1
|
Yao B, Ma J, Ran Q, Chen H, He X. Mechanism of Valeriana officinalis L. extract improving atherosclerosis by regulating PGC-1α/Sirt3/Epac1 pathway. Front Pharmacol 2024; 15:1483518. [PMID: 39629078 PMCID: PMC11611558 DOI: 10.3389/fphar.2024.1483518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Objective To investigate the protective effect of the of Valeriana officinalis L. extract on mitochondrial injury in AS mice and the underlying mechanism. Methods Firstly, Ultra-High performance liquid chromatography-quadrupole time-of-flight mass spectrometer (UPLC / Q-TOF-MS) was proposed to explore the chemical composition of Valeriana officinalis L. extract. ApoE-/- mice were employed for in vivo experiments. The efficacy of Valeriana officinalis L. extract was detected by B-ultrasound, Biochemical, Oil Red O staining, HE staining and Masson staining analysis. The molecular mechanism of Valeriana officinalis L. extract in regulating mitochondrial energy metabolism for the treatment of atherosclerosis was elucidated after Monitoring System of Vascular Microcirculation in Vivo and transmission electron microscopy. Use the corresponding reagent kit to detect ACTH level, CHRNα1 level and ATP level, and measure the expression levels of PGC-1α, Sirt3, Epac1, Caspase-3, and Caspase-9 through real-time qPCR, and Western blot. Results A total of 29 metabolites were newly discovered from KYXC using UPLC-MS. The drug had a significant positive effect on the growth of atherosclerotic plaque in mice. It also improved the microcirculation of the heart and mesentery, reduced the levels of CHOL, TG, and VLDL in the serum, and increased the levels of HDL-C to maintain normal lipid metabolism in the body. Additionally, it increased the levels of ATP, improved the ultrastructure of mitochondria to maintain mitochondrial energy metabolism, and increased the levels of T-SOD to combat oxidative stress of the organism. Furthermore, the drug significantly increased the mRNA and protein expression of PGC-1α and Sirt3 in aortic tissue, while decreasing the mRNA and protein expression of Epac1, Caspase-3, and Caspase-9. Conclusion This study has verified that the extract of Valeriana officinalis L. is highly effective in enhancing atherosclerosis disease. The mechanism is suggested through the PGC-1α/Sirt3/Epac1 signaling pathway, which improves mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Bo Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jingzhuo Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingzhi Ran
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanhui He
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Liu Q, Li J, Li Y, Cheng M, Zhang H, Ma B. Estrogen Regulates Ca 2+ to Promote Mitochondrial Function Through G-Protein-Coupled Estrogen Receptors During Oocyte Maturation. Biomolecules 2024; 14:1430. [PMID: 39595606 PMCID: PMC11591592 DOI: 10.3390/biom14111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Estrogen is a steroid hormone that plays a key role in regulating many physiological processes, such as follicle activation and development and oocyte maturation in mammals. Ca2+ is crucial in oogenesis, oocyte maturation, ovulation, and fertilization. However, the mechanism by which estrogen regulates Ca2+ during oocyte maturation in mice has not been reported. This study revealed that Ca2+ levels in oocytes significantly increase during the 4-12 h period in vitro. Oocytes treated with 0.1 µM estrogen and 1 µM G1, a G-protein-coupled estrogen receptor (GPER) agonist, showed significantly increased Ca2+ levels, while treatment with 1 µM G15, an antagonist of GPER, significantly decreased Ca2+ levels. Notably, estrogen regulates Ca2+ in oocytes through the GPER pathway and promotes the expression of the Ca2+-producing protein EPAC1. In addition, estrogen alleviates the inhibitory effect of the Ca2+ chelator BAPTA-AM during oocyte maturation by promoting Ca2+ production. Furthermore, estrogen can promote the expression of the mitochondrial generation-associated protein SIRT1 through the GPER pathway, alleviate mitochondrial oxidative damage caused by BAPTA-AM, and restore the mitochondrial membrane potential level. Collectively, this study demonstrates that estrogen can regulate Ca2+ through the GPER-EPAC1 pathway and promote the expression of SIRT1, which promotes oocyte mitochondrial function during oocyte maturation.
Collapse
Affiliation(s)
- Qingyang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Q.L.); (J.L.); (Y.L.); (M.C.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Q.L.); (J.L.); (Y.L.); (M.C.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Yanxue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Q.L.); (J.L.); (Y.L.); (M.C.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Ming Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Q.L.); (J.L.); (Y.L.); (M.C.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Q.L.); (J.L.); (Y.L.); (M.C.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Q.L.); (J.L.); (Y.L.); (M.C.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
3
|
Jiang L, He H, Tang Y, Li J, Reilly S, Xin H, Li Z, Cai H, Zhang X. Activation of BK channels prevents diabetes-induced osteopenia by regulating mitochondrial Ca 2+ and SLC25A5/ANT2-PINK1-PRKN-mediated mitophagy. Autophagy 2024; 20:2388-2404. [PMID: 38873928 PMCID: PMC11572260 DOI: 10.1080/15548627.2024.2367184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Osteopenia and osteoporosis are among the most common metabolic bone diseases and represent major public health problems, with sufferers having an increased fracture risk. Diabetes is one of the most common diseases contributing to osteopenia and osteoporosis. However, the mechanisms underlying diabetes-induced osteopenia and osteoporosis remain unclear. Bone reconstruction, including bone formation and absorption, is a dynamic process. Large-conductance Ca2+-activated K+ channels (BK channels) regulate the function of bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts. Our previous studies revealed the relationship between BK channels and the function of osteoblasts via various pathways under physiological conditions. In this study, we reported a decrease in the expression of BK channels in mice with diabetes-induced osteopenia. BK deficiency enhanced mitochondrial Ca2+ and activated classical PINK1 (PTEN induced putative kinase 1)-PRKN/Parkin (parkin RBR E3 ubiquitin protein ligase)-dependent mitophagy, whereas the upregulation of BK channels inhibited mitophagy in osteoblasts. Moreover, SLC25A5/ANT2 (solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5), a critical inner mitochondrial membrane protein participating in PINK1-PRKN-dependent mitophagy, was also regulated by BK channels. Overall, these data identified a novel role of BK channels in regulating mitophagy in osteoblasts, which might be a potential target for diabetes-induced bone diseases.Abbreviations: AGE, advanced glycation end products; Baf A1, bafilomycin A1; BK channels, big-conductance Ca2+-activated K+ channels; BMSCs, bone marrow-derived mesenchymal stem cells; BSA, bovine serum albumin; FBG, fasting blood glucose; IMM, inner mitochondrial membrane; ITPR1, inositol 1,4,5-trisphosphate receptor 1; MAM, mitochondria-associated ER membrane; OMM, outer mitochondrial membrane; PINK1, PTEN induced putative kinase 1; PPID/CyP-D, peptidylprolyl isomerase D (cyclophilin D); PRKN/PARK2, parkin RBR E3 ubiquitin protein ligase; ROS, reactive oxygen species; SLC25A5/ANT2, solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5; STZ, streptozotocin.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Hui Cai
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA, USA
- Section of Nephrology, Atlanta Veteran Administration Medical Center, Decatur, GA, USA
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Abbad L, Détrait M, Kavvadas P, Bergonnier D, Melis L, Laudette M, Migeon T, Verpont MC, Lucas A, Chatziantoniou C, Lezoualc'h F. Signaling through cAMP-Epac1 induces metabolic reprogramming to protect podocytes in glomerulonephritis. Kidney Int 2024; 106:450-469. [PMID: 38821447 DOI: 10.1016/j.kint.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Unlike classical protein kinase A, with separate catalytic and regulatory subunits, EPACs are single chain multi-domain proteins containing both catalytic and regulatory elements. The importance of cAMP-Epac-signaling as an energy provider has emerged over the last years. However, little is known about Epac1 signaling in chronic kidney disease. Here, we examined the role of Epac1 during the progression of glomerulonephritis (GN). We first observed that total genetic deletion of Epac1 in mice accelerated the progression of nephrotoxic serum (NTS)-induced GN. Next, mice with podocyte-specific conditional deletion of Epac1 were generated and showed that NTS-induced GN was exacerbated in these mice. Gene expression analysis in glomeruli at the early and late phases of GN showed that deletion of Epac1 in podocytes was associated with major alterations in mitochondrial and metabolic processes and significant dysregulation of the glycolysis pathway. In vitro, Epac1 activation in a human podocyte cell line increased mitochondrial function to cope with the extra energy demand under conditions of stress. Furthermore, Epac1-induced glycolysis and lactate production improved podocyte viability. To verify the in vivo therapeutic potential of Epac1 activation, the Epac1 selective cAMP mimetic 8-pCPT was administered in wild type mice after induction of GN. 8-pCPT alleviated the progression of GN by improving kidney function with decreased structural injury with decreased crescent formation and kidney inflammation. Importantly, 8-pCPT had no beneficial effect in mice with Epac1 deletion in podocytes. Thus, our data suggest that Epac1 activation is an essential protective mechanism in GN by reprogramming podocyte metabolism. Hence, targeting Epac1 activation could represent a potential therapeutic approach.
Collapse
Affiliation(s)
- Lilia Abbad
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Health, Sorbonne University, Paris, France
| | - Maximin Détrait
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, University Toulouse III-Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Panagiotis Kavvadas
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Health, Sorbonne University, Paris, France
| | - Dorian Bergonnier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, University Toulouse III-Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Lisa Melis
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Health, Sorbonne University, Paris, France
| | - Marion Laudette
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, University Toulouse III-Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Tiffany Migeon
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Health, Sorbonne University, Paris, France
| | - Marie-Christine Verpont
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Health, Sorbonne University, Paris, France
| | - Alexandre Lucas
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, University Toulouse III-Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Health, Sorbonne University, Paris, France.
