1
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Ren X, Zhuang H, Zhang Y, Zhou P. Cerium oxide nanoparticles-carrying human umbilical cord mesenchymal stem cells counteract oxidative damage and facilitate tendon regeneration. J Nanobiotechnology 2023; 21:359. [PMID: 37789395 PMCID: PMC10546722 DOI: 10.1186/s12951-023-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tendon injuries have a high incidence and limited treatment options. Stem cell transplantation is essential for several medical conditions like tendon injuries. However, high local concentrations of reactive oxygen species (ROS) inhibit the activity of transplanted stem cells and hinder tendon repair. Cerium oxide nanoparticles (CeONPs) have emerged as antioxidant agents with reproducible reducibility. RESULTS In this study, we synthesized polyethylene glycol-packed CeONPs (PEG-CeONPs), which were loaded into the human umbilical cord mesenchymal stem cells (hUCMSCs) to counteract oxidative damage. H2O2 treatment was performed to evaluate the ROS scavenging ability of PEG-CeONPs in hUCMSCs. A rat model of patellar tendon defect was established to assess the effect of PEG-CeONPs-carrying hUCMSCs in vivo. The results showed that PEG-CeONPs exhibited excellent antioxidant activity both inside and outside the hUCMSCs. PEG-CeONPs protect hUCMSCs from senescence and apoptosis under excessive oxidative stress. Transplantation of hUCMSCs loaded with PEG-CeONPs reduced ROS levels in the tendon injury area and facilitated tendon healing. Mechanistically, NFκB activator tumor necrosis factor α and MAPK activator dehydrocrenatine, reversed the therapeutic effect of PEG-CeONPs in hUCMSCs, indicating that PEG-CeONPs act by inhibiting the NFκB and MAPK signaling pathways. CONCLUSIONS The carriage of the metal antioxidant oxidase PEG-CeONPs maintained the ability of hUCMSCs in the injured area, reduced the ROS levels in the microenvironment, and facilitated tendon regeneration. The data presented herein provide a novel therapeutic strategy for tendon healing and new insights into the use of stem cells for disease treatment.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
4
|
P2Y1R and P2Y2R: potential molecular triggers in muscle regeneration. Purinergic Signal 2023; 19:305-313. [PMID: 35902482 PMCID: PMC9984638 DOI: 10.1007/s11302-022-09885-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/07/2022] [Indexed: 10/16/2022] Open
Abstract
Muscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells' (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs' activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.
Collapse
|
5
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Xu P, Wang C, Xiang W, Liang Y, Li Y, Zhang X, Guo C, Liu M, Shi Y, Ye X, Dang Y. P2RY6 has a critical role in mouse skin carcinogenesis by regulating the YAP and β-catenin signaling pathways. J Invest Dermatol 2022; 142:2334-2342.e8. [PMID: 35304248 DOI: 10.1016/j.jid.2022.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/24/2023]
Abstract
P2Y purinoceptor 6 (P2RY6) is highly expressed in skin keratinocytes, but its function in skin diseases is unclear. We use two-step chemical induction method to induce mouse skin tumor formation. Multiple in vitro and in vivo assays were used to explore the role of P2RY6 in skin tumor. We report that P2ry6-deficient mice exhibit marked resistance to DMBA/TPA-induced skin papilloma formation compared with wild-type mice. Consistent with these findings, epidermal hyperplasia in response to TPA was suppressed in the P2ry6 knockout or MRS2578 (P2RY6 antagonist)-treated mice. The dramatic decrease in hyperplasia and tumorigenesis due to P2ry6 disruption was associated with the suppression of TPA-induced keratinocyte proliferation and inflammatory reactions. Notably, P2ry6 deletion prevented the TPA-induced increase in YAP nuclear accumulation and its downstream gene expression in an MST/LATS1-dependent manner. Upon TPA stimulation, enhanced activation of MEK1 and β-catenin were also impaired in P2ry6 knockout primary keratinocytes, tumor tissues or MRS2578-treated HaCaT cells. Moreover, mutual promotion of the YAP and β-catenin signaling pathways was observed in normal skin cells treated with TPA, while P2ry6 deletion could inhibit their crosstalk by regulating MEK1. Thus, P2RY6 is a critical positive regulator of skin tumorigenesis via modulation of the Hippo/YAP and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Peng Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caibing Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wan Xiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyi Liang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ying Li
- Psoriasis Treatment Center, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xilin Zhang
- Psoriasis Treatment Center, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyuan Guo
- Psoriasis Treatment Center, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuling Shi
