiology, Indiana University School of Medicine, 635 Barnhill Drive, MS 346A, Indianapolis, IN 46202, USA, , Phone: 317-278-2086
| |
Collapse
|
11
|
Wang J, Pani B, Gokhan I, Xiong X, Kahsai AW, Jiang H, Ahn S, Lefkowitz RJ, Rockman HA. β-Arrestin-Biased Allosteric Modulator Potentiates Carvedilol-Stimulated β Adrenergic Receptor Cardioprotection. Mol Pharmacol 2021; 100:568-579. [PMID: 34561298 DOI: 10.1124/molpharm.121.000359] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
β 1 adrenergic receptors (β 1ARs) are central regulators of cardiac function and a drug target for cardiac disease. As a member of the G protein-coupled receptor family, β 1ARs activate cellular signaling by primarily coupling to Gs proteins to activate adenylyl cyclase, cAMP-dependent pathways, and the multifunctional adaptor-transducer protein β-arrestin. Carvedilol, a traditional β-blocker widely used in treating high blood pressure and heart failure by blocking β adrenergic receptor-mediated G protein activation, can selectively stimulate Gs-independent β-arrestin signaling of β adrenergic receptors, a process known as β-arrestin-biased agonism. Recently, a DNA-encoded small-molecule library screen against agonist-occupied β 2 adrenergic receptors (β 2ARs) identified Compound-6 (Cmpd-6) to be a positive allosteric modulator for agonists on β 2ARs. Intriguingly, it was further discovered that Cmpd-6 is positively cooperative with the β-arrestin-biased ligand carvedilol at β 2ARs. Here we describe the surprising finding that at β 1ARs unlike β 2ARs, Cmpd-6 is cooperative only with carvedilol and not agonists. Cmpd-6 increases the binding affinity of carvedilol for β 1ARs and potentiates carvedilol-stimulated, β-arrestin-dependent β 1AR signaling, such as epidermal growth factor receptor transactivation and extracellular signal-regulated kinase activation, whereas it does not have an effect on Gs-mediated cAMP generation. In vivo, Cmpd-6 enhances the antiapoptotic, cardioprotective effect of carvedilol in response to myocardial ischemia/reperfusion injury. This antiapoptotic role of carvedilol is dependent on β-arrestins since it is lost in mice with myocyte-specific deletion of β-arrestins. Our findings demonstrate that Cmpd-6 is a selective β-arrestin-biased allosteric modulator of β 1ARs and highlight its potential clinical utility in enhancing carvedilol-mediated cardioprotection against ischemic injury. SIGNIFICANCE STATEMENT: This study demonstrates the positive cooperativity of Cmpd-6 on β1ARs as a β-arrestin-biased positive allosteric modulator. Cmpd-6 selectively enhances the affinity and cellular signaling of carvedilol, a known β-arrestin-biased β-blocker for β1ARs, whereas it has minimal effect on other ligands tested. Importantly, Cmpd-6 enhances the β-arrestin-dependent in vivo cardioprotective effect of carvedilol during ischemia/reperfusion injury-induced apoptosis. The data support the potential therapeutic application of Cmpd-6 to enhance the clinical benefits of carvedilol in the treatment of cardiac disease.
Collapse
Affiliation(s)
- Jialu Wang
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Biswaranjan Pani
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Ilhan Gokhan
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Xinyu Xiong
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Alem W Kahsai
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Haoran Jiang
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Seungkirl Ahn
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Robert J Lefkowitz
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Departments of Medicine (J.W., B.P, I.G., X.X., A.W.K., H.J., S.A., R.J.L., H.A.R.), Biochemistry (R.J.W.), Howard Hughes Medical Institute (R.J.L.), and Cell Biology (H.A.R.), Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
12
|
Aonuma T, Moukette B, Kawaguchi S, Barupala NP, Sepulveda MN, Corr C, Tang Y, Liangpunsakul S, Payne RM, Willis MS, Kim IM. Cardiomyocyte microRNA-150 confers cardiac protection and directly represses pro-apoptotic small proline-rich protein 1A. JCI Insight 2021; 6:e150405. [PMID: 34403363 PMCID: PMC8492334 DOI: 10.1172/jci.insight.150405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNA-150 (miR-150) is downregulated in patients with multiple cardiovascular diseases and in diverse mouse models of heart failure (HF). miR-150 is significantly associated with HF severity and outcome in humans. We previously reported that miR-150 is activated by β-blocker carvedilol (Carv) and plays a protective role in the heart using a systemic miR-150 KO mouse model. However, mechanisms that regulate cell-specific miR-150 expression and function in HF are unknown. Here, we demonstrate that potentially novel conditional cardiomyocyte–specific (CM-specific) miR-150 KO (miR-150 cKO) in mice worsens maladaptive cardiac remodeling after myocardial infarction (MI). Genome-wide transcriptomic analysis in miR-150 cKO mouse hearts identifies small proline–rich protein 1a (Sprr1a) as a potentially novel target of miR-150. Our studies further reveal that Sprr1a expression is upregulated in CMs isolated from ischemic myocardium and subjected to simulated ischemia/reperfusion, while its expression is downregulated in hearts and CMs by Carv. We also show that left ventricular SPRR1A is upregulated in patients with HF and that Sprr1a knockdown in mice prevents maladaptive post-MI remodeling. Lastly, protective roles of CM miR-150 are, in part, attributed to the direct and functional repression of proapoptotic Sprr1a. Our findings suggest a crucial role for the miR-150/SPRR1A axis in regulating CM function post-MI.
Collapse
Affiliation(s)
- Tatsuya Aonuma
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, United States of America
| | - Bruno Moukette
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, United States of America
| | - Satoshi Kawaguchi
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, United States of America
| | - Nipuni P Barupala
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, United States of America
| | - Marisa N Sepulveda
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, United States of America
| | - Christopher Corr
- Department of Medicine, Indiana University School of Medicine, Indianapolis, United States of America
| | - Yaoliang Tang
- Department of Medicine, Augusta University, Augusta, United States of America
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, United States of America
| | - R Mark Payne
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Monte S Willis
- Department of Medicine, Indiana University School of Medicine, Indianapolis, United States of America
| | - Il-Man Kim
- Indiana University School of Medicine, Indianapolis, United States of America
| |
Collapse
|
13
|
let-7 microRNAs: Their Role in Cerebral and Cardiovascular Diseases, Inflammation, Cancer, and Their Regulation. Biomedicines 2021; 9:biomedicines9060606. [PMID: 34073513 PMCID: PMC8227213 DOI: 10.3390/biomedicines9060606] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
The let-7 family is among the first microRNAs found. Recent investigations have indicated that it is highly expressed in many systems, including cerebral and cardiovascular systems. Numerous studies have implicated the aberrant expression of let-7 members in cardiovascular diseases, such as stroke, myocardial infarction (MI), cardiac fibrosis, and atherosclerosis as well as in the inflammation related to these diseases. Furthermore, the let-7 microRNAs are involved in development and differentiation of embryonic stem cells in the cardiovascular system. Numerous genes have been identified as target genes of let-7, as well as a number of the let-7’ regulators. Further studies are necessary to identify the gene targets and signaling pathways of let-7 in cardiovascular diseases and inflammatory processes. The bulk of the let-7’ regulatory proteins are well studied in development, proliferation, differentiation, and cancer, but their roles in inflammation, cardiovascular diseases, and/or stroke are not well understood. Further knowledge on the regulation of let-7 is crucial for therapeutic advances. This review focuses on research progress regarding the roles of let-7 and their regulation in cerebral and cardiovascular diseases and associated inflammation.