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, University Toulouse III-Paul Sabatier, UMR 1297-I2MC, Toulouse, France.
| |
Collapse
|
5
|
Perdijk O, Butler A, Macowan M, Chatzis R, Bulanda E, Grant RD, Harris NL, Wypych TP, Marsland BJ. Antibiotic-driven dysbiosis in early life disrupts indole-3-propionic acid production and exacerbates allergic airway inflammation in adulthood. Immunity 2024; 57:1939-1954.e7. [PMID: 39013465 DOI: 10.1016/j.immuni.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Antibiotic use in early life disrupts microbial colonization and increases the risk of developing allergies and asthma. We report that mice given antibiotics in early life (EL-Abx), but not in adulthood, were more susceptible to house dust mite (HDM)-induced allergic airway inflammation. This susceptibility was maintained even after normalization of the gut microbiome. EL-Abx decreased systemic levels of indole-3-propionic acid (IPA), which induced long-term changes to cellular stress, metabolism, and mitochondrial respiration in the lung epithelium. IPA reduced mitochondrial respiration and superoxide production and altered chemokine and cytokine production. Consequently, early-life IPA supplementation protected EL-Abx mice against exacerbated HDM-induced allergic airway inflammation in adulthood. These results reveal a mechanism through which EL-Abx can predispose the lung to allergic airway inflammation and highlight a possible preventative approach to mitigate the detrimental consequences of EL-Abx.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Alana Butler
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew Macowan
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Roxanne Chatzis
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Edyta Bulanda
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rhiannon D Grant
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Nicola L Harris
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Tomasz P Wypych
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland; Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Benjamin J Marsland
- Department of Immunology, Mucosal Immunology Research Group, School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
6
|
Lecchi G, Mocchetti C, Tunesi D, Berto A, Balasubramanian HB, Biswas S, Bagchi A, Pollastro F, Fresu LG, Talmon M. Single-Nucleotide Polymorphisms of TAS2R46 Affect the Receptor Downstream Calcium Regulation in Histamine-Challenged Cells. Cells 2024; 13:1204. [PMID: 39056786 PMCID: PMC11275237 DOI: 10.3390/cells13141204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bitter taste receptors (TAS2Rs) expressed in extraoral tissues represent a whole-body sensory system, whose role and mechanisms could be of interest for the identification of new therapeutic targets. It is known that TAS2R46s in pre-contracted airway smooth muscle cells increase mitochondrial calcium uptake, leading to bronchodilation, and that several SNPs have been identified in its gene sequence. There are very few reports on the structure-function analysis of TAS2Rs. Thus, we delved into the subject by using mutagenesis and in silico studies. We generated a cellular model that expresses native TAS2R46 to evaluate the influence of the four most common SNPs on calcium fluxes following the activation of the receptor by its specific ligand absinthin. Then, docking studies were conducted to correlate the calcium flux results to the structural mutation. The analysed SNPs differently modulate the TAS2R46 signal cascade according to the altered protein domain. In particular, the SNP in the sixth transmembrane domain of the receptors did not modulate calcium homeostasis, while the SNPs in the sequence coding for the fourth transmembrane domain completely abolished the mitochondrial calcium uptake. In conclusion, these results indicate the fourth transmembrane domain of TAS2R46 is critical for the intrinsic receptor activity.
Collapse
Affiliation(s)
- Giulia Lecchi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Chiara Mocchetti
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Davide Tunesi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Arianna Berto
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Hari Baskar Balasubramanian
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Sima Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
7
|
Li X, Liu W, Jiang G, Lian J, Zhong Y, Zhou J, Li H, Xu X, Liu Y, Cao C, Tao J, Cheng J, Zhang JH, Chen G. Celastrol Ameliorates Neuronal Mitochondrial Dysfunction Induced by Intracerebral Hemorrhage via Targeting cAMP-Activated Exchange Protein-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307556. [PMID: 38482725 PMCID: PMC11109624 DOI: 10.1002/advs.202307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Indexed: 05/23/2024]
Abstract
Mitochondrial dysfunction contributes to the development of secondary brain injury (SBI) following intracerebral hemorrhage (ICH) and represents a promising therapeutic target. Celastrol, the primary active component of Tripterygium wilfordii, is a natural product that exhibits mitochondrial and neuronal protection in various cell types. This study aims to investigate the neuroprotective effects of celastrol against ICH-induced SBI and explore its underlying mechanisms. Celastrol improves neurobehavioral and cognitive abilities in mice with autologous blood-induced ICH, reduces neuronal death in vivo and in vitro, and promotes mitochondrial function recovery in neurons. Single-cell nuclear sequencing reveals that the cyclic adenosine monophosphate (cAMP)/cAMP-activated exchange protein-1 (EPAC-1) signaling pathways are impacted by celastrol. Celastrol binds to cNMP (a domain of EPAC-1) to inhibit its interaction with voltage-dependent anion-selective channel protein 1 (VDAC1) and blocks the opening of mitochondrial permeability transition pores. After neuron-specific knockout of EPAC1, the neuroprotective effects of celastrol are diminished. In summary, this study demonstrates that celastrol, through its interaction with EPAC-1, ameliorates mitochondrial dysfunction in neurons, thus potentially improving SBI induced by ICH. These findings suggest that targeting EPAC-1 with celastrol can be a promising therapeutic approach for treating ICH-induced SBI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University168 Xianlin AvenueNanjing210023China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jinrong Lian
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Yi Zhong
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Xingshun Xu
- Department of NeurologyThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
- Department of Physiology and NeurobiologyMedical College of Soochow UniversitySuzhou215123China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - John H Zhang
- Department of Physiology and PharmacologySchool of MedicineLoma Linda UniversityLoma LindaCA92350USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| |
Collapse
|
8
|
Yang M, Shu W, Zhai X, Yang X, Zhou H, Pan B, Li C, Lu D, Cai J, Zheng S, Jin B, Wei X, Xu X. Integrated multi-omic analysis identifies fatty acid binding protein 4 as a biomarker and therapeutic target of ischemia-reperfusion injury in steatotic liver transplantation. Cell Mol Life Sci 2024; 81:83. [PMID: 38341383 PMCID: PMC10858962 DOI: 10.1007/s00018-023-05110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND AIMS Due to a lack of donor grafts, steatotic livers are used more often for liver transplantation (LT). However, steatotic donor livers are more sensitive to ischemia-reperfusion (IR) injury and have a worse prognosis after LT. Efforts to optimize steatotic liver grafts by identifying injury targets and interventions have become a hot issue. METHODS Mouse LT models were established, and 4D label-free proteome sequencing was performed for four groups: normal control (NC) SHAM, high-fat (HF) SHAM, NC LT, and HF LT to screen molecular targets for aggravating liver injury in steatotic LT. Expression detection of molecular targets was performed based on liver specimens from 110 donors to verify its impact on the overall survival of recipients. Pharmacological intervention using small-molecule inhibitors on an injury-related target was used to evaluate the therapeutic effect. Transcriptomics and metabolomics were performed to explore the regulatory network and further integrated bioinformatics analysis and multiplex immunofluorescence were adopted to assess the regulation of pathways and organelles. RESULTS HF LT group represented worse liver function compared with NC LT group, including more apoptotic hepatocytes (P < 0.01) and higher serum transaminase (P < 0.05). Proteomic results revealed that the mitochondrial membrane, endocytosis, and oxidative phosphorylation pathways were upregulated in HF LT group. Fatty acid binding protein 4 (FABP4) was identified as a hypoxia-inducible protein (fold change > 2 and P < 0.05) that sensitized mice to IR injury in steatotic LT. The overall survival of recipients using liver grafts with high expression of FABP4 was significantly worse than low expression of FABP4 (68.5 vs. 87.3%, P < 0.05). Adoption of FABP4 inhibitor could protect the steatotic liver from IR injury during transplantation, including reducing hepatocyte apoptosis, reducing serum transaminase (P < 0.05), and alleviating oxidative stress damage (P < 0.01). According to integrated transcriptomics and metabolomics analysis, cAMP signaling pathway was enriched following FABP4 inhibitor use. The activation of cAMP signaling pathway was validated. Microscopy and immunofluorescence staining results suggested that FABP4 inhibitors could regulate mitochondrial membrane homeostasis in steatotic LT. CONCLUSIONS FABP4 was identified as a hypoxia-inducible protein that sensitized steatotic liver grafts to IR injury. The FABP4 inhibitor, BMS-309403, could activate of cAMP signaling pathway thereby modulating mitochondrial membrane homeostasis, reducing oxidative stress injury in steatotic donors.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, 266035, China
| | - Shusen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China.
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Wang W, Li G, Ma J, Fan X, Lu J, Sun Q, Yao J, He Q. Microvascular rarefaction caused by the NOTCH signaling pathway is a key cause of TKI-apatinib-induced hypertension and cardiac damage. Front Pharmacol 2024; 15:1346905. [PMID: 38405666 PMCID: PMC10885812 DOI: 10.3389/fphar.2024.1346905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
With the advancement of tumour-targeted therapy technology, the survival of cancer patients has continued to increase, and cardiovascular events have gradually become an important cause of death in cancer patients. This phenomenon occurs due to adverse cardiovascular reactions caused by the cardiovascular toxicity of antitumour therapy. Moreover, the increase in the proportion of elderly patients with cancer and cardiovascular diseases is due to the extension of life expectancy. Hypertension is the most common cardiovascular side effect of small molecule tyrosine kinase inhibitors (TKIs). The increase in blood pressure induced by TKIs and subsequent cardiovascular complications and events affect the survival and quality of life of patients and partly offset the benefits of antitumour therapy. Many studies have confirmed that in the pathogenesis of hypertension, arterioles and capillary thinness are involved in its occurrence and development. Our previous findings showing that apatinib causes microcirculation rarefaction of the superior mesenteric artery and impaired microvascular growth may inspire new therapeutic strategies for treating hypertension. Thus, by restoring microvascular development and branching patterns, total peripheral resistance and blood pressure are reduced. Therefore, exploring the key molecular targets of TKIs that inhibit the expression of angiogenic factors and elucidating the specific molecular mechanism involved are key scientific avenues for effectively promoting endothelial cell angiogenesis and achieving accurate repair of microcirculation injury in hypertension patients.