- Psoriasis Treatment Center, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiyun Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongyan Dang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov 2022; 8:6. [PMID: 35102134 PMCID: PMC8803930 DOI: 10.1038/s41421-021-00361-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023] Open
Abstract
Regenerative capacity declines throughout evolution and with age. In this study, we asked whether metabolic programs underlying regenerative capability might be conserved across species, and if so, whether such metabolic drivers might be harnessed to promote tissue repair. To this end, we conducted metabolomic analyses in two vertebrate organ regeneration models: the axolotl limb blastema and antler stem cells. To further reveal why young individuals have higher regenerative capacity than the elderly, we also constructed metabolic profiles for primate juvenile and aged tissues, as well as young and aged human stem cells. In joint analyses, we uncovered that active pyrimidine metabolism and fatty acid metabolism correlated with higher regenerative capacity. Furthermore, we identified a set of regeneration-related metabolite effectors conserved across species. One such metabolite is uridine, a pyrimidine nucleoside, which can rejuvenate aged human stem cells and promote regeneration of various tissues in vivo. These observations will open new avenues for metabolic intervention in tissue repair and regeneration.
Collapse
|
8
|
Mechanosensing and the Hippo Pathway in Microglia: A Potential Link to Alzheimer's Disease Pathogenesis? Cells 2021; 10:cells10113144. [PMID: 34831369 PMCID: PMC8622675 DOI: 10.3390/cells10113144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
The activation of microglia, the inflammatory cells of the central nervous system (CNS), has been linked to the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases. How microglia sense the changing brain environment, in order to respond appropriately, is still being elucidated. Microglia are able to sense and respond to the mechanical properties of their microenvironment, and the physical and molecular pathways underlying this mechanosensing/mechanotransduction in microglia have recently been investigated. The Hippo pathway functions through mechanosensing and subsequent protein kinase cascades, and is critical for neuronal development and many other cellular processes. In this review, we examine evidence for the potential involvement of Hippo pathway components specifically in microglia in the pathogenesis of Alzheimer’s disease. We suggest that the Hippo pathway is worth investigating as a mechanosensing pathway in microglia, and could be one potential therapeutic target pathway for preventing microglial-induced neurodegeneration in AD.
Collapse
|
9
|
Wu Q, Yu X, Li J, Sun S, Tu Y. Metabolic regulation in the immune response to cancer. Cancer Commun (Lond) 2021; 41:661-694. [PMID: 34145990 PMCID: PMC8360644 DOI: 10.1002/cac2.12182] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming in tumor‐immune interactions is emerging as a key factor affecting pro‐inflammatory carcinogenic effects and anticancer immune responses. Therefore, dysregulated metabolites and their regulators affect both cancer progression and therapeutic response. Here, we describe the molecular mechanisms through which microenvironmental, systemic, and microbial metabolites potentially influence the host immune response to mediate malignant progression and therapeutic intervention. We summarized the primary interplaying factors that constitute metabolism, immunological reactions, and cancer with a focus on mechanistic aspects. Finally, we discussed the possibility of metabolic interventions at multiple levels to enhance the efficacy of immunotherapeutic and conventional approaches for future anticancer treatments.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
10
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
11
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Wu Q, Li B, Li J, Sun S, Yuan J, Sun S. Cancer-associated adipocytes as immunomodulators in cancer. Biomark Res 2021; 9:2. [PMID: 33413697 PMCID: PMC7792018 DOI: 10.1186/s40364-020-00257-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated adipocytes (CAAs), as a main component of the tumor-adipose microenvironment (TAME), have various functions, including remodeling the extracellular matrix and interacting with tumor cells or infiltrated leukocytes through a variety of mutual signals. Here, we summarize the primary interplay among CAAs, the immune response and cancer with a focus on the mechanistic aspects of these relationships. Finally, unifying our understanding of CAAs with the immune cell function may be an effective method to enhance the efficacy of immunotherapeutic and conventional treatments.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, P. R. China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, P. R. China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, P. R. China.
