Shao CL, Meng WT, Wang YC, Liu JJ, Ning K, Hou XX, Guo HD. Regulating NETs contributes to a novel antiatherogenic effect of MTHSWD via inhibiting endothelial injury and apoptosis.
Int Immunopharmacol 2024;
143:113368. [PMID:
39418732 DOI:
10.1016/j.intimp.2024.113368]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the occurrence and progression of atherosclerosis (AS), which can result in adverse cardiovascular events. We investigated the potential mechanism of action of Modified Taohong Siwu Decoction (MTHSWD) against AS based on its effect on NETs. A model of unstable plaque in AS was established by tandem stenosis (TS) of the right common carotid artery in ApoE-/- mice combined with a western diet (WD). The research found that MTHSWD reduced the weight of mice with AS to varying degrees, and significantly decreased the levels of plasma total cholesterol (TC) and triglycerides (TG). Meanwhile, we found that MTHSWD not only significantly improved cardiac EF, FS, cardiac hypertrophy, and ventricular remodeling, but also ameliorated the silent and depressed hypoactivity state caused by AS in ApoE-/- mice. Additionally, the study revealed that MTHSWD improved the severity of AS, protected the vascular structure, increased plaque stability and vessel patency. It also significantly reduced vascular cell apoptosis, platelet aggregation, and the presence of inflammatory cells such as neutrophils (NEUs), as well as the expression of neutrocyte elastase (NE) and myeloperoxidase (MPO), which are components of NETs. Subsequently, NEUs studies have shown that MTHSWD not only significantly reduces the dsDNA content of NETs, but also lowers the expression of NETs components NE and citH3. NETs treating the human umbilical vein endothelial cells (HUVECs) demonstrated that NETs differentially increased the protein expression of endothelial inflammatory adhesion factors CD62P, VCAM-1 and ICAM-1, while significantly decreasing the viability of HUVECs. Pharmacological treatment discovered that MTHSWD significantly improved HUVECs viability impaired by NETs, and promoted the growth and proliferation of endothelial cells. Furthermore, it significantly reduced early and late apoptosis of HUVECs caused by NETs, decreased the expression of pro-apoptotic proteins BAX and Cleaved-Caspase-3, and increased the expression of anti-apoptotic protein Bcl-2. Thus, study suggests that MTHSWD may improve body weight, lipid levels, cardiac function, vigour, and the severity of AS in ApoE-/- AS mice. The novel effect of MTHSWD against AS may be attributed to the inhibition of endothelial injury and apoptosis through the regulation of NETs. This, in turn, reduces the levels of platelets, inflammatory cells, and components of NETs in AS plaques, achieving a benign cycle that protects endothelial cells and vascular structure and function. This result provides some clues and evidence for studying the mechanism of action and clinical application of MTHSWD and its active ingredients against AS.
Collapse