Collapse
Affiliation(s)
- WenJuan Wang
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Guodong Li
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jie Ma
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Fan
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianzhong Lu
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qiyin Sun
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jiafang Yao
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qingjian He
- Department of Breast and Thyroid Surgery, The First People’s Hospital of Huzhou City, Huzhou, China
| |
Collapse
|
10
|
Liu H, Ma L, Fu J, Ma X, Gao Y, Xie Y, Yuan X, Wang Y, Yang W, Jiang S. Effect of zearalenone on the jejunum of weaned gilts through the Epac1/Rap1/JNK pathway. J Anim Sci 2024; 102:skae208. [PMID: 39051732 PMCID: PMC11367561 DOI: 10.1093/jas/skae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium strains that is harmful to the intestinal health of animals and is widely present in contaminated crops. The objective of this study was to investigate the potential therapeutic target of ZEN-induced jejunal damage in weaned gilts. Sixteen weaned gilts either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32-d experiment. The results showed that ZEN at the concentration of 3.0 mg/kg diet activated the inflammatory response and caused oxidative stress of gilts (P < 0.05). ZEN exposure resulted in the upregulation (P < 0.05) of the Exchange protein directly activated by the cAMP 1/Ras-related protein1/c-Jun N-terminal kinase (Epac1/Rap1/JNK) signaling pathway in the jejunum of gilts in vivo and in the intestinal porcine epithelial cells in vitro. The cell viability, EdU-positive cells, and the mRNA expression of B-cell lymphoma-2 (Bcl-2) were decreased, whereas the reactive oxygen species production and the mRNA expressions of Bcl-2-associated X (Bax) and Cysteine-aspartic acid protease 3 (Caspase3) were increased (P < 0.05) by ZEN. However, ZEN increased the mRNA expression of Bcl-2 and decreased the mRNA expressions of Bax and caspase3 (P < 0.05) after the Epac1 was blocked. These results collectively indicated that a 3.0 mg ZEN /kg diet induced jejunal damage via the Epac1/Rap1/JNK signaling pathway.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Lulu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiawei Fu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xiangyu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yufei Gao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yiping Xie
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
11
|
Bizerra PFV, Gilglioni EH, Li HL, Go S, Oude Elferink RPJ, Verhoeven AJ, Chang JC. Opposite regulation of glycogen metabolism by cAMP produced in the cytosol and at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119585. [PMID: 37714306 DOI: 10.1016/j.bbamcr.2023.119585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Cyclic AMP is produced in cells by two different types of adenylyl cyclases: at the plasma membrane by the transmembrane adenylyl cyclases (tmACs, ADCY1~ADCY9) and in the cytosol by the evolutionarily more conserved soluble adenylyl cyclase (sAC, ADCY10). By employing high-resolution extracellular flux analysis in HepG2 cells to study glycogen breakdown in real time, we showed that cAMP regulates glycogen metabolism in opposite directions depending on its location of synthesis within cells and the downstream cAMP effectors. While the canonical tmAC-cAMP-PKA signaling promotes glycogenolysis, we demonstrate here that the non-canonical sAC-cAMP-Epac1 signaling suppresses glycogenolysis. Mechanistically, suppression of sAC-cAMP-Epac1 leads to Ser-15 phosphorylation and thereby activation of the liver-form glycogen phosphorylase to promote glycogenolysis. Our findings highlight the importance of cAMP microdomain organization for distinct metabolic regulation and establish sAC as a novel regulator of glycogen metabolism.
Collapse
Affiliation(s)
- Paulo F V Bizerra
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; State University of Maringá, Paraná, Brazil
| | - Eduardo H Gilglioni
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Signal Transduction and Metabolism Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Hang Lam Li
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur J Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Ferri G, Fernández LR, Di Mario G, Musikant D, Palermo JA, Edreira MM. Host cell cAMP-Epac-Rap1b pathway inhibition by hawthorn extract as a potential target against Trypanosoma cruzi infection. Front Microbiol 2023; 14:1301862. [PMID: 38156015 PMCID: PMC10754523 DOI: 10.3389/fmicb.2023.1301862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
Although the two drugs currently available for the treatment of Chagas disease, Benznidazole and Nifurtimox, have proven to be effective in the acute phase of the disease, the 60-90-day treatment leads to high toxicity and unwanted side effects, presenting, in addition, a low efficacy in the chronic phase of the disease. For this reason, new therapies that are more effective are needed. In this regard, we have recently shown that the inhibition of the Epac-Rap1b pathway suppressed the cAMP-mediated host cell invasion by Trypanosoma cruzi. Interestingly, it has been described that vitexin, a natural flavone that protects against ischemia-reperfusion damage, acts by inhibiting the expression of Epac and Rap1 proteins. Vitexin can be found in plants of the genus Crataegus spp., traditionally known as hawthorn, which are of great interest considering their highly documented use as cardio-protectors. Pre-treating cells with an extract of Crataegus oxyacantha produced levels of T. cruzi invasion comparable to the ones observed for the commercially available Epac1-specific inhibitor, ESI-09. In addition, extract-treated cells exhibited a decrease in the activation of Rap1b, suggesting that the effects of the extract would be mediated by the inhibition of the cAMP-Epac-Rap1 signaling pathway. Using HPLC-HRMS2, we could confirm the presence of vitexin, and other flavones that could act as inhibitors of Epac/Rap1b, in the extracts of C. oxyacantha. Most significantly, when cells were treated with the extract of C. oxyacantha in conjunction with Nifurtimox, an increased modulation of invasion was observed.
Collapse
Affiliation(s)
- Gabriel Ferri
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
| | - Lucía R. Fernández
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Di Mario
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
| | - Daniel Musikant
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
| | - Jorge A. Palermo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin M. Edreira
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
- Laboratorio de Biología Molecular de Trypanosomas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Talmon M, Massara E, Quaregna M, De Battisti M, Boccafoschi F, Lecchi G, Puppo F, Bettega Cajandab MA, Salamone S, Bovio E, Boldorini R, Riva B, Pollastro F, Fresu LG. Bitter taste receptor (TAS2R) 46 in human skeletal muscle: expression and activity. Front Pharmacol 2023; 14:1205651. [PMID: 37771728 PMCID: PMC10522851 DOI: 10.3389/fphar.2023.1205651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 09/30/2023] Open
Abstract
Bitter taste receptors are involved not only in taste perception but in various physiological functions as their anatomical location is not restricted to the gustatory system. We previously demonstrated expression and activity of the subtype hTAS2R46 in human airway smooth muscle and broncho-epithelial cells, and here we show its expression and functionality in human skeletal muscle cells. Three different cellular models were used: micro-dissected human skeletal tissues, human myoblasts/myotubes and human skeletal muscle cells differentiated from urine stem cells of healthy donors. We used qPCR, immunohistochemistry and immunofluorescence analysis to evaluate gene and protein hTAS2R46 expression. In order to explore receptor activity, cells were incubated with the specific bitter ligands absinthin and 3ß-hydroxydihydrocostunolide, and calcium oscillation and relaxation were evaluated by calcium imaging and collagen assay, respectively, after a cholinergic stimulus. We show, for the first time, experimentally the presence and functionality of a type 2 bitter receptor in human skeletal muscle cells. Given the tendentially protective role of the bitter receptors starting from the oral cavity and following also in the other ectopic sites, and given its expression already at the myoblast level, we hypothesize that the bitter receptor can play an important role in the development, maintenance and in the protection of muscle tissue functions.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Erika Massara
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Martina Quaregna
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marta De Battisti
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesca Boccafoschi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giulia Lecchi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Federico Puppo
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | | | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Enrica Bovio
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Luigia G. Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
14
|
Iannucci LF, D'Erchia AM, Picardi E, Bettio D, Conca F, Surdo NC, Di Benedetto G, Musso D, Arrigoni C, Lolicato M, Vismara M, Grisan F, Salviati L, Milanesi L, Pesole G, Lefkimmiatis K. Cyclic AMP induces reversible EPAC1 condensates that regulate histone transcription. Nat Commun 2023; 14:5521. [PMID: 37684224 PMCID: PMC10491619 DOI: 10.1038/s41467-023-41088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.
Collapse
Affiliation(s)
- Liliana Felicia Iannucci
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Filippo Conca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Nicoletta Concetta Surdo
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Deborah Musso
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy.
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy.