| |
Collapse
|
13
|
Yu Y, Su X, Qin Q, Hou Y, Zhang X, Zhang H, Jia M, Chen Y. Yes-associated protein and transcriptional coactivator with PDZ-binding motif as new targets in cardiovascular diseases. Pharmacol Res 2020; 159:105009. [DOI: 10.1016/j.phrs.2020.105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
14
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
15
|
Zheng M, Jacob J, Hung SH, Wang J. The Hippo Pathway in Cardiac Regeneration and Homeostasis: New Perspectives for Cell-Free Therapy in the Injured Heart. Biomolecules 2020; 10:biom10071024. [PMID: 32664346 PMCID: PMC7407108 DOI: 10.3390/biom10071024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Intractable cardiovascular diseases are leading causes of mortality around the world. Adult mammalian hearts have poor regenerative capacity and are not capable of self-repair after injury. Recent studies of cell-free therapeutics such as those designed to stimulate endogenous cardiac regeneration have uncovered new feasible therapeutic avenues for cardiac repair. The Hippo pathway, a fundamental pathway with pivotal roles in cell proliferation, survival and differentiation, has tremendous potential for therapeutic manipulation in cardiac regeneration. In this review, we summarize the most recent studies that have revealed the function of the Hippo pathway in heart regeneration and homeostasis. In particular, we discuss the molecular mechanisms of how the Hippo pathway maintains cardiac homeostasis by directing cardiomyocyte chromatin remodeling and regulating the cell-cell communication between cardiomyocytes and non-cardiomyocytes in the heart.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA;
| | - Joan Jacob
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; (J.J.); (S.-H.H.)
| | - Shao-Hsi Hung
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; (J.J.); (S.-H.H.)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-7135-005-723
| |
Collapse
|
16
|
Chen X, Yuan W, Li Y, Luo J, Hou N. Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac biology. Int J Biol Sci 2020; 16:2454-2463. [PMID: 32760212 PMCID: PMC7378646 DOI: 10.7150/ijbs.47142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway undertakes a pivotal role in organ size control and the process of physiology and pathology in tissue. Its downstream effectors YAP1 and TAZ receive upstream stimuli and exert transcription activity to produce biological output. Studies have demonstrated that the Hippo pathway contributes to maintenance of cardiac homeostasis and occurrence of cardiac disease. And these cardiac biological events are affected by crosstalk among Hippo-YAP1/TAZ, Wnt/β-catenin, Bone morphogenetic protein (BMP) and G-protein-coupled receptor (GPCR) signaling, which provides new insights into the Hippo pathway in heart. This review delineates the interaction among Hippo, Wnt, BMP and GPCR pathways and discusses the effects of these pathways in cardiac biology.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
17
|
Chen X, Li Y, Luo J, Hou N. Molecular Mechanism of Hippo-YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Front Physiol 2020; 11:389. [PMID: 32390875 PMCID: PMC7191303 DOI: 10.3389/fphys.2020.00389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo-YAP1/TAZ pathway is a highly conserved central mechanism that controls organ size through the regulation of cell proliferation and other physical attributes of cells. The transcriptional factors Yes-associated protein 1 (YAP1) and PDZ-binding motif (TAZ) act as downstream effectors of the Hippo pathway, and their subcellular location and transcriptional activities are affected by multiple post-translational modifications (PTMs). Studies have conclusively demonstrated a pivotal role of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration. Targeted therapeutics for the YAP1/TAZ could be an effective treatment option for cardiac regeneration and