Collapse
|
14
|
Wang Y, Wen W, Li H, Clementino M, Xu H, Xu M, Ma M, Frank J, Luo J. MANF is neuroprotective against ethanol-induced neurodegeneration through ameliorating ER stress. Neurobiol Dis 2021; 148:105216. [PMID: 33296727 PMCID: PMC7856049 DOI: 10.1016/j.nbd.2020.105216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a spectrum of developmental disorders caused by prenatal alcohol exposure. Neuronal loss or neurodegeneration in the central nervous system (CNS) is one of the most devastating features in FASD. It is imperative to delineate the underlying mechanisms to facilitate the treatment of FASD. Endoplasmic reticulum (ER) stress is a hallmark and an underlying mechanism of many neurodegenerative diseases, including ethanol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) responds to ER stress and has been identified as a protein upregulated in response to ethanol exposure during the brain development. To investigate the role of MANF in ethanol-induced neurodegeneration and its association with ER stress regulation, we established a CNS-specific Manf knockout mouse model and examined the effects of MANF deficiency on ethanol-induced neuronal apoptosis and ER stress using a third-trimester equivalent mouse model. We found MANF deficiency exacerbated ethanol-induced neuronal apoptosis and ER stress and that blocking ER stress abrogated the harmful effects of MANF deficiency on ethanol-induced neuronal apoptosis. Moreover, using an animal model of ER-stress-induced neurodegeneration, we demonstrated that MANF deficiency potentiated tunicamycin (TM)-induced ER stress and neurodegeneration. A whole transcriptome RNA sequencing also supported the functionality of MANF in ER stress modulation and revealed targets that may mediate the ER stress-buffering capacity of MANF. Collectively, these results suggest that MANF is a neurotrophic factor that can protect neurons against ethanol-induced neurodegeneration by ameliorating ER stress.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States of America
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Marco Clementino
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jacqueline Frank
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America; Iowa City VA Health Care System, Iowa City, IA 52246, United States of America.
| |
Collapse
|
15
|
Xing G, Woo AYH, Pan L, Lin B, Cheng MS. Recent Advances in β 2-Agonists for Treatment of Chronic Respiratory Diseases and Heart Failure. J Med Chem 2020; 63:15218-15242. [PMID: 33213146 DOI: 10.1021/acs.jmedchem.0c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β2-Adrenoceptor (β2-AR) agonists are widely used as bronchodilators. The emerge of ultralong acting β2-agonists is an important breakthrough in pulmonary medicine. In this review, we will provide mechanistic insights into the application of β2-agonists in asthma, chronic obstructive pulmonary disease (COPD), and heart failure (HF). Recent studies in β-AR signal transduction have revealed opposing functions of the β1-AR and the β2-AR on cardiomyocyte survival. Thus, β2-agonists and β-blockers in combination may represent a novel strategy for HF management. Allosteric modulation and biased agonism at the β2-AR also provide a theoretical basis for developing drugs with novel mechanisms of action and pharmacological profiles. Overlap of COPD and HF presents a substantial clinical challenge but also a unique opportunity for evaluation of the cardiovascular safety of β2-agonists. Further basic and clinical research along these lines can help us develop better drugs and innovative strategies for the management of these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mao-Sheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
16
|
Drd2 biased agonist prevents neurodegeneration against NLRP3 inflammasome in Parkinson's disease model via a β-arrestin2-biased mechanism. Brain Behav Immun 2020; 90:259-271. [PMID: 32861720 DOI: 10.1016/j.bbi.2020.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/14/2023] Open
Abstract
Activated astrocytes secrete inflammatory cytokines such as interleukin-1β (IL-1β) into the extracellular milieu, damaging surrounding neurons and involving in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Dopamine receptor D2 (Drd2) expresses both in neurons and astrocytes, and neuronal Drd2 is a significant target in therapy of PD. Our previous study reveals that astrocytic Drd2 exerts anti-inflammatory effect via non-classical β-arrestin2 signaling in PD model. Therefore, seeking new biased ligands of Drd2 with better efficacy and fewer side effects to treat PD is desirable and meaningful. In the present study, we evaluated the effects of UNC9995, a novel biased Drd2 agonist on astrocyte-derived neuroinflammation and dopaminergic (DA) neuron degenerationin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We showed that UNC9995 rescued the TH+ neurons loss and inhibited glial cells activation in mouse substantia nigra in a Drd2 dependent manner. Focusing on astrocytes, we found UNC9995 shows a relatively safe concentration range and significantly suppresses astrocytic NLRP3 inflammasome activation induced by lipopolysaccharide plus ATP. Further study revealed that the anti-inflammatory effect of UNC9995 is independent of Drd2 / Gαi protein pathway. It activates β-arrestin2 by recruiting it to cell membrane. Critically, UNC9995 enhances β-arrestin2 interacting with NLRP3 to interfere inflammasome assembly, which consequently reduces IL-1β production. On the other hand, UNC9995 inhibits IL-1β-induced inflammatory pathway activation in DA neurons and rescues subsequent apoptosis via β-arrestin2 interacting with protein kinases, such as JNK and suppressing their phosphorylation. Furthermore, β-arrestin2 knockout abolishes the anti-inflammatory and neuroprotective effects of UNC9995 in PD mouse model, supporting that UNC9995 is a β-arrestin2-biased Drd2 agonist and revealing its novel function in PD treatment. Collectively, this work illustrates that Drd2 agonist UNC9995 prevents DA neuron degeneration in PD and provides a new strategy for developing the β-arrestin2-biased ligands in the therapy of NDDs.