| |
Collapse
|
15
|
Mazevet M, Belhadef A, Ribeiro M, Dayde D, Llach A, Laudette M, Belleville T, Mateo P, Gressette M, Lefebvre F, Chen J, Bachelot-Loza C, Rucker-Martin C, Lezoualch F, Crozatier B, Benitah JP, Vozenin MC, Fischmeister R, Gomez AM, Lemaire C, Morel E. EPAC1 inhibition protects the heart from doxorubicin-induced toxicity. eLife 2023; 12:e83831. [PMID: 37551870 PMCID: PMC10484526 DOI: 10.7554/elife.83831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Marion Laudette
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | - Tiphaine Belleville
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | | | | | | | - Ju Chen
- Basic Cardiac Research UCSD School of Medicine La JollaSan DiegoUnited States
| | - Christilla Bachelot-Loza
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Catherine Rucker-Martin
- Faculté de Médecine, Université Paris-SaclayLe Kremlin BicêtreFrance
- Inserm UMR_S 999, Hôpital Marie LannelongueLe Plessis RobinsonFrance
| | - Frank Lezoualch
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | | | | | | | | | | | - Christophe Lemaire
- Université Paris-SaclayOrsayFrance
- Université Paris-Saclay, UVSQ, InsermOrsayFrance
| | | |
Collapse
|
16
|
Yang W, Xia F, Mei F, Shi S, Robichaux WG, Lin W, Zhang W, Liu H, Cheng X. Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37651112 PMCID: PMC10476449 DOI: 10.1167/iovs.64.11.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose The pathogenic mechanisms behind the development of ischemic retinopathy are complex and poorly understood. This study investigates the involvement of exchange protein directly activated by cAMP (Epac)1 signaling in pericyte injury during ischemic retinopathy, including diabetic retinopathy, a disease that threatens vision. Methods Mouse models of retinal ischemia-reperfusion injury and type 1 diabetes induced by streptozotocin were used to investigate the pathogenesis of these diseases. The roles of Epac1 signaling in the pathogenesis of ischemic retinopathy were determined by an Epac1 knockout mouse model. The cellular and molecular mechanisms of Epac1-mediated pericyte dysfunction in response to high glucose were investigated by specific modulation of Epac1 activity in primary human retinal pericytes using Epac1-specific RNA interference and a pharmacological inhibitor. Results Ischemic injury or diabetes-induced retinal capillary degeneration were associated with an increased expression of Epac1 in the mouse retinal vasculature, including both endothelial cells and pericytes. Genetic deletion of Epac1 protected ischemic injury-induced pericyte loss and capillary degeneration in the mouse retina. Furthermore, high glucose-induced Epac1 expression in retinal pericytes was accompanied by increased Drp1 phosphorylation, mitochondrial fission, reactive oxygen species production, and caspase 3 activation. Inhibition of Epac1 via RNA interference or pharmacological approaches blocked high glucose-mediated mitochondrial dysfunction and caspase 3 activation. Conclusions Our study reveals an important role of Epac1 signaling in mitochondrial dynamics, reactive oxygen species production, and apoptosis in retinal pericytes and identifies Epac1 as a therapeutic target for treating ischemic retinopathy.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
17
|
Sartre C, Peurois F, Ley M, Kryszke MH, Zhang W, Courilleau D, Fischmeister R, Ambroise Y, Zeghouf M, Cianferani S, Ferrandez Y, Cherfils J. Membranes prime the RapGEF EPAC1 to transduce cAMP signaling. Nat Commun 2023; 14:4157. [PMID: 37438343 DOI: 10.1038/s41467-023-39894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation. We find that anionic membranes activate EPAC1 independently of cAMP, increase its affinity for cAMP by two orders of magnitude, and synergize with cAMP to yield maximal GEF activity. In the cell cytosol, where cAMP concentration is low, EPAC1 must thus be primed by membranes to bind cAMP. Examination of the cell-active chemical CE3F4 in this framework further reveals that it targets only fully activated EPAC1. Together, our findings reformulate previous concepts of cAMP signaling through EPAC proteins, with important implications for drug discovery.
Collapse
Affiliation(s)
- Candice Sartre
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - François Peurois
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Marie Ley
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Marie-Hélène Kryszke
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Wenhua Zhang
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Delphine Courilleau
- Université Paris-Saclay, IPSIT-CIBLOT, Inserm US31, CNRS UAR3679, 91400, Orsay, France
| | | | - Yves Ambroise
- Université Paris-Saclay, CEA, Service de Chimie Bioorganique et de Marquage, 91191, Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Yann Ferrandez
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Greiser M, Karbowski M, Kaplan AD, Coleman AK, Verhoeven N, Mannella CA, Lederer WJ, Boyman L. Calcium and bicarbonate signaling pathways have pivotal, resonating roles in matching ATP production to demand. eLife 2023; 12:e84204. [PMID: 37272417 PMCID: PMC10284600 DOI: 10.7554/elife.84204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
Mitochondrial ATP production in ventricular cardiomyocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local cardiomyocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane and produces bicarbonate in a reaction accelerated by carbonic anhydrase. The bicarbonate level is tracked physiologically by a bicarbonate-activated soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular cardiomyocytes where it generates cAMP when activated by bicarbonate. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein-1). Thus, mitochondrial ATP production is increased by bicarbonate-triggered sAC-signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Maura Greiser
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Physiology, University of Marylan School of MedicineBaltimoreUnited States
- Claude D. Pepper Older Americans Independence Center, University of Maryland School of MedicineBaltimoreUnited States
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Biochemistry and Molecular Biology, University of Maryland School of MedicineBaltimoreUnited States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of MedicineBaltimoreUnited States
| | - Aaron David Kaplan
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of MedicineBaltimoreUnited States
| | - Andrew Kyle Coleman
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Physiology, University of Marylan School of MedicineBaltimoreUnited States
| | - Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Biochemistry and Molecular Biology, University of Maryland School of MedicineBaltimoreUnited States
| | - Carmen A Mannella
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Physiology, University of Marylan School of MedicineBaltimoreUnited States
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Physiology, University of Marylan School of MedicineBaltimoreUnited States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of MedicineBaltimoreUnited States
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Physiology, University of Marylan School of MedicineBaltimoreUnited States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of MedicineBaltimoreUnited States
| |
Collapse
|
19
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
20
|
Foret-Lucas C, Figueroa T, Bertin A, Bessière P, Lucas A, Bergonnier D, Wasniewski M, Servat A, Tessier A, Lezoualc’h F, Volmer R. EPAC1 Pharmacological Inhibition with AM-001 Prevents SARS-CoV-2 and Influenza A Virus Replication in Cells. Viruses 2023; 15:319. [PMID: 36851533 PMCID: PMC9965159 DOI: 10.3390/v15020319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The exceptional impact of the COVID-19 pandemic has stimulated an intense search for antiviral molecules. Host-targeted antiviral molecules have the potential of presenting broad-spectrum antiviral activity and are also considered as less likely to select for resistant viruses. In this study, we investigated the antiviral activity exerted by AM-001, a specific pharmacological inhibitor of EPAC1, a host exchange protein directly activated by cyclic AMP (cAMP). The cAMP-sensitive protein, EPAC1 regulates various physiological and pathological processes but its role in SARS-CoV-2 and influenza A virus infection has not yet been studied. Here, we provide evidence that the EPAC1 specific inhibitor AM-001 exerts potent antiviral activity against SARS-CoV-2 in the human lung Calu-3 cell line and the African green monkey Vero cell line. We observed a concentration-dependent inhibition of SARS-CoV-2 infectious viral particles and viral RNA release in the supernatants of AM-001 treated cells that was not associated with a significant impact on cellular viability. Furthermore, we identified AM-001 as an inhibitor of influenza A virus in Calu-3 cells. Altogether these results identify EPAC1 inhibition as a promising therapeutic target against viral infections.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Alexandre Bertin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Alexandre Lucas
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Dorian Bergonnier
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Marine Wasniewski
- Nancy Laboratory for Rabies and Wildlife, ANSES, Lyssavirus Unit, 54220 Malzéville, France
| | - Alexandre Servat
- Nancy Laboratory for Rabies and Wildlife, ANSES, Lyssavirus Unit, 54220 Malzéville, France
| | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| | - Frank Lezoualc’h
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| |
Collapse
|
21
|
Demydenko K, Ekhteraei-Tousi S, Roderick HL. Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210319. [PMID: 36189803 PMCID: PMC9527928 DOI: 10.1098/rstb.2021.0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contraction of cardiac muscle underlying the pumping action of the heart is mediated by the process of excitation-contraction coupling (ECC). While triggered by Ca2+ entry across the sarcolemma during the action potential, it is the release of Ca2+ from the sarcoplasmic reticulum (SR) intracellular Ca2+ store via ryanodine receptors (RyRs) that plays the major role in induction of contraction. Ca2+ also acts as a key intracellular messenger regulating transcription underlying hypertrophic growth. Although Ca2+ release via RyRs is by far the greatest contributor to the generation of Ca2+ transients in the cardiomyocyte, Ca2+ is also released from the SR via inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs). This InsP3-induced Ca2+ release modifies Ca2+ transients during ECC, participates in directing Ca2+ to the mitochondria, and stimulates the transcription of genes underlying hypertrophic growth. Central to these specific actions of InsP3Rs is their localization to responsible signalling microdomains, the dyad, the SR-mitochondrial interface and the nucleus. In this review, the various roles of InsP3R in cardiac (patho)physiology and the mechanisms by which InsP3 signalling selectively influences the different cardiomyocyte cell processes in which it is involved will be presented. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Zheng-hong Qin
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
23
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Peugnet V, Chwastyniak M, Mulder P, Lancel S, Bultot L, Fourny N, Renguet E, Bugger H, Beseme O, Loyens A, Heyse W, Richard V, Amouyel P, Bertrand L, Pinet F, Dubois-Deruy E. Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes. Antioxidants (Basel) 2022; 11:antiox11040723. [PMID: 35453408 PMCID: PMC9029275 DOI: 10.3390/antiox11040723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure, mostly associated with cardiac hypertrophy, is a major cause of illness and death. Oxidative stress causes accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction, suggesting that mitochondria-targeted therapies could be effective in this context. The purpose of this work was to determine whether mitochondria-targeted therapies could improve cardiac hypertrophy induced by mitochondrial ROS. We used neonatal (NCMs) and adult (ACMs) rat cardiomyocytes hypertrophied by isoproterenol (Iso) to induce mitochondrial ROS. A decreased interaction between sirtuin 3 and superoxide dismutase 2 (SOD2) induced SOD2 acetylation on lysine 68 and inactivation, leading to mitochondrial oxidative stress and dysfunction and hypertrophy after 24 h of Iso treatment. To counteract these mechanisms, we evaluated the impact of the mitochondria-targeted antioxidant mitoquinone (MitoQ). MitoQ decreased mitochondrial ROS and hypertrophy in Iso-treated NCMs and ACMs but altered mitochondrial structure and function by decreasing mitochondrial respiration and mitophagy. The same decrease in mitophagy was found in human cardiomyocytes but not in fibroblasts, suggesting a cardiomyocyte-specific deleterious effect of MitoQ. Our data showed the importance of mitochondrial oxidative stress in the development of cardiomyocyte hypertrophy. We observed that targeting mitochondria by MitoQ in cardiomyocytes impaired the metabolism through defective mitophagy, leading to accumulation of deficient mitochondria.