disease. This review article provides an overview of the Hippo-YAP1/TAZ pathway and the increasing impact of PTMs in fine-tuning YAP1/TAZ activation; in addition, we discuss the potential contributions of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Mühleder S, Fuchs C, Basílio J, Szwarc D, Pill K, Labuda K, Slezak P, Siehs C, Pröll J, Priglinger E, Hoffmann C, Junger WG, Redl H, Holnthoner W. Purinergic P2Y 2 receptors modulate endothelial sprouting. Cell Mol Life Sci 2020; 77:885-901. [PMID: 31278420 PMCID: PMC11104991 DOI: 10.1007/s00018-019-03213-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Purinergic P2 receptors are critical regulators of several functions within the vascular system, including platelet aggregation, vascular inflammation, and vascular tone. However, a role for ATP release and P2Y receptor signalling in angiogenesis remains poorly defined. Here, we demonstrate that blood vessel growth is controlled by P2Y2 receptors. Endothelial sprouting and vascular tube formation were significantly dependent on P2Y2 expression and inhibition of P2Y2 using a selective antagonist blocked microvascular network generation. Mechanistically, overexpression of P2Y2 in endothelial cells induced the expression of the proangiogenic molecules CXCR4, CD34, and angiopoietin-2, while expression of VEGFR-2 was decreased. Interestingly, elevated P2Y2 expression caused constitutive phosphorylation of ERK1/2 and VEGFR-2. However, stimulation of cells with the P2Y2 agonist UTP did not influence sprouting unless P2Y2 was constitutively expressed. Finally, inhibition of VEGFR-2 impaired spontaneous vascular network formation induced by P2Y2 overexpression. Our data suggest that P2Y2 receptors have an essential function in angiogenesis, and that P2Y2 receptors present a therapeutic target to regulate blood vessel growth.
Collapse
Affiliation(s)
- Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Kompetenzzentrum für MechanoBiologie (INTERREG V-A AT-CZ ATCZ133), Vienna, Austria
| | - Christiane Fuchs
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - José Basílio
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Dorota Szwarc
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Karoline Pill
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Krystyna Labuda
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christian Siehs
- Mag. Dipl.-Ing. Dr. Christian Siehs, IT-Services, GLN 9110002040261, Vienna, Austria
| | - Johannes Pröll
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Center for Medical Research, Johannes Kepler University, Linz, Austria
- Red Cross Blood Transfusion Service, Linz, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Wolfgang G Junger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215, MA, USA
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
20
|
The role of P2Y 6R in cardiovascular diseases and recent development of P2Y 6R antagonists. Drug Discov Today 2020; 25:568-573. [PMID: 31926135 DOI: 10.1016/j.drudis.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022]
Abstract
As a member of the P2Y receptor family with a typical 7-transmembrane structure, P2Y6 purinergic receptor (P2Y6R) belongs to the G-protein-coupled nucleotide receptor activating the phospholipase-C signaling pathway. P2Y6R is widely involved in a range of human diseases, including atherosclerosis and other cardiovascular diseases, gradually attracting attention owing to its inappropriate or excessive activation. In addition, it was reported that P2Y6R might regulate inflammatory responses by governing the maturation and secretion of proinflammatory cytokines. Hence, several P2Y6R antagonists have been subjected to evaluation as new therapeutic strategies in recent years. This review was aimed at summarizing the role of P2Y6R in the pathogenesis of cardiovascular diseases, with an insight into the recent progress on discovery of P2Y6R antagonists.