Collapse
|
17
|
Abstract
Heart failure is a major source of morbidity and mortality, driven, in part, by maladaptive sympathetic hyperactivity in response to poor cardiac output. Current therapies target β-adrenergic and angiotensin II G protein-coupled receptors to reduce adverse cardiac remodeling and improve clinical outcomes; however, there is a pressing need for new therapeutic approaches to preserve cardiac function. β-arrestin is a multifunctional protein which has come under analysis in recent years as a key player in G protein-coupled receptor signal transduction and a potential therapeutic target in heart failure. β-arrestin attenuates β-adrenergic and angiotensin II receptor signaling to limit the deleterious response to excessive sympathetic stimulation while simultaneously transactivating cardioprotective signaling cascades that preserve cardiac structure and function in response to injury. β-arrestin signaling may provide unique advantages compared to classic heart failure treatment approaches, but a number of challenges currently limit clinical applications. In this review, we discuss the role and functions of β-arrestin and the current attempts to develop G protein-coupled receptor agonists biased towards β-arrestin activation. Furthermore, we examine the functional diversity of cardiac β-arrestin isotypes to explore key considerations in the promise of β-arrestin as a pharmacotherapeutic target in heart failure.
Collapse
|
18
|
Abstract
GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as βARs (β-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, β-arrestin-mediated signaling, and conformational heterogeneity.
Collapse
Affiliation(s)
- Jialu Wang
- From the Department of Medicine (J.W., C.G., H.A.R.)
| | | | - Howard A Rockman
- From the Department of Medicine (J.W., C.G., H.A.R.).,Department of Cell Biology (H.A.R.).,Department of Molecular Genetics and Microbiology (H.A.R.), Duke University Medical Center, Durham, NC
| |
Collapse
|
19
|
Oliver E, Mayor Jr F, D’Ocon P. Bloqueadores beta: perspectiva histórica y mecanismos de acción. Rev Esp Cardiol 2019. [DOI: 10.1016/j.recesp.2019.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Oliver E, Mayor F, D'Ocon P. Beta-blockers: Historical Perspective and Mechanisms of Action. ACTA ACUST UNITED AC 2019; 72:853-862. [PMID: 31178382 DOI: 10.1016/j.rec.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Beta-blockers are widely used molecules that are able to antagonize β-adrenergic receptors (ARs), which belong to the G protein-coupled receptor family and receive their stimulus from endogenous catecholamines. Upon β-AR stimulation, numerous intracellular cascades are activated, ultimately leading to cardiac contraction or vascular dilation, depending on the relevant subtype and their location. Three subtypes have been described that are differentially expressed in the body (β1-, β2- and β3-ARs), β1 being the most abundant subtype in the heart. Since their discovery, β-ARs have become an important target to fight cardiovascular disease. In fact, since their discovery by James Black in the late 1950s, β-blockers have revolutionized the field of cardiovascular therapies. To date, 3 generations of drugs have been released: nonselective β-blockers, cardioselective β-blockers (selective β1-antagonists), and a third generation of these drugs able to block β1 together with extra vasodilation activity (also called vasodilating β-blockers) either by blocking α1- or by activating β3-AR. More than 50 years after propranolol was introduced to the market due to its ability to reduce heart rate and consequently myocardial oxygen demand in the event of an angina attack, β-blockers are still widely used in clinics.
Collapse
Affiliation(s)
- Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Federico Mayor
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Pilar D'Ocon
- Departamento de Farmacología, Universitat de València, Valencia, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
21
|
|
22
|
Hu Y, Chen X, Li X, Li Z, Diao H, Liu L, Zhang J, Ju J, Wen L, Liu X, Pan Z, Xu C, Hai X, Zhang Y. MicroRNA‑1 downregulation induced by carvedilol protects cardiomyocytes against apoptosis by targeting heat shock protein 60. Mol Med Rep 2019; 19:3527-3536. [PMID: 30896796 PMCID: PMC6471343 DOI: 10.3892/mmr.2019.10034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) is the most common event in cardiovascular disease. Carvedilol, a β‑blocker with multiple pleiotropic actions, is widely used for the treatment cardiovascular diseases. However, the underlying mechanisms of carvedilol on alleviating MI are not fully understood. The aim of the present study was to investigate whether the beneficial effects of carvedilol were associated with regulation of microRNA‑1 (miR‑1). It was demonstrated that carvedilol ameliorated impaired cardiac function and decreased infarct size in a rat model of MI induced by coronary artery occlusion. Similarly, carvedilol reversed the H2O2‑induced decrease in cardiomyocyte viability in a dose‑dependent manner. The in vivo and in vitro models demonstrated the downregulation of miR‑1 following treatment with carvedilol. Overexpression of miR‑1, a known pro‑apoptotic miRNA, decreased cell viability and induced cell apoptosis. Transfection of miR‑1 abolished the beneficial effects of carvedilol. The expression of heat shock protein 60 (HSP60), a direct target of miR‑1, was identified to be decreased in MI and H2O2‑induced apoptosis, which was associated with a decrease in Bcl‑2 and an increase in Bax; expression was restored following treatment with carvedilol. It was concluded that carvedilol partially exhibited its beneficial effects by downregulating miR‑1 and increasing HSP60 expression. miR‑1 has become a member of the group of carvedilol‑responsive miRNAs. Future studies are required to fully elucidate the potential overlapping or compensatory effects of known carvedilol‑responsive miRNAs and their underlying mechanisms of action in the pathophysiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xi Chen
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xina Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhange Li
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongtao Diao
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lu Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jia Zhang
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jin Ju
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lin Wen
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xin Liu
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhenwei Pan
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chaoqian Xu
- Center of Chronic Diseases and Drug Research, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yong Zhang
- Department of Pharmacology, The State‑Province Key Laboratories of Biomedicine‑Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
23
|
Park M, Steinberg SF. Carvedilol Prevents Redox Inactivation of Cardiomyocyte Β 1-Adrenergic Receptors. JACC Basic Transl Sci 2018; 3:521-532. [PMID: 30175276 PMCID: PMC6116783 DOI: 10.1016/j.jacbts.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
The mechanism that leads to a decrease in β1-adrenergic receptor (β1AR) expression in the failing heart remains uncertain. This study shows that cardiomyocyte β1AR expression and isoproterenol responsiveness decrease in response to oxidative stress. Studies of mechanisms show that the redox-dependent decrease in β1AR expression is uniquely prevented by carvedilol and not other βAR ligands. Carvedilol also promotes the accumulation of N-terminally truncated β1ARs that confer protection against doxorubicin-induced apoptosis in association with activation of protein kinase B. The redox-induced molecular controls for cardiomyocyte β1ARs and pharmacologic properties of carvedilol identified in this study have important clinical and therapeutic implications.