Collapse
Affiliation(s)
- Victoriane Peugnet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Maggy Chwastyniak
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Paul Mulder
- Normandie Univ, UNIROUEN, Inserm U1096, FHU-REMOD-HF, 76000 Rouen, France; (P.M.); (V.R.)
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Laurent Bultot
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Natacha Fourny
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Edith Renguet
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Heiko Bugger
- Department of Cardiology and Angiology I, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany;
| | - Olivia Beseme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Anne Loyens
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche Contre le Cancer de Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France;
| | - Wilfried Heyse
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Inserm U1096, FHU-REMOD-HF, 76000 Rouen, France; (P.M.); (V.R.)
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Bruxelles, Belgium; (L.B.); (N.F.); (E.R.); (L.B.)
| | - Florence Pinet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
- Correspondence: (F.P.); (E.D.-D.); Tel.: +33-(0)3-20-87-72-15 (F.P.); +33-(0)3-20-87-73-62 (E.D.-D.)
| | - Emilie Dubois-Deruy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France; (V.P.); (M.C.); (S.L.); (O.B.); (W.H.); (P.A.)
- Correspondence: (F.P.); (E.D.-D.); Tel.: +33-(0)3-20-87-72-15 (F.P.); +33-(0)3-20-87-73-62 (E.D.-D.)
| |
Collapse
|
25
|
Hulsurkar MM, Lahiri SK, Karch J, Wang MC, Wehrens XHT. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets 2022; 26:303-317. [PMID: 35426759 PMCID: PMC9081256 DOI: 10.1080/14728222.2022.2067479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Abnormal calcium signaling between organelles such as the sarcoplasmic reticulum (SR), mitochondria and lysosomes is a key feature of heart diseases. Calcium serves as a secondary messenger mediating inter-organellar crosstalk, essential for maintaining the cardiomyocyte function. AREAS COVERED This article examines the available literature related to calcium channels and transporters involved in inter-organellar calcium signaling. The SR calcium-release channels ryanodine receptor type-2 (RyR2) and inositol 1,4,5-trisphosphate receptor (IP3R), and calcium-transporter SR/ER-ATPase 2a (SERCA2a) are illuminated. The roles of mitochondrial voltage-dependent anion channels (VDAC), the mitochondria Ca2+ uniporter complex (MCUC), and the lysosomal H+/Ca2+ exchanger, two pore channels (TPC), and transient receptor potential mucolipin (TRPML) are discussed. Furthermore, recent studies showing calcium-mediated crosstalk between the SR, mitochondria, and lysosomes as well as how this crosstalk is dysregulated in cardiac diseases are placed under the spotlight. EXPERT OPINION Enhanced SR calcium release via RyR2 and reduced SR reuptake via SERCA2a, increased VDAC and MCUC-mediated calcium uptake into mitochondria, and enhanced lysosomal calcium-release via lysosomal TPC and TRPML may all contribute to aberrant calcium homeostasis causing heart disease. While mechanisms of this crosstalk need to be studied further, interventions targeting these calcium channels or combinations thereof might represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mohit M Hulsurkar
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K Lahiri
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Baylor College of Medicine, Houston TX USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xander H T Wehrens
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Pharmacotherapy 2022; 148:112726. [DOI: 10.1016/j.biopha.2022.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
|
27
|
Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, Speek O, Morra F, van der Veen CHJT, Lezoualc’h F, Cheng X, Schmidt M, Dolga AM. Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants (Basel) 2022; 11:antiox11020314. [PMID: 35204198 PMCID: PMC8868285 DOI: 10.3390/antiox11020314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Exchange proteins directly activated by cAMP (Epac) proteins are implicated in a wide range of cellular functions including oxidative stress and cell survival. Mitochondrial-dependent oxidative stress has been associated with progressive neuronal death underlying the pathology of many neurodegenerative diseases. The role of Epac modulation in neuronal cells in relation to cell survival and death, as well as its potential effect on mitochondrial function, is not well established. In immortalized hippocampal (HT-22) neuronal cells, we examined mitochondria function in the presence of various Epac pharmacological modulators in response to oxidative stress due to ferroptosis. Our study revealed that selective pharmacological modulation of Epac1 or Epac2 isoforms, exerted differential effects in erastin-induced ferroptosis conditions in HT-22 cells. Epac1 inhibition prevented cell death and loss of mitochondrial integrity induced by ferroptosis, while Epac2 inhibition had limited effects. Our data suggest Epac1 as a plausible therapeutic target for preventing ferroptosis cell death associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nshunge Musheshe
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| | - Asmaa Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Sarah C. Mitchel
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Ahmed Adzemovic
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Oliver Speek
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Francesca Morra
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Christina H. J. T. van der Veen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Frank Lezoualc’h
- Inserm UMR-1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse Paul Sabatier, 31400 Toulouse, France;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX 7000, USA;
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Groningen Research Institute of Asthma and COPD (GRIAC), Groningen Research Institute of Pharmacy (GRIP), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| |
Collapse
|
28
|
Krstic AM, Power AS, Ward ML. Visualization of Dynamic Mitochondrial Calcium Fluxes in Isolated Cardiomyocytes. Front Physiol 2022; 12:808798. [PMID: 35140632 PMCID: PMC8818789 DOI: 10.3389/fphys.2021.808798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 01/19/2023] Open
Abstract
BackgroundCardiomyocyte contraction requires a constant supply of ATP, which varies depending on work rate. Maintaining ATP supply is particularly important during excitation-contraction coupling, where cytosolic Ca2+ fluxes drive repeated cycles of contraction and relaxation. Ca2+ is one of the key regulators of ATP production, and its uptake into the mitochondrial matrix occurs via the mitochondrial calcium uniporter. Fluorescent indicators are commonly used for detecting cytosolic Ca2+ changes. However, visualizing mitochondrial Ca2+ fluxes using similar methods is more difficult, as the fluorophore must be permeable to both the sarcolemma and the inner mitochondrial membrane. Our aim was therefore to optimize a method using the fluorescent Ca2+ indicator Rhod-2 to visualize beat-to-beat mitochondrial calcium fluxes in rat cardiomyocytes.MethodsHealthy, adult male Wistar rat hearts were isolated and enzymatically digested to yield rod-shaped, quiescent ventricular cardiomyocytes. The fluorescent Ca2+ indicator Rhod-2 was reduced to di-hydroRhod-2 and confocal microscopy was used to validate mitochondrial compartmentalization. Cardiomyocytes were subjected to various pharmacological interventions, including caffeine and β-adrenergic stimulation. Upon confirmation of mitochondrial Rhod-2 localization, loaded myocytes were then super-fused with 1.5 mM Ca2+ Tyrodes containing 1 μM isoproterenol and 150 μM spermine. Myocytes were externally stimulated at 0.1, 0.5 and 1 Hz and whole cell recordings of both cytosolic ([Ca2+]cyto) and mitochondrial calcium ([Ca2+]mito) transients were made.ResultsMyocytes loaded with di-hydroRhod-2 revealed a distinct mitochondrial pattern when visualized by confocal microscopy. Application of 20 mM caffeine revealed no change in fluorescence, confirming no sarcoplasmic reticulum compartmentalization. Myocytes loaded with di-hydroRhod-2 also showed a large increase in fluorescence within the mitochondria in response to β-adrenergic stimulation (P < 0.05). Beat-to-beat mitochondrial Ca2+ transients were smaller in amplitude and had a slower time to peak and maximum rate of rise relative to cytosolic calcium transients at all stimulation frequencies (P < 0.001).ConclusionMyocytes loaded with di-hydroRhod-2 revealed mitochondrial specific compartmentalization. Mitochondrial Ca2+ transients recorded from di-hydroRhod-2 loaded myocytes were distinct in comparison to the large and rapid Rhod-2 cytosolic transients, indicating different kinetics between [Ca2+]cyto and [Ca2+]mito transients. Overall, our results showed that di-hydroRhod-2 loading is a quick and suitable method for measuring beat-to-beat [Ca2+]mito transients in intact myocytes.
Collapse
Affiliation(s)
- Anna Maria Krstic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Amelia Sally Power
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Marie-Louise Ward,
| |
Collapse
|
29
|
Gruscheski L, Brand T. The Role of POPDC Proteins in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2021; 8:160. [PMID: 34940515 PMCID: PMC8706714 DOI: 10.3390/jcdd8120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.
Collapse
Affiliation(s)
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
30
|
Lim Y, Cho IT, Rennke HG, Cho G. β2-adrenergic receptor regulates ER-mitochondria contacts. Sci Rep 2021; 11:21477. [PMID: 34728663 PMCID: PMC8563895 DOI: 10.1038/s41598-021-00801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 12/05/2022] Open
Abstract
Interactions between the endoplasmic reticulum (ER) and mitochondria (Mito) are crucial for many cellular functions, and their interaction levels change dynamically depending on the cellular environment. Little is known about how the interactions between these organelles are regulated within the cell. Here we screened a compound library to identify chemical modulators for ER-Mito contacts in HEK293T cells. Multiple agonists of G-protein coupled receptors (GPCRs), beta-adrenergic receptors (β-ARs) in particular, scored in this screen. Analyses in multiple orthogonal assays validated that β2-AR activation promotes physical and functional interactions between the two organelles. Furthermore, we have elucidated potential downstream effectors mediating β2-AR-induced ER-Mito contacts. Together our study identifies β2-AR signaling as an important regulatory pathway for ER-Mito coupling and highlights the role of these contacts in responding to physiological demands or stresses.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
31
|
Mora FAA, Musheshe N, Arroyave Ospina JC, Geng Y, Soto JM, Rodrigo JA, Alieva T, Buist-Homan M, Lezoualc'h F, Cheng X, Schmidt M, Moshage H. Metformin protects against diclofenac-induced toxicity in primary rat hepatocytes by preserving mitochondrial integrity via a pathway involving EPAC. Biomed Pharmacother 2021; 143:112072. [PMID: 34464747 DOI: 10.1016/j.biopha.2021.112072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been shown that the antidiabetic drug metformin protects hepatocytes against toxicity by various stressors. Chronic or excessive consumption of diclofenac (DF) - a pain-relieving drug, leads to drug-induced liver injury via a mechanism involving mitochondrial damage and ultimately apoptotic death of hepatocytes. However, whether metformin protects against DF-induced toxicity is unknown. Recently, it was also shown that cAMP elevation is protective against DF-induced apoptotic death in hepatocytes, a protective effect primarily involving the downstream cAMP effector EPAC and preservation of mitochondrial function. This study therefore aimed at investigating whether metformin protects against DF-induced toxicity via cAMP-EPACs. EXPERIMENTAL APPROACH Primary rat hepatocytes were exposed to 400 µmol/L DF. CE3F4 or ESI-O5 were used as EPAC-1 or 2 inhibitors respectively. Apoptosis was measured by caspase-3 activity and necrosis by Sytox green staining. Seahorse X96 assay was used to determine mitochondrial function. Mitochondrial reactive oxygen species (ROS) production was measured using MitoSox, mitochondrial MnSOD expression was determined by immunostaining and mitochondrial morphology (fusion and fission ratio) by 3D refractive index imaging. KEY RESULTS Metformin (1 mmol/L) was protective against DF-induced apoptosis in hepatocytes. This protective effect was EPAC-dependent (mainly EPAC-2). Metformin restored mitochondrial morphology in an EPAC-independent manner. DF-induced mitochondrial dysfunction which was demonstrated by decreased oxygen consumption rate, an increased ROS production and a reduced MnSOD level, were all reversed by metformin in an EPAC-dependent manner. CONCLUSION AND IMPLICATIONS Metformin protects hepatocytes against DF-induced toxicity via cAMP-dependent EPAC-2.