Collapse
|
21
|
Li C, Jin Y, Wei S, Sun Y, Jiang L, Zhu Q, Farmer DG, Busuttil RW, Kupiec-Weglinski JW, Ke B. Hippo Signaling Controls NLR Family Pyrin Domain Containing 3 Activation and Governs Immunoregulation of Mesenchymal Stem Cells in Mouse Liver Injury. Hepatology 2019; 70:1714-1731. [PMID: 31063235 PMCID: PMC6819196 DOI: 10.1002/hep.30700] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
Abstract
The Hippo pathway, an evolutionarily conserved protein kinase cascade, tightly regulates cell growth and survival. Activation of yes-associated protein (YAP), a downstream effector of the Hippo pathway, has been shown to modulate tissue inflammation. However, it remains unknown as to whether and how the Hippo-YAP signaling may control NLR family pyrin domain containing 3 (NLRP3) activation in mesenchymal stem cell (MSC)-mediated immune regulation during liver inflammation. In a mouse model of ischemia/reperfusion (IR)-induced liver sterile inflammatory injury, we found that adoptive transfer of MSCs reduced hepatocellular damage, shifted macrophage polarization from M1 to M2 phenotype, and diminished inflammatory mediators. MSC treatment reduced mammalian Ste20-like kinase 1/2 and large tumor suppressor 1 phosphorylation but augmented YAP and β-catenin expression with increased prostaglandin E2 production in ischemic livers. However, disruption of myeloid YAP or β-catenin in MSC-transferred mice exacerbated IR-triggered liver inflammation, enhanced NLRP3/caspase-1 activity, and reduced M2 macrophage phenotype. Using MSC/macrophage coculture system, we found that MSCs increased macrophage YAP and β-catenin nuclear translocation. Importantly, YAP and β-catenin colocalize in the nucleus while YAP interacts with β-catenin and regulates its target gene X-box binding protein 1 (XBP1), leading to reduced NLRP3/caspase-1 activity after coculture. Moreover, macrophage YAP or β-catenin deficiency augmented XBP1/NLRP3 while XBP1 deletion diminished NLRP3/caspase-1 activity. Increasing NLRP3 expression reduced M2 macrophage arginase1 but augmented M1 macrophage inducible nitric oxide synthase expression accompanied by increased interleukin-1β release. Conclusion: MSCs promote macrophage Hippo pathway, which in turn controls NLRP3 activation through a direct interaction between YAP and β-catenin and regulates XBP1-mediated NLRP3 activation, leading to reprograming macrophage polarization toward an anti-inflammatory M2 phenotype. Moreover, YAP functions as a transcriptional coactivator of β-catenin in MSC-mediated immune regulation. Our findings suggest a therapeutic target in MSC-mediated immunotherapy of liver sterile inflammatory injury.
Collapse
Affiliation(s)
- Changyong Li
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuting Jin
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Song Wei
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yishuang Sun
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qiang Zhu
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ronald W. Busuttil
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
22
|
Caveolin-1 Regulates P2Y 2 Receptor Signaling during Mechanical Injury in Human 1321N1 Astrocytoma. Biomolecules 2019; 9:biom9100622. [PMID: 31635212 PMCID: PMC6843573 DOI: 10.3390/biom9100622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Caveolae-associated protein caveolin-1 (Cav-1) plays key roles in cellular processes such as mechanosensing, receptor coupling to signaling pathways, cell growth, apoptosis, and cancer. In 1321N1 astrocytoma cells Cav-1 interacts with the P2Y2 receptor (P2Y2R) to modulate its downstream signaling. P2Y2R and its signaling machinery also mediate pro-survival actions after mechanical injury. This study determines if Cav-1 knockdown (KD) affects P2Y2R signaling and its pro-survival actions in the 1321N1 astrocytoma cells mechanical injury model system. KD of Cav-1 decreased its expression in 1321N1 cells devoid of or expressing hHAP2Y2R by ~88% and ~85%, respectively. Cav-1 KD had no significant impact on P2Y2R expression. Post-injury densitometric analysis of pERK1/2 and Akt activities in Cav-1-positive 1321N1 cells (devoid of or expressing a hHAP2Y2R) revealed a P2Y2R-dependent temporal increase in both kinases. These temporal increases in pERK1/2 and pAkt were significantly decreased in Cav-1 KD 1321N1 (devoid of or expressing a hHAP2Y2R). Cav-1 KD led to an ~2.0-fold and ~2.4-fold decrease in the magnitude of the hHAP2Y2R-mediated pERK1/2 and pAkt kinases’ activity, respectively. These early-onset hHAP2Y2R-mediated signaling responses in Cav-1-expressing and Cav-1 KD 1321N1 correlated with changes in cell viability (via a resazurin-based method) and apoptosis (via caspase-9 expression). In Cav-1-positive 1321N1 cells, expression of hHAP2Y2R led to a significant increase in cell viability and decreased apoptotic (caspase-9) activity after mechanical injury. In contrast, hHAP2Y2R-elicited changes in viability and apoptotic (caspase-9) activity were decreased after mechanical injury in Cav-1 KD 1321N1 cells expressing hHAP2Y2R. These findings support the importance of Cav-1 in modulating P2Y2R signaling during mechanical injury and its protective actions in a human astrocytoma cell line, whilst shedding light on potential new venues for brain injury or trauma interventions.