Collapse
Key Words
- AKT
- AKT, protein kinase B
- CREB, cyclic adenosine monophosphate binding response element protein
- ERK, extracellular regulated kinase
- FL, full-length
- GFX, GF109203X
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- PKA, protein kinase A
- PKC, protein kinase C
- PTX, pertussis toxin
- ROS, reactive oxygen species
- cAMP, cyclic adenosine monophosphate
- cardiomyocytes
- cardioprotection
- oxidant stress
- β1-adrenergic receptor
- βAR, β-adrenergic receptor
Collapse
Affiliation(s)
- Misun Park
- Department of Pharmacology, Columbia University, New York, New York
| | | |
Collapse
|
24
|
Wang Y, Wang X, Li H, Xu M, Frank J, Luo J. Binge ethanol exposure induces endoplasmic reticulum stress in the brain of adult mice. Toxicol Appl Pharmacol 2018; 356:172-181. [PMID: 30114398 DOI: 10.1016/j.taap.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022]
Abstract
Alcohol abuse causes brain damage and cognitive dysfunction. However, the underlying mechanisms remain elusive. Endoplasmic reticulum (ER) acts as machinery to ensure the proper folding of newly synthesized proteins. The perturbation of ER, i.e., ER stress, plays a pivotal role in some neurological disorders. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is involved in the regulation of ER stress. The current study sought to determine whether binge ethanol exposure induces ER stress in adult mouse brain and the role mTOR signaling during this process. Adult C57BL6 mice received binge ethanol exposure by daily gavage (5 g/kg, 25% ethanol w/v) for 1, 5 or 10 days. Binge ethanol exposure caused neurodegeneration and neuroinflammation after 5 days of exposure, and a concomitant increase of ER stress and inhibition of mTOR. However, ethanol exposure did not significantly alter spatial learning and memory, and spontaneous locomotor activity. Ethanol treatment induced ER stress and the death of cultured neuronal cells. Cotreatment with an ER stress inhibitor, sodium 4-phenylbutyrate (4-PBA) significantly diminished ethanol-induced ER stress and neuronal apoptosis, suggesting that ER stress contributes to ethanol-induced neurodegeneration. Furthermore, the blockage of mTOR activity by rapamycin increased ER stress in cultured neuronal cells; whereas the activation or inhibition of ER stress by tunicamycin or 4-PBA respectively had little effects on mTOR signaling. These results suggested that mTOR signaling is upstream of ER stress and may thereby mediate ethanol-induced ER stress.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Xin Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Center for Health Services Research, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Hui Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jacqueline Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
25
|
Bayoumi AS, Teoh JP, Aonuma T, Yuan Z, Ruan X, Tang Y, Su H, Weintraub NL, Kim IM. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 2018; 113:1603-1614. [PMID: 29016706 DOI: 10.1093/cvr/cvx132] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/07/2017] [Indexed: 01/13/2023] Open
Abstract
Aims Acute myocardial infarction (MI) leads to cardiac remodelling and development of heart failure. Insufficient myocardial capillary density after MI is considered a critical determinant of this process. MicroRNAs (miRs), negative regulators of gene expression, have emerged as important players in MI. We previously showed that miR-532-5p (miR-532) is up-regulated by the β-arrestin-biased β-adrenergic receptor antagonist (β-blocker) carvedilol, which activates protective pathways in the heart independent of G protein-mediated second messenger signalling. Here, we hypothesize that β2-adrenergic receptor/β-arrestin-responsive miR-532 confers cardioprotection against MI. Methods and results Using cultured cardiac endothelial cell (CEC) and in vivo approaches, we show that CECs lacking miR-532 exhibit increased transition to a fibroblast-like phenotype via endothelial-to-mesenchymal transition (EndMT), while CECs over-expressing miR-532 display decreased EndMT. We also demonstrate that knockdown of miR-532 in mice causes abnormalities in cardiac structure and function as well as reduces CEC proliferation and cardiac vascularization after MI. Mechanistically, cardioprotection elicited by miR-532 is in part attributed to direct repression of a positive regulator of maladaptive EndMT, prss23 (a protease serine 23) in CECs. Conclusions In conclusion, these findings reveal a pivotal role for miR-532-prss23 axis in regulating CEC function after MI, and this novel axis could be suitable for therapeutic intervention in ischemic heart disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huabo Su
- Vascular Biology Center.,Department of Pharmacology and Toxicology
| | | | - Il-Man Kim
- Vascular Biology Center.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, CB-3717, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
26
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|
27
|
Teoh JP, Bayoumi AS, Aonuma T, Xu Y, Johnson JA, Su H, Weintraub NL, Tang Y, Kim IM. β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. J Mol Cell Cardiol 2018; 118:225-236. [PMID: 29627294 DOI: 10.1016/j.yjmcc.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize β-adrenergic receptor (βAR) signaling, β-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the β-arrestin-biased βAR ligand carvedilol, we previously showed that β-arrestin1 (not β-arrestin2)-biased β1AR (not β2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes β-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE Here, we investigate whether β-arrestin-mediated βAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a β-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on β2ARs and β1ARs, respectively. Mechanistically, β-arrestin 1 or 2 regulates maturation of three newly identified βAR/β-arrestin-responsive miRs (β-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of β-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, β-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS Our findings indicate a novel role for βAR-mediated β-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Tatsuya Aonuma
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Yanyan Xu
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - John A Johnson
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
28
|
Abstract
G protein-coupled receptors (GPCRs) remain primary therapeutic targets for numerous cardiovascular disorders, including heart failure (HF), because of their influence on cardiac remodeling in response to elevated neurohormone signaling. GPCR blockers have proven to be beneficial in the treatment of HF by reducing chronic G protein activation and cardiac remodeling, thereby extending the lifespan of patients with HF. Unfortunately, this effect does not persist indefinitely, thus next-generation therapeutics aim to selectively block harmful GPCR-mediated pathways while simultaneously promoting beneficial signaling. Transactivation of epidermal growth factor receptor (EGFR) has been shown to be mediated by an expanding repertoire of GPCRs in the heart, and promotes cardiomyocyte survival, thus may offer a new avenue of HF therapeutics. However, GPCR-dependent EGFR transactivation has also been shown to regulate cardiac hypertrophy and fibrosis by different GPCRs and through distinct molecular mechanisms. Here, we discuss the mechanisms and impact of GPCR-mediated EGFR transactivation in the heart, focusing on angiotensin II, urotensin II, and β-adrenergic receptor systems, and highlight areas of research that will help us to determine whether this pathway can be engaged as future therapeutic strategy.