Collapse
Affiliation(s)
- Fabio Alejandro Aguilar Mora
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Nshunge Musheshe
- Deptartment Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, The Netherlands.
| | - Johanna C Arroyave Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Juan M Soto
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - José A Rodrigo
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - Tatiana Alieva
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Metaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France.
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Martina Schmidt
- Deptartment Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, The Netherlands.
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
32
|
Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci 2021; 287:120106. [PMID: 34756930 DOI: 10.1016/j.lfs.2021.120106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023]
Abstract
Cerebrovascular diseases such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage provoke cardiac complications such as heart failure, neurogenic stress-related cardiomyopathy and Takotsubo cardiomyopathy. With regards to the pathophysiology of stroke-induced heart injury, several mechanisms have been postulated to contribute to this complex interaction between brain and heart, including damage from gut dysbiosis, immune and systematic inflammatory responses, microvesicle- and microRNA-mediated vascular injury and damage from a surge of catecholamines. All these cerebrovascular diseases may trigger pronounced catecholamine surges through diverse ways, including stimulation of hypothalamic-pituitary adrenal axis, dysregulation of autonomic system, and secretion of adrenocorticotropic hormone. Primary catecholamines involved in this pathophysiological response include norepinephrine (NE) and epinephrine. Both are important neurotransmitters that connect the nervous system with the heart, leading to cardiac damage via myocardial ischemia, calcium (Ca2+) overload, oxidative stress, and mitochondrial dysfunction. In this review, we will aim to summarize the molecular mechanisms behind catecholamine-induced cardiotoxicity including Ca2+ overload, oxidative stress, apoptosis, cardiac hypertrophy, interstitial fibrosis, and inflammation. In addition, we will focus on how synchronization among these pathways evokes cardiotoxicity.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Laurie J Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Du X. Sympatho-adrenergic mechanisms in heart failure: new insights into pathophysiology. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:47-77. [PMID: 37724075 PMCID: PMC10388789 DOI: 10.1515/mr-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
The sympathetic nervous system is activated in the setting of heart failure (HF) to compensate for hemodynamic instability. However, acute sympathetic surge or sustained high neuronal firing rates activates β-adrenergic receptor (βAR) signaling contributing to myocardial remodeling, dysfunction and electrical instability. Thus, sympatho-βAR activation is regarded as a hallmark of HF and forms pathophysiological basis for β-blocking therapy. Building upon earlier research findings, studies conducted in the recent decades have significantly advanced our understanding on the sympatho-adrenergic mechanism in HF, which forms the focus of this article. This review notes recent research progress regarding the roles of cardiac β2AR or α1AR in the failing heart, significance of β1AR-autoantibodies, and βAR signaling through G-protein independent signaling pathways. Sympatho-βAR regulation of immune cells or fibroblasts is specifically discussed. On the neuronal aspects, knowledge is assembled on the remodeling of sympathetic nerves of the failing heart, regulation by presynaptic α2AR of NE release, and findings on device-based neuromodulation of the sympathetic nervous system. The review ends with highlighting areas where significant knowledge gaps exist but hold promise for new breakthroughs.
Collapse
Affiliation(s)
- Xiaojun Du
- Faculty of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 76 West Yanta Road, Xi’an710061, Shaanxi, China
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC3004, Australia
| |
Collapse
|
34
|
Laudette M, Sainte-Marie Y, Cousin G, Bergonnier D, Belhabib I, Brun S, Formoso K, Laib L, Tortosa F, Bergoglio C, Marcheix B, Borén J, Lairez O, Fauconnier J, Lucas A, Mialet-Perez J, Moro C, Lezoualc'h F. Cyclic AMP-binding protein Epac1 acts as a metabolic sensor to promote cardiomyocyte lipotoxicity. Cell Death Dis 2021; 12:824. [PMID: 34471096 PMCID: PMC8410846 DOI: 10.1038/s41419-021-04113-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is a master regulator of mitochondrial metabolism but its precise mechanism of action yet remains unclear. Here, we found that a dietary saturated fatty acid (FA), palmitate increased intracellular cAMP synthesis through the palmitoylation of soluble adenylyl cyclase in cardiomyocytes. cAMP further induced exchange protein directly activated by cyclic AMP 1 (Epac1) activation, which was upregulated in the myocardium of obese patients. Epac1 enhanced the activity of a key enzyme regulating mitochondrial FA uptake, carnitine palmitoyltransferase 1. Consistently, pharmacological or genetic Epac1 inhibition prevented lipid overload, increased FA oxidation (FAO), and protected against mitochondrial dysfunction in cardiomyocytes. In addition, analysis of Epac1 phosphoproteome led us to identify two key mitochondrial enzymes of the the β-oxidation cycle as targets of Epac1, the long-chain FA acyl-CoA dehydrogenase (ACADL) and the 3-ketoacyl-CoA thiolase (3-KAT). Epac1 formed molecular complexes with the Ca2+/calmodulin-dependent protein kinase II (CaMKII), which phosphorylated ACADL and 3-KAT at specific amino acid residues to decrease lipid oxidation. The Epac1-CaMKII axis also interacted with the α subunit of ATP synthase, thereby further impairing mitochondrial energetics. Altogether, these findings indicate that Epac1 disrupts the balance between mitochondrial FA uptake and oxidation leading to lipid accumulation and mitochondrial dysfunction, and ultimately cardiomyocyte death.
Collapse
Affiliation(s)
- Marion Laudette
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yannis Sainte-Marie
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Grégoire Cousin
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse Rangueil, Toulouse, France
| | - Dorian Bergonnier
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Ismahane Belhabib
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Stéphanie Brun
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse Rangueil, Toulouse, France
| | - Karina Formoso
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Loubna Laib
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Florence Tortosa
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Camille Bergoglio
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Bertrand Marcheix
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse Rangueil, Toulouse, France
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olivier Lairez
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse Rangueil, Toulouse, France
| | - Jérémy Fauconnier
- PHYMEDEXP, Université de Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Alexandre Lucas
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Jeanne Mialet-Perez
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France.
| |
Collapse
|
35
|
Vitexin Mitigates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Mitochondrial Dysfunction via Epac1-Rap1 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9921982. [PMID: 34257823 PMCID: PMC8260301 DOI: 10.1155/2021/9921982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Revascularization is an effective therapy for rescuing myocardial tissue after ischemic events. However, the process of reperfusion can lead to more severe cardiomyocyte damage, called myocardial ischemia-reperfusion (I/R) injury (MIRI). We have previously shown that vitexin (VT) (a flavonoid compound derived from natural products) protects against MIRI; however, the exact mechanisms underpinning this effect require further elucidation. This study is aimed at elucidating the protective mechanism of VT in inhibiting ischemic myocardial mitochondrial dysfunction and reducing cardiomyocyte apoptosis by regulating Epac1-Rap1 signaling. Isolated rat hearts were subjected to MIRI in a Langendorff perfusion system, and H9c2 cells were subjected to hypoxia/reoxygenation (H/R) in vitro. Our analyses show that during I/R, Epac1 expression was upregulated, left ventricular dysfunction deteriorated, mitochondrial dynamics were disrupted, and both myocardial cells and tissues exhibited apoptosis. Furthermore, administration of 8-CPT (an Epac agonist) exacerbated cardiomyocyte injury and mitochondrial dysfunction. Interestingly, suppressing the function of Epac1 through VT or ESI-09 (an Epac inhibitor) treatment during I/R reduced the myocardial infarct size, cardiomyocyte apoptosis, and reactive oxygen species production; alleviated mitochondrial dysfunction by increasing mitochondrial membrane potential; elevated MFN2 expression; and inhibited Drp1 expression. To our knowledge, our results reveal, for the first time, the mechanisms underlying the protective effect of VT in the myocardium of rats with MIRI. Moreover, we provide a new target and theoretical basis for VT in the treatment of ischemic heart disease.
