1
|
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Mukerjee N, Al-Hamash SMJ, Al-Maiahy TJ, Batiha GES. 5-HT/CGRP pathway and Sumatriptan role in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3148-3173. [PMID: 36042570 DOI: 10.1080/02648725.2022.2108996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). In Covid-19, there is uncontrolled activation of immune cells with a massive release of pro-inflammatory cytokines and the development of cytokine storm. These inflammatory changes induce impairment of different organ functions, including the central nervous system (CNS), leading to acute brain injury and substantial changes in the neurotransmitters, including serotonin (5-HT) and calcitonin gene-related peptide (CGRP), which have immunomodulatory properties through modulation of central and peripheral immune responses. In Covid-19, 5-HT neurotransmitters and CGRP could contribute to abnormal and atypical vascular reactivity. Sumatriptan is a pre-synaptic 5-HT (5-HT1D and 5-HT1B) agonist and inhibits the release of CGRP. Both 5-HT and CGRP seem to be augmented in Covid-19 due to underlying activation of inflammatory signaling pathways and hyperinflammation. In virtue of its anti-inflammatory and antioxidant properties with inhibition release of 5-HT and CGRP, Sumatriptan may reduce Covid-19 hyperinflammation. Therefore, Sumatriptan might be a novel potential therapeutic strategy in managing Covid-19. In conclusion, Sumatriptan could be an effective therapeutic strategy in managing Covid-19 through modulation of 5-HT neurotransmitters and inhibiting CGRP.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Hashikawa-Hobara N, Inoue S, Hashikawa N. Lack of alpha CGRP exacerbates the development of atherosclerosis in ApoE-knockout mice. Sci Rep 2024; 14:18377. [PMID: 39112593 PMCID: PMC11306347 DOI: 10.1038/s41598-024-69331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The effects of calcitonin gene-related peptide (CGRP) on atherosclerosis remain unclear. We used apolipoprotein E-deficient (ApoE-/-) mice to generate double-knockout ApoE-/-:CGRP-/- mice lacking alpha CGRP. ApoE-/-:CGRP-/- mice exhibited larger atherosclerotic plaque areas, peritoneal macrophages with enhanced migration functions, and elevated levels of the inflammatory cytokine tumor necrosis factor (TNF)-⍺. Thus, we also explored whether inhibiting TNF-⍺ could improve atherosclerosis in ApoE-/-:CGRP-/- mice by administering etanercept intraperitoneally once a week (5 mg/kg) alongside a high-fat diet for 2 weeks. This treatment led to significant reductions in aortic root lesion size, atherosclerotic plaque area and macrophage migration in ApoE-/-:CGRP-/- mice compared with mice treated with human IgG (5 mg/kg). We further examined whether results observed in ApoE-/-:CGRP-/- mice could similarly be obtained by administering a humanized monoclonal CGRP antibody, galcanezumab, to ApoE-/- mice. ApoE-/- mice were subcutaneously administered galcanezumab at an initial dose of 50 mg/kg, followed by a dose of 30 mg/kg in the second week. Galcanezumab administration did not affect systolic blood pressure, serum lipid levels, or macrophage migration but led to a significant increase in lipid deposition at the aortic root. These findings suggest that alpha CGRP plays a critical role in inhibiting the progression of atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Calcitonin Gene-Related Peptide/metabolism
- Mice
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/genetics
- Mice, Knockout
- Diet, High-Fat/adverse effects
- Tumor Necrosis Factor-alpha/metabolism
- Male
- Mice, Knockout, ApoE
- Disease Models, Animal
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Etanercept/pharmacology
- Mice, Inbred C57BL
- Cell Movement/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aorta/drug effects
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama, 700-0005, Japan.