Collapse
|
23
|
Flinn MA, Link BA, O'Meara CC. Upstream regulation of the Hippo-Yap pathway in cardiomyocyte regeneration. Semin Cell Dev Biol 2019; 100:11-19. [PMID: 31606277 DOI: 10.1016/j.semcdb.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
The response of the adult mammalian heart to injury such as myocardial infarction has long been described as primarily fibrotic scarring and adverse remodeling with little to no regeneration of cardiomyocytes. Emerging studies have challenged this paradigm by demonstrating that, indeed, adult mammalian cardiomyocytes are capable of completing cytokinesis albeit at levels vastly insufficient to compensate for the loss of functional cardiomyocytes following ischemic injury. Thus, there is great interest in identifying mechanisms to guide adult cardiomyocyte cell cycle re-entry and facilitate endogenous heart regeneration. The Hippo signaling pathway is a core kinase cascade that functions to suppress the transcriptional co-activators Yap and Taz by phosphorylation and therefore cytoplasmic retention or phospho-degradation. This pathway has recently sparked interest in the field of cardiac regeneration as inhibition of Hippo kinase signaling or overdriving the transcriptional co-activator, Yap, significantly promotes proliferation of terminally differentiated adult mammalian cardiomyocytes and can restore function in failing mouse hearts. Thus, the Hippo pathway is an attractive therapeutic target for promoting cardiomyocyte renewal and cardiac regeneration. Although the core kinases and transcriptional activators of the Hippo pathway have been studied extensively over the last twenty years, the regulatory inputs of this pathway, particularly in vertebrates, are poorly understood. Recent studies have elucidated several upstream regulatory inputs to the Hippo pathway in adult mammalian cardiomyocytes that influence cell proliferation and heart regeneration. Considering upstream inputs to the Hippo pathway are thought to be context and cell type specific, targeting these various components could serve as a therapeutic approach for refining Hippo-Yap signaling in the heart. Here, we provide an overview of the emerging regulatory inputs to the Hippo pathway as they relate to mammalian cardiomyocytes and heart regeneration.
Collapse
Affiliation(s)
- Michael A Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
24
|
Han Z, Yu Y, Cai B, Xu Z, Bao Z, Zhang Y, Bamba D, Ma W, Gao X, Yuan Y, Zhang L, Yu M, Liu S, Yan G, Jin M, Huang Q, Wang X, Hua B, Yang F, Pan Z, Liang H, Liu Y. YAP/TEAD3 signal mediates cardiac lineage commitment of human-induced pluripotent stem cells. J Cell Physiol 2019; 235:2753-2760. [PMID: 31541452 DOI: 10.1002/jcp.29179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes differentiated from human-induced pluripotent stem cells (hiPSCs) hold great potential for therapy of heart diseases. However, the underlying mechanisms of its cardiac differentiation have not been fully elucidated. Hippo-YAP signal pathway plays important roles in cell differentiation, tissue homeostasis, and organ size. Here, we identify the role of Hippo-YAP signal pathway in determining cardiac differentiation fate of hiPSCs. We found that cardiac differentiation of hiPSCs were significantly inhibited after treatment with verteporfin (a selective and potent YAP inhibitor). During hiPSCs differentiation from mesoderm cells (MESs) into cardiomyocytes, verteporfin treatment caused the cells retained in the earlier cardiovascular progenitor cells (CVPCs) stage. Interestingly, during hiPSCs differentiation from CVPC into cardiomyocytes, verteporfin treatment induced cells dedifferentiation into the earlier CVPC stage. Mechanistically, we found that YAP interacted with transcriptional enhanced associate domain transcription factor 3 (TEAD3) to regulate cardiac differentiation of hiPSCs during the CVPC stage. Consistently, RNAi-based silencing of TEAD3 mimicked the phenotype as the cells treated with verteporfin. Collectively, our study suggests that YAP-TEAD3 signaling is important for cardiomyocyte differentiation of hiPSCs. Our findings provide new insight into the function of Hippo-YAP signal in cardiovascular lineage commitment.