Collapse
|
36
|
Impact of Aldosterone on the Failing Myocardium: Insights from Mitochondria and Adrenergic Receptors Signaling and Function. Cells 2021; 10:cells10061552. [PMID: 34205363 PMCID: PMC8235589 DOI: 10.3390/cells10061552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mineralocorticoid aldosterone regulates electrolyte and blood volume homeostasis, but it also adversely modulates the structure and function of the chronically failing heart, through its elevated production in chronic human post-myocardial infarction (MI) heart failure (HF). By activating the mineralocorticoid receptor (MR), a ligand-regulated transcription factor, aldosterone promotes inflammation and fibrosis of the heart, while increasing oxidative stress, ultimately induding mitochondrial dysfunction in the failing myocardium. To reduce morbidity and mortality in advanced stage HF, MR antagonist drugs, such as spironolactone and eplerenone, are used. In addition to the MR, aldosterone can bind and stimulate other receptors, such as the plasma membrane-residing G protein-coupled estrogen receptor (GPER), further complicating it signaling properties in the myocardium. Given the salient role that adrenergic receptor (ARs)—particularly βARs—play in cardiac physiology and pathology, unsurprisingly, that part of the impact of aldosterone on the failing heart is mediated by its effects on the signaling and function of these receptors. Aldosterone can significantly precipitate the well-documented derangement of cardiac AR signaling and impairment of AR function, critically underlying chronic human HF. One of the main consequences of HF in mammalian models at the cellular level is the presence of mitochondrial dysfunction. As such, preventing mitochondrial dysfunction could be a valid pharmacological target in this condition. This review summarizes the current experimental evidence for this aldosterone/AR crosstalk in both the healthy and failing heart, and the impact of mitochondrial dysfunction in HF. Recent findings from signaling studies focusing on MR and AR crosstalk via non-conventional signaling of molecules that normally terminate the signaling of ARs in the heart, i.e., the G protein-coupled receptor-kinases (GRKs), are also highlighted.
Collapse
|
37
|
Huang Y, Wen Q, Huang J, Luo M, Xiao Y, Mo R, Wang J. Manganese (II) chloride leads to dopaminergic neurotoxicity by promoting mitophagy through BNIP3-mediated oxidative stress in SH-SY5Y cells. Cell Mol Biol Lett 2021; 26:23. [PMID: 34078255 PMCID: PMC8173824 DOI: 10.1186/s11658-021-00267-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Background Manganese overexposure can induce neurotoxicity, lead to manganism and result in clinical manifestations similar to those of parkinsonism. However, the underlying molecular mechanism is still unclear. This study demonstrated that MnCl2 induces mitophagy and leads to neurotoxicity by promoting BNIP3-mediated reactive oxygen species (ROS) generation. Methods Human neuroblastoma SH-SY5Y cells were used throughout our experiments. Cell viability was detected by cell proliferation/toxicity test kits. Mitochondrial membrane potential was measured by flow cytometry. ROS generation was detected using a microplate reader. Protein levels were evaluated by Western blot. Transmission electron microscopy was used to evaluate mitochondrial morphology. Co-immunoprecipitation was used to verify the interaction between BNIP3 and LC3. Results MnCl2 led to loss of mitochondrial membrane potential and apoptosis of SH-SY5Y cells by enhancing expression of BNIP3 and conversion of LC3-I to LC3-II. Moreover, MnCl2 reduced expression of the mitochondrial marker protein TOMM20 and promoted interaction between BNIP3 and LC3. The results also indicated that a decrease in BNIP3 expression reduced the mitochondrial membrane potential loss, attenuated apoptosis and reduced mitochondrial autophagosome formation in SH-SY5Y cells after MnCl2 treatment. Finally, we found that manganese-induced ROS generation could be reversed by the antioxidant N-acetyl cysteine (NAC) or silencing BNIP3 expression. Conclusions BNIP3 mediates MnCl2-induced mitophagy and neurotoxicity in dopaminergic SH-SY5Y cells through ROS. Thus, BNIP3 contributes to manganese-induced neurotoxicity by functioning as a mitophagy receptor protein.
Collapse
Affiliation(s)
- Yanning Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiaolin Wen
- Department of Neurology, Liuzhou Worker's Hospital, Liuzhou, 545005, China
| | - Jinfeng Huang
- Department of Neurology, First Peoples Hospital of Nanning, Nanning, 530021, China
| | - Man Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ruikang Mo
- Department of Neurology, First Peoples Hospital of Nanning, Nanning, 530021, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
38
|
Khaliulin I, Ascione R, Maslov LN, Amal H, Suleiman MS. Preconditioning or Postconditioning with 8-Br-cAMP-AM Protects the Heart against Regional Ischemia and Reperfusion: A Role for Mitochondrial Permeability Transition. Cells 2021; 10:1223. [PMID: 34067674 PMCID: PMC8155893 DOI: 10.3390/cells10051223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023] Open
Abstract
The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 μM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Raimondo Ascione
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 111 a, Kievskaya Street, 634012 Tomsk, Russia;
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
| | - M. Saadeh Suleiman
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| |
Collapse
|
39
|
Mata-Martínez E, Sánchez-Tusie AA, Darszon A, Mayorga LS, Treviño CL, De Blas GA. Epac activation induces an extracellular Ca 2+ -independent Ca 2+ wave that triggers acrosome reaction in human spermatozoa. Andrology 2021; 9:1227-1241. [PMID: 33609309 DOI: 10.1111/andr.12989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The signaling pathways of the intracellular second messengers cAMP and Ca2+ play a crucial role in numerous physiological processes in human spermatozoa. One such process is the acrosome reaction (AR), which is necessary for spermatozoa to traverse the egg envelope and to expose a fusogenic membrane allowing the egg-sperm fusion. Progesterone and zona pellucida elicit an intracellular Ca2+ increase that is needed for the AR in the mammalian spermatozoa. This increase is mediated by an initial Ca2+ influx but also by a release from intracellular Ca2+ stores. It is known that intracellular Ca2+ stores play a central role in the regulation of [Ca2+ ]i and in the generation of complex Ca2+ signals such as oscillations and waves. In the human spermatozoa, it has been proposed that the cAMP analog and specific agonist of Epac 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (2'-O-Me-cAMP) elicits an intracellular Ca2+ release involved in the AR. OBJECTIVE To identify the molecular entities involved in the Ca2+ mobilization triggered by 2'-O-Me-cAMP in human spermatozoa. MATERIALS AND METHODS In capacitated human spermatozoa, we monitored Ca2+ dynamics and the occurrence of the AR in real time using Fluo 3-AM and FM4-64 in a Ca2+ -free medium. RESULTS Epac activation by 2'-O-Me-cAMP induced a Ca2+ wave that started in the midpiece and propagated to the acrosome region. This Ca2+ response was sensitive to rotenone, CGP, xestospongin, NED-19, and thapsigargin, suggesting the participation of different ion transporters (mitochondrial complex I and Na+ /Ca2+ exchanger, inositol 3-phosphate receptors, two-pore channels and internal store Ca2+ -ATPases). DISCUSSION Our results suggest that Epac activation promotes a dynamic crosstalk between three different intracellular Ca2+ stores: the mitochondria, the redundant nuclear envelope, and the acrosome. CONCLUSION The Ca2+ wave triggered by Epac activation is necessary to induce the AR and to enhance the flagellar beat.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Ana Alicia Sánchez-Tusie
- Laboratorio de Fisiología Celular y Molecular, Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, México
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Luis S Mayorga
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia L Treviño
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Gerardo A De Blas
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.,Laboratorio de Teleanálisis e Investigación Traslacional, Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
40
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
41
|
Mo Y, Wu H, Zheng X, Xu L, Liu L, Liu Z. LncRNA CHRF aggravates myocardial ischemia/reperfusion injury by enhancing autophagy via modulation of the miR-182-5p/ATG7 pathway. J Biochem Mol Toxicol 2021; 35:e22709. [PMID: 33491285 DOI: 10.1002/jbt.22709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/01/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a very frequent cardiovascular disease and one of the leading causes of death. Abundant evidence has shown that long noncoding RNAs (lncRNAs) are crucial players in myocardial I/R injury. LncRNA cardiac hypertrophy-related factor (CHRF) has been revealed as an important modulator in cardiac disease. However, the function of CHRF in myocardial I/R injury is unclear. In our current work, we found that the expression of CHRF was upregulated in myocardial I/R injury models. Suppression of CHRF relieved myocardial I/R injury in vivo. In addition, in vitro silencing of CHRF enhanced cell viability and attenuated lactate dehydrogenase activity (LDH) as well as apoptosis in H9C2 cells treated with hypoxia/reoxygenation injury. Autophagy has been studied to play an important role in myocardial I/R injury. Thus, experiments related to autophagy were done, and the results showed that CHRF knockdown decreased autophagy. For the exploration of the regulatory mechanism, we found that CHRF sequestered and negatively regulated miR-182-5p to release its inhibition on ATG7. Findings from rescue assays revealed that ATG7 overexpression could suppress the effects of CHRF silence on cell viability, LDH level, apoptosis, and autophagy. To sum up, our results suggested that CHRF exacerbated myocardial I/R injury by enhancing autophagy via modulation of the miR-182-5p/ATG7 pathway. Therefore, this competing endogenous RNA axis may be a potential therapeutic biomarker for myocardial I/R injury.
Collapse
Affiliation(s)
- Yipeng Mo
- Department of Cardiovascular Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hairuo Wu
- Department of Cardiovascular Medicine, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu Province, China
| | - Xiaojun Zheng
- Department of Cardiovascular Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Lin Xu
- Department of Cardiovascular Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Liangliang Liu
- Department of Cardiovascular Medicine, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu Province, China
| | - Zhen Liu
- Department of Cardiovascular Medicine, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu Province, China
| |
Collapse
|
42
|
GRKs and Epac1 Interaction in Cardiac Remodeling and Heart Failure. Cells 2021; 10:cells10010154. [PMID: 33466800 PMCID: PMC7830799 DOI: 10.3390/cells10010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
β-adrenergic receptors (β-ARs) play a major role in the physiological regulation of cardiac function through signaling routes tightly controlled by G protein-coupled receptor kinases (GRKs). Although the acute stimulation of β-ARs and the subsequent production of cyclic AMP (cAMP) have beneficial effects on cardiac function, chronic stimulation of β-ARs as observed under sympathetic overdrive promotes the development of pathological cardiac remodeling and heart failure (HF), a leading cause of mortality worldwide. This is accompanied by an alteration in cAMP compartmentalization and the activation of the exchange protein directly activated by cAMP 1 (Epac1) signaling. Among downstream signals of β-ARs, compelling evidence indicates that GRK2, GRK5, and Epac1 represent attractive therapeutic targets for cardiac disease. Here, we summarize the pathophysiological roles of GRK2, GRK5, and Epac1 in the heart. We focus on their signalosome and describe how under pathological settings, these proteins can cross-talk and are part of scaffolded nodal signaling systems that contribute to a decreased cardiac function and HF development.