| | - Shota Inoue
- Department of Life Science, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama, 700-0005, Japan
| |
Collapse
|
3
|
Wang K, Fenton BT, Dao VX, Guirguis AB, Anthony SE, Skanderson M, Sico JJ. Trajectory of blood pressure after initiating anti-calcitonin gene-related peptide treatment of migraine: a target trial emulation from the veterans health administration. J Headache Pain 2023; 24:108. [PMID: 37582724 PMCID: PMC10426172 DOI: 10.1186/s10194-023-01640-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology and blood pressure regulation. Although clinical trials have established the cardio-cerebrovascular safety profile of anti-CGRP treatment, limited high-quality real-world evidence exists on its long-term effects on blood pressure (BP). To address this gap, we examined the safety of anti-CGRP treatment on BP in patients with migraine headache in the Veterans Health Administration (VHA). METHODS We emulated a target trial of patients who initiated anti-CGRP treatment or topiramate for migraine prevention between May 17th, 2018 and February 28th, 2023. We calculated stabilized inverse probability weights to balance between groups and then used weighted linear mixed-effect models to estimate the systolic and diastolic BP changes over the study period. For patients without hypertension at baseline, we estimated the cumulative incidence of hypertension using Kaplan-Meier curve. We also used weight mixed-effect Poisson model to estimate the number of antihypertension medications for patients with hypertension at baseline. RESULTS This analysis included 69,589 patients and 554,437 blood pressure readings. of these, 18,880 patients received anti-CGRP treatment, and they were more likely to be women, have a chronic migraine diagnosis and higher healthcare utilization than those received topiramate. Among patients without hypertension at baseline, we found no significant differences in systolic BP changes over the four-year follow-up between anti-CGRP (slope [standard error, SE] = 0.48[0.06]) and topiramate treated patients (slope[SE] = 0.39[0.04]). The incidence of hypertension was similar for anti-CGRP and topiramate group (4.4 vs 4.3 per 100 person-years). Among patients with hypertension at baseline who initiated anti-CGRP treatment, we found a small but persistent effect on exacerbating hypertension during the first four years of treatment, as evidenced by a significant annual 3.7% increase in the number of antihypertensive medications prescribed (RR = 1.037, 95%CI 1.025-1.048). CONCLUSIONS Our findings suggest that anti-CGRP treatment is safe regarding blood pressure in patients without hypertension. However, for those with baseline hypertension, anti-CGRP treatment resulted in a small but persistent increase in the number of antihypertensives, indicating an exacerbation of hypertension. Future studies are needed to evaluate the cardio-cerebrovascular safety of anti-CGRP treatment beyond the first four years.
Collapse
Affiliation(s)
- Kaicheng Wang
- Department of Veterans Affairs, Research, Education, Evaluation and Engagement Activities Center for Headache, Headache Centers of Excellence, Orange, CT, USA.
- Yale Center for Analytical Sciences, Yale School of Public Health, 300 George St STE 511, New Haven, CT, 06511, USA.
| | - Brenda T Fenton
- Department of Veterans Affairs, Research, Education, Evaluation and Engagement Activities Center for Headache, Headache Centers of Excellence, Orange, CT, USA
- Pain Research, Informatics, Multi-Morbidities, and Education Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Vinh X Dao
- Pharmacy Benefits Management Services, VA Minneapolis Health Care System, Minneapolis, MN, USA
- Headache Center of Excellence, VA Minneapolis Health Care System, Minneapolis, MN, USA
| | - Alexander B Guirguis
- Pharmacy Benefits Management Services, VA Connecticut Healthcare System, West Haven, CT, USA
- Headache Center of Excellence, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Sarah E Anthony
- Department of Veterans Affairs, Research, Education, Evaluation and Engagement Activities Center for Headache, Headache Centers of Excellence, Orange, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Melissa Skanderson
- Department of Veterans Affairs, Research, Education, Evaluation and Engagement Activities Center for Headache, Headache Centers of Excellence, Orange, CT, USA
| | - Jason J Sico
- Department of Veterans Affairs, Research, Education, Evaluation and Engagement Activities Center for Headache, Headache Centers of Excellence, Orange, CT, USA
- Headache Center of Excellence, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Srivastava S, Gajwani P, Jousma J, Miyamoto H, Kwon Y, Jana A, Toth PT, Yan G, Ong SG, Rehman J. Nuclear translocation of mitochondrial dehydrogenases as an adaptive cardioprotective mechanism. Nat Commun 2023; 14:4360. [PMID: 37468519 DOI: 10.1038/s41467-023-40084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Priyanka Gajwani
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Hiroe Miyamoto
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Youjeong Kwon
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Arundhati Jana
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Research Resources Center, University of Illinois, Chicago, IL, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
5
|