Collapse
|
29
|
Sun JC, Liu B, Zhang RW, Jiao PL, Tan X, Wang YK, Wang WZ. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension. Front Physiol 2018; 9:297. [PMID: 29643817 PMCID: PMC5882868 DOI: 10.3389/fphys.2018.00297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R) in the rostral ventrolateral medulla (RVLM). β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR), and further determine the effect of β-arrestin1 on AT1R expression in the RVLM. Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of WKY and SHR. Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly (P < 0.05) downregulated by an average of 64% in SHR than WKY. Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol). Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α. Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.
Collapse
Affiliation(s)
- Jia-Cen Sun
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Bing Liu
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Ru-Wen Zhang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Pei-Lei Jiao
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Xing Tan
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Yang-Kai Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| |
Collapse
|
30
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
31
|
A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cell Cardiol 2017; 114:72-82. [PMID: 29122578 DOI: 10.1016/j.yjmcc.2017.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/22/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. MiR-125b-5p is downregulated in patients with end-stage dilated and ischemic cardiomyopathy, and has been proposed as a biomarker of heart failure. We previously reported that the β-blocker carvedilol promotes cardioprotection via β-arrestin-biased agonism of β1-adrenergic receptor while stimulating miR-125b-5p processing in the mouse heart. We hypothesize that β1-adrenergic receptor/β-arrestin1-responsive miR-125b-5p confers the improvement of cardiac function and structure after acute myocardial infarction. METHODS AND RESULTS Using cultured cardiomyocyte (CM) and in vivo approaches, we show that miR-125b-5p is an ischemic stress-responsive protector against CM apoptosis. CMs lacking miR-125b-5p exhibit increased susceptibility to stress-induced apoptosis, while CMs overexpressing miR-125b-5p have increased phospho-AKT pro-survival signaling. Moreover, we demonstrate that loss-of-function of miR-125b-5p in the mouse heart causes abnormalities in cardiac structure and function after acute myocardial infarction. Mechanistically, the improvement of cardiac function and structure elicited by miR-125b-5p is in part attributed to repression of the pro-apoptotic genes Bak1 and Klf13 in CMs. CONCLUSIONS In conclusion, these findings reveal a pivotal role for miR-125b-5p in regulating CM survival during acute myocardial infarction.
Collapse
|
32
|
Shah P, Bristow MR, Port JD. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential. Curr Heart Fail Rep 2017; 14:454-464. [DOI: 10.1007/s11897-017-0362-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Ford BM, Franks LN, Tai S, Fantegrossi WE, Stahl EL, Berquist MD, Cabanlong CV, Wilson CD, Penthala NR, Crooks PA, Prather PL. Characterization of structurally novel G protein biased CB 1 agonists: Implications for drug development. Pharmacol Res 2017; 125:161-177. [PMID: 28838808 DOI: 10.1016/j.phrs.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
Abstract
The human cannabinoid subtype 1 receptor (hCB1R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB1R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in β-arrestin knockout mice suggest that interaction of certain GPCRs, including μ-, δ-, κ-opioid and hCB1Rs, with β-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to β-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB1Rs might be improved by development of G-protein biased hCB1R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB1 receptors. Our studies found that a novel IQD-derived hCB1 receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB1R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no β-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to β-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced β-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB1Rs compared to similar treatment with CP-55,940. PNR-4-20 (i.p.) is active in the cannabinoid tetrad in mice and chronic treatment results in development of less persistent tolerance and no significant withdrawal signs when compared to animals repeatedly exposed to the non-biased full agoinst JWH-018 or Δ9-THC. Finally, studies of a structurally similar analog PNR- 4-02 show that it is also a G protein biased hCB1R agonist. It is predicted that cannabinoid agonists that bias hCB1R activation toward G protein, relative to β-arrestin 2 signaling, will produce fewer and less severe adverse effects both acutely and chronically.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Edward L Stahl
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Michael D Berquist
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
34
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
35
|
Hampton C, Rosa R, Szeto D, Forrest G, Campbell B, Kennan R, Wang S, Huang CH, Gichuru L, Ping X, Shen X, Small K, Madwed J, Lynch JJ. Effects of carvedilol on structural and functional outcomes and plasma biomarkers in the mouse transverse aortic constriction heart failure model. SAGE Open Med 2017; 5:2050312117700057. [PMID: 28491305 PMCID: PMC5406154 DOI: 10.1177/2050312117700057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. METHODS Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. RESULTS Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with β-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma brain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10-0.12) with the mid- and high-dose carvedilol treatment. CONCLUSION A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model.
Collapse
Affiliation(s)
- Caryn Hampton
- In Vivo Pharmacology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Raymond Rosa
- In Vivo Pharmacology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Daphne Szeto
- In Vivo Pharmacology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Gail Forrest
- In Vivo Pharmacology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Barry Campbell
- Translational Imaging Biomarkers, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Richard Kennan
- Translational Imaging Biomarkers, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Shubing Wang
- Biometrics Research, Merck Research Laboratories (MRL), Rahway, NJ, USA
| | - Chin-Hu Huang
- Cardiometabolic Disease Biology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Loise Gichuru
- Laboratory Animal Resources, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Xiaoli Ping
- Laboratory Animal Resources, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Xiaolan Shen
- Laboratory Animal Resources, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Kersten Small
- Cardiometabolic Disease Biology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Jeffrey Madwed
- Cardiometabolic Disease Biology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| | - Joseph J Lynch
- In Vivo Pharmacology, Merck Research Laboratories (MRL), Kenilworth, NJ, USA
| |
Collapse
|
36
|
Scrutinio D, Conserva F, Passantino A, Iacoviello M, Lagioia R, Gesualdo L. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: A genome-wide prospective study. J Heart Lung Transplant 2017; 36:616-624. [PMID: 28259597 DOI: 10.1016/j.healun.2017.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Circulating microRNAs (miRs) are promising biomarkers for heart failure (HF). Previous studies have provided inconsistent miR "signatures." The phenotypic and pathophysiologic heterogeneity of HF may have contributed to this inconsistency. In this study we assessed whether advanced HF (AHF) patients present a distinct miR signature compared with healthy subjects (HS) and mild to moderate HF (MHF) patients. METHODS The study consisted of 2 phases: a screening phase and a validation phase. In the screening phase, 752 miRs were profiled in HS and MHF and AHF patients (N = 15), using the real-time quantitative polymerase chain reaction (RT-qPCR) technique and global mean normalization. In the validation phase, the miRs found to be significantly dysregulated in AHF patients compared with both HS and MHF patients were validated in 15 HS, 25 patients with MHF and 29 with AHF, using RT-qPCR, and normalizing to exogenous (cel-miR-39) and endogenous controls. RESULTS In the screening phase, 5 miRs were found to be significantly dysregulated: -26a-5p; -145-3p; -150-5p; -485-3p; and -487b-3p. In the validation phase, miR-150-5p was confirmed to be significantly downregulated in AHF patients when compared with both HS and MHF patients, irrespective of the normalization method used. miR-26a-5p was confirmed to be significantly dysregulated only when normalized to cell-miR-39. Dysregulation of the other miRs could not be confirmed. miR-150-5p was significantly associated with maladaptive remodeling, disease severity and outcome. CONCLUSIONS Our data suggest miR-150-5p as a novel circulating biomarker for AHF. The association of miR-150-5p with maladaptive remodeling, disease severity and outcome supports the pathophysiologic relevance of downregulated miR-150-5p expression to AHF.