Collapse
Affiliation(s)
- Zhenbo Han
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Ying Yu
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Zihang Xu
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Zhengyi Bao
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Ying Zhang
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Djibril Bamba
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Wenya Ma
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Xinlu Gao
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Ye Yuan
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Lai Zhang
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Meixi Yu
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Shenzhen Liu
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Gege Yan
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Mengyu Jin
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Qi Huang
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Bingjie Hua
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Fan Yang
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Haihai Liang
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology at College of Pharmacy, Department of Pharmacy at the Affiliated Second Hospital, Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Clinical Laboratory at the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Marian AJ. To Seek the Holy Grail of Cardiac Progenitor Cells: An Opera in Four Acts. Circ Res 2019; 121:1208-1209. [PMID: 29122939 DOI: 10.1161/circresaha.117.312097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A J Marian
- From the Center for Cardiovascular Genetics, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston.
| |
Collapse
|
26
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
|
28
|
Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduct Target Ther 2018; 3:11. [PMID: 29682330 PMCID: PMC5908807 DOI: 10.1038/s41392-017-0005-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is generally a fatal disease with no efficacious treatment modalities. Elucidation of signaling mechanisms that will lead to the identification of novel targets for therapy and chemoprevention is urgently needed. Here, we review the role of Yes-associated protein (YAP) and WW-domain-containing Transcriptional co-Activator with a PDZ-binding motif (TAZ) in the development of PDAC. These oncogenic proteins are at the center of a signaling network that involves multiple upstream signals and downstream YAP-regulated genes. We also discuss the clinical significance of the YAP signaling network in PDAC using a recently published interactive open-access database (www.proteinatlas.org/pathology) that allows genome-wide exploration of the impact of individual proteins on survival outcomes. Multiple YAP/TEAD-regulated genes, including AJUBA, ANLN, AREG, ARHGAP29, AURKA, BUB1, CCND1, CDK6, CXCL5, EDN2, DKK1, FOSL1,FOXM1, HBEGF, IGFBP2, JAG1, NOTCH2, RHAMM, RRM2, SERP1, and ZWILCH, are associated with unfavorable survival of PDAC patients. Similarly, components of AP-1 that synergize with YAP (FOSL1), growth factors (TGFα, EPEG, and HBEGF), a specific integrin (ITGA2), heptahelical receptors (P2Y2R, GPR87) and an inhibitor of the Hippo pathway (MUC1), all of which stimulate YAP activity, are associated with unfavorable survival of PDAC patients. By contrast, YAP inhibitory pathways (STRAD/LKB-1/AMPK, PKA/LATS, and TSC/mTORC1) indicate a favorable prognosis. These associations emphasize that the YAP signaling network correlates with poor survival of pancreatic cancer patients. We conclude that the YAP pathway is a major determinant of clinical aggressiveness in PDAC patients and a target for therapeutic and preventive strategies in this disease. Yes-associated protein (YAP) signaling contributes to pancreatic cancer progression and is associated with poor patient survival. Previous studies have shown that YAP activates genes involved in cell proliferation to incite tumor growth and metastasis. Enrique Rozengurt and colleagues at University of California Los Angeles review the latest knowledge on YAP signaling and used the open access database The Human Protein Atlas to analyze the gene expression profile and prognosis of 176 patients with pancreatic ductal adenocarcinoma. Activation of upstream or downstream elements of the YAP signaling pathway correlated with shorter survival in patients. Conversely, the activation of signaling pathways that oppose YAP signaling were associated with a more favorable prognosis. These findings highlight YAP signaling pathway components as both prognostic markers and potential targets for developing much needed therapeutic and preventative strategies.
Collapse
|