Collapse
|
43
|
Soluble adenylyl cyclase regulates the cytosolic NADH/NAD + redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148367. [PMID: 33412125 DOI: 10.1016/j.bbabio.2020.148367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.
Collapse
|
44
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Di Benedetto G, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: Where, when, why. Cell Calcium 2020; 93:102320. [PMID: 33296837 DOI: 10.1016/j.ceca.2020.102320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy.
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| |
Collapse
|
46
|
Formoso K, Lezoualc'h F, Mialet-Perez J. Role of EPAC1 Signalosomes in Cell Fate: Friends or Foes? Cells 2020; 9:E1954. [PMID: 32854274 PMCID: PMC7563956 DOI: 10.3390/cells9091954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
The compartmentation of signaling processes is accomplished by the assembly of protein complexes called signalosomes. These signaling platforms colocalize enzymes, substrates, and anchoring proteins into specific subcellular compartments. Exchange protein directly activated by cAMP 1 (EPAC1) is an effector of the second messenger, 3',5'-cyclic adenosine monophosphate (cAMP) that is associated with multiple roles in several pathologies including cardiac diseases. Both EPAC1 intracellular localization and molecular partners are key players in the regulation of cell fate, which may have important therapeutic potential. In this review, we summarize the recent findings on EPAC1 structure, regulation, and pharmacology. We describe the importance of EPAC1 subcellular distribution in its biological action, paying special attention to its nuclear localization and mechanism of action leading to cardiomyocyte hypertrophy. In addition, we discuss the role of mitochondrial EPAC1 in the regulation of cell death. Depending on the cell type and stress condition, we present evidence that supports either a protective or detrimental role of EPAC1 activation.
Collapse
Affiliation(s)
- Karina Formoso
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, and Université de Toulouse III-Paul Sabatier, 31432 Toulouse, France
| | - Frank Lezoualc'h
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, and Université de Toulouse III-Paul Sabatier, 31432 Toulouse, France
| | - Jeanne Mialet-Perez
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, and Université de Toulouse III-Paul Sabatier, 31432 Toulouse, France
| |
Collapse
|
47
|
Boccella N, Paolillo R, Perrino C. Epac1 inhibition as a novel cardioprotective strategy: lights and shadows on GRK5 canonical and non-canonical functions. Cardiovasc Res 2020; 115:1684-1686. [PMID: 31304966 DOI: 10.1093/cvr/cvz188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nicola Boccella
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Roberta Paolillo
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| |
Collapse
|
48
|
Laudette M, Coluccia A, Sainte-Marie Y, Solari A, Fazal L, Sicard P, Silvestri R, Mialet-Perez J, Pons S, Ghaleh B, Blondeau JP, Lezoualc'h F. Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovasc Res 2020; 115:1766-1777. [PMID: 30873562 DOI: 10.1093/cvr/cvz076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent studies reported that cAMP-binding protein Epac1-deficient mice were protected against various forms of cardiac stress, suggesting that pharmacological inhibition of Epac1 could be beneficial for the treatment of cardiac diseases. To test this assumption, we characterized an Epac1-selective inhibitory compound and investigated its potential cardioprotective properties. METHODS AND RESULTS We used the Epac1-BRET (bioluminescence resonance energy transfer) for searching for non-cyclic nucleotide Epac1 modulators. A thieno[2,3-b]pyridine derivative, designated as AM-001 was identified as a non-competitive inhibitor of Epac1. AM-001 has no antagonist effect on Epac2 or protein kinase A activity. This small molecule prevents the activation of the Epac1 downstream effector Rap1 in cultured cells, in response to the Epac1 preferential agonist, 8-CPT-AM. In addition, we found that AM-001 inhibited Epac1-dependent deleterious effects such as cardiomyocyte hypertrophy and death. Importantly, AM-001-mediated inhibition of Epac1 reduces infarct size after mouse myocardial ischaemia/reperfusion injury. Finally, AM-001 attenuates cardiac hypertrophy, inflammation and fibrosis, and improves cardiac function during chronic β-adrenergic receptor activation with isoprenaline (ISO) in mice. At the molecular level, ISO increased Epac1-G protein-coupled receptor kinase 5 (GRK5) interaction and induced GRK5 nuclear import and histone deacetylase type 5 (HDAC5) nuclear export to promote the activity of the prohypertrophic transcription factor, myocyte enhancer factor 2 (MEF2). Inversely, AM-001 prevented the non-canonical action of GRK5 on HDAC5 cytoplasmic shuttle to down-regulate MEF2 transcriptional activity. CONCLUSION Our study represents a 'proof-of-concept' for the therapeutic effectiveness of inhibiting Epac1 activity in cardiac disease using small-molecule pharmacotherapy.
Collapse
Affiliation(s)
- Marion Laudette
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Yannis Sainte-Marie
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Andrea Solari
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Loubina Fazal
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PHYMEDEXP, IPAM, Montpellier, France
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Jeanne Mialet-Perez
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | | | - Bijan Ghaleh
- INSERM, U955, Equipe 03, F-94000 Créteil, France
| | - Jean-Paul Blondeau
- Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry Cedex, France
| | - Frank Lezoualc'h
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
49
|
Niu X, Pu S, Ling C, Xu J, Wang J, Sun S, Yao Y, Zhang Z. lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif 2020; 53:e12818. [PMID: 32468629 PMCID: PMC7309946 DOI: 10.1111/cpr.12818] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Myocardial ischaemia/reperfusion (MI/R) injury is associated with adverse cardiovascular outcomes after acute myocardial infarction. However, the molecular mechanisms underlying MI/R injury are unclear. This study investigated the role of long non-coding RNA (lncRNA) Oip5-as1 in regulating mitochondria-mediated apoptosis during MI/R injury. MATERIALS AND METHODS Sprague-Dawley rats were subjected to MI/R induced by ligation of the left anterior descending coronary artery followed by reperfusion. H9c2 cells were incubated under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions to mimic in vivo MI/R. RT-qPCR and Western blot were used to evaluate gene and protein levels. CCK-8 assay, biochemical assay and flow cytometric analysis were performed to assess the function of Oip5-as1. The dual-luciferase gene reporter assay and RIP assay were conducted as needed. RESULTS Oip5-as1 expression was downregulated in the hearts of rats with MI/R and in H9c2 cells treated with OGD/R. Oip5-as1 overexpression alleviated reactive oxygen species-driven mitochondrial injury and consequently decreased apoptosis in MI/R rats and H9c2 cells exposed to OGD/R. Mechanistically, Oip5-as1 acted as a competing endogenous RNA of miR-29a and thus decreased its expression. Inhibition of miR-29a reduced the oxidative stress and cytotoxicity induced by OGD/R. Overexpression of miR-29a reversed the anti-apoptotic effect of Oip5-as1 in H9c2 cells treated with OGD/R. Further experiments identified SIRT1 as a downstream target of miR-29a. Oip5-as1 upregulated SIRT1 expression and activated the AMPK/PGC1α pathway by targeting miR-29a, thus reducing the apoptosis triggered by OGD/R. However, these effects were reversed by a selective SIRT1 inhibitor, EX527. CONCLUSIONS Oip5-as1 suppresses miR-29a leading to activation of the SIRT1/AMPK/PGC1α pathway, which attenuates mitochondria-mediated apoptosis during MI/R injury. Our findings thus provide new insights into the molecular mechanisms of MI/R injury.
Collapse
Affiliation(s)
- Xiaowei Niu
- Heart CenterThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Clinical Medical Research Center for Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Key Laboratory of Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018)The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Shuangshuang Pu
- The First School of Clinical MedicineLanzhou UniversityLanzhouGansuChina
| | - Chun Ling
- The First People's Hospital of ChuzhouChuzhouAnhuiChina
| | - Jizhe Xu
- Heart CenterThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Clinical Medical Research Center for Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Key Laboratory of Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018)The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Jing Wang
- Department of GerontologyThe First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Shaobo Sun
- The College of Integrated Traditional Chinese and Western MedicineGansu University of Chinese MedicineLanzhouGansuChina
| | - Yali Yao
- Heart CenterThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Clinical Medical Research Center for Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Key Laboratory of Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018)The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zheng Zhang
- Heart CenterThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Clinical Medical Research Center for Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- Gansu Key Laboratory of Cardiovascular DiseasesThe First Hospital of Lanzhou UniversityLanzhouGansuChina
- The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018)The First Hospital of Lanzhou UniversityLanzhouGansuChina
| |
Collapse
|
50
|
Shao H, Mohamed H, Boulton S, Huang J, Wang P, Chen H, Zhou J, Luchowska-Stańska U, Jentsch NG, Armstrong AL, Magolan J, Yarwood S, Melacini G. Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist. J Med Chem 2020; 63:4762-4775. [PMID: 32297742 DOI: 10.1021/acs.jmedchem.9b02151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains poorly understood. Here, we utilize NMR spectroscopy to map the I942-EPAC1 interactions at atomic resolution and propose a mechanism for I942 partial agonism. We found that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of EPAC1, similar to cyclic adenosine monophosphate (cAMP). These results not only reveal the molecular basis for the I942 vs cAMP mimicry and competition, but also suggest that the partial agonism of I942 arises from its ability to stabilize an inhibition-incompetent activation intermediate distinct from both active and inactive EPAC1 states. The mechanism of action of I942 may facilitate drug design for EPAC-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | | | | | | | - Stephen Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | | |
Collapse
|