Collapse
Affiliation(s)
- Domenico Scrutinio
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy.
| | - Francesca Conserva
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy; Division of Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Andrea Passantino
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy
| | - Massimo Iacoviello
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rocco Lagioia
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
37
|
Sucharov CC, Kao DP, Port JD, Karimpour-Fard A, Quaife RA, Minobe W, Nunley K, Lowes BD, Gilbert EM, Bristow MR. Myocardial microRNAs associated with reverse remodeling in human heart failure. JCI Insight 2017; 2:e89169. [PMID: 28138556 DOI: 10.1172/jci.insight.89169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In dilated cardiomyopathies (DCMs) changes in expression of protein-coding genes are associated with reverse remodeling, and these changes can be regulated by microRNAs (miRs). We tested the general hypothesis that dynamic changes in myocardial miR expression are predictive of β-blocker-associated reverse remodeling. METHODS Forty-three idiopathic DCM patients (mean left ventricular ejection fraction 0.24 ± 0.09) were treated with β-blockers. Serial ventriculography and endomyocardial biopsies were performed at baseline, and after 3 and 12 months of treatment. Changes in RT-PCR (candidate miRs) or array-measured miRs were compared based on the presence (R) or absence (NR) of a reverse-remodeling response, and a miR-mRNA-function pathway analysis (PA) was performed. RESULTS At 3 months, 2 candidate miRs were selectively changed in Rs, decreases in miR-208a-3p and miR-591. PA revealed changes in miR-mRNA interactions predictive of decreased apoptosis and myocardial cell death. At 12 months, 5 miRs exhibited selective changes in Rs (decreases in miR-208a-3p, -208b-3p, 21-5p, and 199a-5p; increase in miR-1-3p). PA predicted decreases in apoptosis, cardiac myocyte cell death, hypertrophy, and heart failure, with increases in contractile and overall cardiac functions. CONCLUSIONS In DCMs, myocardial miRs predict the time-dependent reverse-remodeling response to β-blocker treatment, and likely regulate the expression of remodeling-associated miRs. TRIAL REGISTRATION ClinicalTrials.gov NCT01798992. FUNDING NIH 2R01 HL48013, 1R01 HL71118 (Bristow, PI); sponsored research agreements from Glaxo-SmithKline and AstraZeneca (Bristow, PI); NIH P20 HL101435 (Lowes, Port multi-PD/PI); sponsored research agreement from Miragen Therapeutics (Port, PI).
Collapse
Affiliation(s)
| | - David P Kao
- Division of Cardiology, Department of Medicine
| | | | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | | - Brian D Lowes
- Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Edward M Gilbert
- Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
38
|
Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol Ther (Seoul) 2017; 25:12-25. [PMID: 28035079 PMCID: PMC5207460 DOI: 10.4062/biomolther.2016.165] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/03/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.
Collapse
Affiliation(s)
- Zuzana Bologna
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
39
|
Zeng Z, Wang K, Li Y, Xia N, Nie S, Lv B, Zhang M, Tu X, Li Q, Tang T, Cheng X. Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4 + T cells by targeting Myc in patients with dilated cardiomyopathy. J Biol Chem 2016; 292:6004-6013. [PMID: 27974462 DOI: 10.1074/jbc.m116.765107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/06/2016] [Indexed: 11/06/2022] Open
Abstract
CD4+ T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4+ T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4+ T cell activation in DCM. CD4+ T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4+ T cells revealed a distinct pattern of miRNA expression in CD4+ T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4+ T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4+ T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4+ T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM.
Collapse
Affiliation(s)
- Zhipeng Zeng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ke Wang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Yuanyuan Li
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ni Xia
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Shaofang Nie
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Bingjie Lv
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Min Zhang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xin Tu
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qianqian Li
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Tingting Tang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xiang Cheng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| |
Collapse
|
40
|
Abstract
G protein-coupled receptors are the largest family of targets for current therapeutics. The classic model of their activation was binary, where agonist binding induced an active conformation and subsequent downstream signaling. Subsequently, the revised concept of biased agonism emerged, where different ligands at the same G protein-coupled receptor selectively activate one downstream pathway versus another. Advances in understanding the mechanism of biased agonism have led to the development of novel ligands, which have the potential for improved therapeutic and safety profiles. In this review, we summarize the theory and most recent breakthroughs in understanding biased signaling, examine recent laboratory investigations concerning biased ligands across different organ systems, and discuss the promising clinical applications of biased agonism.
Collapse
|
41
|
Park KM, Teoh JP, Wang Y, Broskova Z, Bayoumi AS, Tang Y, Su H, Weintraub NL, Kim IM. Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2016; 311:H371-83. [PMID: 27288437 PMCID: PMC5005281 DOI: 10.1152/ajpheart.00807.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The nonselective β-adrenergic receptor antagonist (β-blocker) carvedilol has been shown to protect against myocardial injury, but the detailed underlying mechanisms are unclear. We recently reported that carvedilol stimulates the processing of microRNA (miR)-199a-3p and miR-214 in the heart via β-arrestin1-biased β1-adrenergic receptor (β1AR) cardioprotective signaling. Here, we investigate whether these β-arrestin1/β1AR-responsive miRs mediate the beneficial effects of carvedilol against simulated ischemia/reperfusion (sI/R). Using cultured cardiomyocyte cell lines and primary cardiomyocytes, we demonstrate that carvedilol upregulates miR-199a-3p and miR-214 in both ventricular and atrial cardiomyocytes subjected to sI/R. Overexpression of the two miRs in cardiomyocytes mimics the effects of carvedilol to activate p-AKT survival signaling and the expression of a downstream pluripotency marker Sox2 in response to sI/R. Moreover, carvedilol-mediated p-AKT activation is abolished by knockdown of either miR-199a-3p or miR-214. Along with previous studies to directly link the cardioprotective actions of carvedilol to upregulation of p-AKT/stem cell markers, our findings suggest that the protective roles of carvedilol during ischemic injury are in part attributed to activation of these two protective miRs. Loss of function of miR-199a-3p and miR-214 also increases cardiomyocyte apoptosis after sI/R. Mechanistically, we demonstrate that miR-199a-3p and miR-214 repress the predictive or known apoptotic target genes ddit4 and ing4, respectively, in cardiomyocytes. These findings suggest pivotal roles for miR-199a-3p and miR-214 as regulators of cardiomyocyte survival and contributors to the functional benefits of carvedilol therapy.
Collapse
Affiliation(s)
- Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yongchao Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
42
|
Gurha P, Chen X, Lombardi R, Willerson JT, Marian AJ. Knockdown of Plakophilin 2 Downregulates miR-184 Through CpG Hypermethylation and Suppression of the E2F1 Pathway and Leads to Enhanced Adipogenesis In Vitro. Circ Res 2016; 119:731-50. [PMID: 27470638 DOI: 10.1161/circresaha.116.308422] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE PKP2, encoding plakophilin 2 (PKP2), is the most common causal gene for arrhythmogenic cardiomyopathy. OBJECTIVE To characterize miRNA expression profile in PKP2-deficient cells. METHODS AND RESULTS Control and PKP2-knockdown HL-1 (HL-1(Pkp2-shRNA)) cells were screened for 750 miRNAs using low-density microfluidic panels. Fifty-nine miRNAs were differentially expressed. MiR-184 was the most downregulated miRNA. Expression of miR-184 in the heart and cardiac myocyte was developmentally downregulated and was low in mature myocytes. MicroRNA-184 was predominantly expressed in cardiac mesenchymal progenitor cells. Knockdown of Pkp2 in cardiac mesenchymal progenitor cells also reduced miR-184 levels. Expression of miR-184 was transcriptionally regulated by the E2F1 pathway, which was suppressed in PKP2-deficient cells. Activation of E2F1, on overexpression of its activator CCND1 (cyclin D1) or knockdown of its inhibitor retinoblastoma 1, partially rescued miR-184 levels. In addition, DNA methyltransferase-1 was recruited to the promoter region of miR-184, and the CpG sites at the upstream region of miR-184 were hypermethylated. Treatment with 5-aza-2'-deoxycytidine, a demethylation agent, and knockdown of DNA methyltransferase-1 partially rescued miR-184 level. Pathway analysis of paired miR-184:mRNA targets identified cell proliferation, differentiation, and death as the main affected biological processes. Knockdown of miR-184 in HL-1 cells and mesenchymal progenitor cells induced and, conversely, its overexpression attenuated adipogenesis. CONCLUSIONS PKP2 deficiency leads to suppression of the E2F1 pathway and hypermethylation of the CpG sites at miR-184 promoter, resulting in downregulation of miR-184 levels. Suppression of miR-184 enhances and its activation attenuates adipogenesis in vitro. Thus, miR-184 contributes to the pathogenesis of adipogenesis in PKP2-deficient cells.
Collapse
Affiliation(s)
- Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Xiaofan Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute.
| |
Collapse
|
43
|
Najafi A, Sequeira V, Kuster DWD, van der Velden J. β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur J Clin Invest 2016; 46:362-74. [PMID: 26842371 DOI: 10.1111/eci.12598] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND To maintain the balance between the demand of the body and supply (cardiac output), cardiac performance is tightly regulated via the parasympathetic and sympathetic nervous systems. In heart failure, cardiac output (supply) is decreased due to pathologic remodelling of the heart. To meet the demands of the body, the sympathetic system is activated and catecholamines stimulate β-adrenergic receptors (β-ARs) to increase contractile performance and cardiac output. Although this is beneficial in the acute phase, chronic β-ARs stimulation initiates a cascade of alterations at the cellular level, resulting in a diminished contractile performance of the heart. MATERIALS AND METHODS This narrative review includes results from previously published systematic reviews and clinical and basic research publications obtained via PubMed up to May 2015. RESULTS We discuss the alterations that occur during sustained β-AR stimulation in diseased myocardium and emphasize the consequences of β-AR overstimulation for cardiac function. In addition, current treatment options as well as future therapeutic strategies to treat patients with heart failure to normalize consequences of β-AR overstimulation are discussed. CONCLUSIONS The heart is able to protect itself from chronic stimulation of the β-ARs via desensitization and reduced membrane availability of the β-ARs. However, ultimately this leads to an impaired downstream signalling and decreased protein kinase A (PKA)-mediated protein phosphorylation. β-blockers are widely used to prevent β-AR overstimulation and restore β-ARs in the failing hearts. However, novel and more specific therapeutic treatments are needed to improve treatment of HF in the future.
Collapse
Affiliation(s)
- Aref Najafi
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Vasco Sequeira
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
44
|
Affiliation(s)
- Paul C Simpson
- From the VA Medical Center, San Francisco, CA; and University of California, Department of Medicine and CVRI, San Francisco.
| |
Collapse
|
45
|
Williams R. Circulation Research
“In This Issue” Anthology. Circ Res 2015. [DOI: 10.1161/res.0000000000000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Teoh JP, Park KM, Broskova Z, Jimenez FR, Bayoumi AS, Archer K, Su H, Johnson J, Weintraub NL, Tang Y, Kim IM. Identification of gene signatures regulated by carvedilol in mouse heart. Physiol Genomics 2015; 47:376-85. [PMID: 26152686 DOI: 10.1152/physiolgenomics.00028.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 01/14/2023] Open
Abstract
Chronic treatment with the β-blocker carvedilol has been shown to reduce established maladaptive left ventricle (LV) hypertrophy and to improve LV function in experimental heart failure. However, the detailed mechanisms by which carvedilol improves LV failure are incompletely understood. We previously showed that carvedilol is a β-arrestin-biased β1-adrenergic receptor ligand, which activates cellular pathways in the heart independent of G protein-mediated second messenger signaling. More recently, we have demonstrated by microRNA (miR) microarray analysis that carvedilol upregulates a subset of mature and pre-mature miRs, but not their primary miR transcripts in mouse hearts. Here, we next sought to identify the effects of carvedilol on LV gene expression on a genome-wide basis. Adult mice were treated with carvedilol or vehicle for 1 wk. RNA was isolated from LV tissue and hybridized for microarray analysis. Gene expression profiling analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes into pathways involved in tight junction, malaria, viral myocarditis, glycosaminoglycan biosynthesis, and arrhythmogenic right ventricular cardiomyopathy. Genes encoding proteins in the tight junction, malaria, and viral myocarditis pathways were upregulated in the LV by carvedilol, while genes encoding proteins in the glycosaminoglycan biosynthesis and arrhythmogenic right ventricular cardiomyopathy pathways were downregulated by carvedilol. These gene expression changes may reflect the molecular mechanisms that underlie the functional benefits of carvedilol therapy.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Felix R Jimenez
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Krystal Archer
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - John Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
47
|
Zhang P, Kofron CM, Mende U. Heterotrimeric G protein-mediated signaling and its non-canonical regulation in the heart. Life Sci 2015; 129:35-41. [PMID: 25818188 PMCID: PMC4415990 DOI: 10.1016/j.lfs.2015.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 11/20/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) regulate a multitude of signaling pathways in mammalian cells by transducing signals from G protein-coupled receptors (GPCRs) to effectors, which in turn regulate cellular function. In the myocardium, G protein signaling occurs in all cardiac cell types and is centrally involved in the regulation of heart rate, pump function, and vascular tone and in the response to hemodynamic stress and injury. Perturbations in G protein-mediated signaling are well known to contribute to cardiac hypertrophy, failure, and arrhythmias. Most of the currently used drugs for cardiac and other diseases target GPCR signaling. In the canonical G protein signaling paradigm, G proteins that are located at the cytoplasmic surface of the plasma membrane become activated after an agonist-induced conformational change of GPCRs, which then allows GTP-bound Gα and free Gβγ subunits to activate or inhibit effector proteins. Research over the past two decades has markedly broadened the original paradigm with a GPCR-G protein-effector at the cell surface at its core by revealing novel binding partners and additional subcellular localizations for heterotrimeric G proteins that facilitate many previously unrecognized functional effects. In this review, we focus on non-canonical and epigenetic-related mechanisms that regulate heterotrimeric G protein expression, activation, and localization and discuss functional consequences using cardiac examples where possible. Mechanisms reviewed involve microRNAs, histone deacetylases, chaperones, alternative modes of G protein activation, and posttranslational modifications. Some of these newly characterized mechanisms may be further developed into novel strategies for the treatment of cardiac disease and beyond.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA
| | - Celinda M Kofron
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
48
|
Tang Y, Wang Y, Park KM, Hu Q, Teoh JP, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H, Tang Y, Ramesh G, Kim IM. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 2015; 106:387-97. [PMID: 25824147 DOI: 10.1093/cvr/cvv121] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/14/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. METHODS AND RESULTS Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. CONCLUSION These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury.
Collapse
Affiliation(s)
- Yaoping Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yongchao Wang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Qiuping Hu
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Punithavathi Ranganathan
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Calpurnia Jayakumar
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Ganesan Ramesh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University CB-3717, 1459 Laney Walker Blvd, Augusta, GA, USA
| |
Collapse
|
49
|
Miao Y, Chen H, Li M. MiR-19a overexpression contributes to heart failure through targeting ADRB1. Int J Clin Exp Med 2015; 8:642-649. [PMID: 25785039 PMCID: PMC4358494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
Beta1-adrenoreceptor (β1-AR) predominantly exists in the heart and β1-AR reduction is closely related to severity of heart failure (HF). In this study, our research focused on the miRNAs that may repress β1-AR directly, and aim to find out new markers and target molecules for HF. We first did Argonaute2 AGO2 knock down experiments and confirmed that endogenous adrenoceptor beta 1 (ADRB1) expression was suppressed by miRNAs. To further identify which miRNA suppress ADRB1 expression directly, we constructed the ADRB1 3'UTR reporter plasmid and selected sixteen candidate miRNAs. Confirmed by dual-luciferase assay and western blot, we found that miR-19a suppressed ADRB1 expression by directly targeting 3'UTR. Further expressions detection the levels of miR-19a, BNP and cAMP in 32 plasma samples of HF patients helped us to construct positive correlations between the expression levels of miR-19a and BNP or cAMP, hints miR-19a may be used as a biomarker in HF patients indicating cardiac function. In conclusion, this study confirmed miR-19a suppressed ADRB1 expression by directly targeting 3'UTR of ADRB1 and found an positive correlation between plasma miR-19a and BNP or cAMP levels in HF patients, which may contributes to fully understand the HF pathogenesis and develops new therapy for HF.
Collapse
Affiliation(s)
- Ye Miao
- Department of Health & Heart Center, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
| | - Hui Chen
- Department of Cardiovascular, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
| | - Min Li
- Department of Health & Heart Center, Beijing Friendship Hospital, Capital Medical UniversityBeijing 100050, China
| |
Collapse
|
50
|
Ahles A, Rodewald F, Rochais F, Bünemann M, Engelhardt S. Interhelical interaction and receptor phosphorylation regulate the activation kinetics of different human β1-adrenoceptor variants. J Biol Chem 2014; 290:1760-9. [PMID: 25451930 DOI: 10.1074/jbc.m114.607333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors represent the largest class of drug targets, but genetic variation within G protein-coupled receptors leads to variable drug responses and, thereby, compromises their therapeutic application. One of the most intensely studied examples is a hyperfunctional variant of the human β1-adrenoceptor that carries an arginine at position 389 in helix 8 (Arg-389-ADRB1). However, the mechanism underlying the higher efficacy of the Arg-389 variant remained unclear to date. Despite its hyperfunctionality, we found the Arg-389 variant of ADRB1 to be hyperphosphorylated upon continuous stimulation with norepinephrine compared with the Gly-389 variant. Using ADRB1 sensors to monitor activation kinetics by fluorescence resonance energy transfer, Arg-389-ADRB1 exerted faster activation speed and arrestin recruitment than the Gly-389 variant. Both activation speed and arrestin recruitment depended on phosphorylation of the receptor, as shown by knockdown of G protein-coupled receptor kinases and phosphorylation-deficient ADRB1 mutants. Structural modeling of the human β1-adrenoceptor suggested interaction of the side chain of Arg-389 with opposing amino acid residues in helix 1. Site-directed mutagenesis of Lys-85 and Thr-86 in helix 1 revealed that this interaction indeed determined ADRB1 activation kinetics. Taken together, these findings indicate that differences in interhelical interaction regulate the different activation speed and efficacy of ADRB1 variants.
Collapse
Affiliation(s)
- Andrea Ahles
- From the Institute of Pharmacology and Toxicology, Technische Universität München, 80802 Munich, Germany
| | - Fabian Rodewald
- From the Institute of Pharmacology and Toxicology, Technische Universität München, 80802 Munich, Germany
| | - Francesca Rochais
- the Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, 97080 Würzburg, Germany
| | - Moritz Bünemann
- the Institute of Pharmacology and Clinical Pharmacy, Universität Marburg, 35043 Marburg, Germany, and
| | - Stefan Engelhardt
- From the Institute of Pharmacology and Toxicology, Technische Universität München, 80802 Munich, Germany, the German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|