Zhang Y, Lin C, Liu Z, Sun Y, Chen M, Guo Y, Liu W, Zhang C, Chen W, Sun J, Xia R, Hu Y, Yang X, Li J, Zhang Z, Cao W, Sun S, Wang X, Ji T. Cancer cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab 2022; 34:1999-2017.e10. [PMID: 36395769 DOI: 10.1016/j.cmet.2022.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Although nutrient-starvation therapies can elicit strong anti-tumor effects in multiple carcinomas, it has been convincingly demonstrated that cancer cells exploit the tumor microenvironment to thrive in nutrient-poor environments. Here, we reveal that cancer cells can co-opt nociceptive nerves to thrive in nutrient-poor environments. Initially examining the low-glucose environment of oral mucosa carcinomas, we discovered that cancer cells employ ROS-triggered activation of c-Jun to secrete nerve growth factor (NGF), which conditions nociceptive nerves for calcitonin gene-related peptide (CGRP) production. The neurogenic CGRP subsequently induces cytoprotective autophagy in cancer cells through Rap1-mediated disruption of the mTOR-Raptor interaction. Both anti-glycolysis and anti-angiogenesis-based nutrient-starvation therapies aggravate the vicious cycle of cancer cells and nociceptive nerves and therapeutically benefit from blocking neurogenic CGRP with an FDA-approved antimigraine drug. Our study sheds light on the role of the nociceptive nerve as a microenvironmental accomplice of cancer progression in nutrient-poor environments and upon nutrient-starvation therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Chengzhong Lin
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yiting Sun
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingtao Chen
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yibo Guo
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wei Liu
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jian Sun
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Ronghui Xia
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuhua Hu
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xi Yang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jiang Li
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shuyang Sun
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Xu Wang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Tong Ji
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
6
|
Skaria T, Vogel J. The Neuropeptide α-Calcitonin Gene-Related Peptide as the Mediator of Beneficial Effects of Exercise in the Cardiovascular System. Front Physiol 2022; 13:825992. [PMID: 35431990 PMCID: PMC9008446 DOI: 10.3389/fphys.2022.825992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Regular physical activity exerts cardiovascular protective effects in healthy individuals and those with chronic cardiovascular diseases. Exercise is accompanied by an increased plasma concentration of α-calcitonin gene-related peptide (αCGRP), a 37-amino acid peptide with vasodilatory effects and causative roles in migraine. Moreover, mouse models revealed that loss of αCGRP disrupts physiological adaptation of the cardiovascular system to exercise in normotension and aggravates cardiovascular impairment in primary chronic hypertension, both can be reversed by αCGRP administration. This suggests that αCGRP agonists could be a therapeutic option to mediate the cardiovascular protective effects of exercise in clinical setting where exercise is not possible or contraindicated. Of note, FDA has recently approved αCGRP antagonists for migraine prophylaxis therapy, however, the cardiovascular safety of long-term anti-CGRP therapy in individuals with cardiovascular diseases has yet to be established. Current evidence from preclinical models suggests that chronic αCGRP antagonism may abolish the cardiovascular protective effects of exercise in both normotension and chronic hypertension.
Collapse
Affiliation(s)
- Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Kerala, India
| | - Johannes Vogel
- Zürich Center for Integrative Human Physiology, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
- *Correspondence: Johannes Vogel,
| |
Collapse
|
7
|
Argunhan F, Brain SD. The Vascular-Dependent and -Independent Actions of Calcitonin Gene-Related Peptide in Cardiovascular Disease. Front Physiol 2022; 13:833645. [PMID: 35283798 PMCID: PMC8914086 DOI: 10.3389/fphys.2022.833645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
The treatment of hypertension and heart failure remains a major challenge to healthcare providers. Despite therapeutic advances, heart failure affects more than 26 million people worldwide and is increasing in prevalence due to an ageing population. Similarly, despite an improvement in blood pressure management, largely due to pharmacological interventions, hypertension remains a silent killer. This is in part due to its ability to contribute to heart failure. Development of novel therapies will likely be at the forefront of future cardiovascular studies to address these unmet needs. Calcitonin gene-related peptide (CGRP) is a 37 amino acid potent vasodilator with positive-ionotropic and -chronotropic effects. It has been reported to have beneficial effects in hypertensive and heart failure patients. Interestingly, changes in plasma CGRP concentration in patients after myocardial infarction, heart failure, and in some forms of hypertension, also support a role for CGRP on hemodynamic functions. Rodent studies have played an important role thus far in delineating mechanisms involved in CGRP-induced cardioprotection. However, due to the short plasma half-life of CGRP, these well documented beneficial effects have often proven to be acute and transient. Recent development of longer lasting CGRP agonists may therefore offer a practical solution to investigating CGRP further in cardiovascular disease in vivo. Furthermore, pre-clinical murine studies have hinted at the prospect of cardioprotective mechanisms of CGRP which is independent of its hypotensive effect. Here, we discuss past and present evidence of vascular-dependent and -independent processes by which CGRP could protect the vasculature and myocardium against cardiovascular dysfunction.
Collapse
|
8
|
Lidocaine Ameliorates Psoriasis by Obstructing Pathogenic CGRP Signaling-Mediated Sensory Neuron-Dendritic Cell Communication. J Invest Dermatol 2022; 142:2173-2183.e6. [PMID: 35032503 DOI: 10.1016/j.jid.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/30/2023]
Abstract
Psoriasis is a chronic immune-mediated skin disorder with the nervous system contributing to its pathology. The neurogenic mediators of psoriasis are elusive and whether the intervention of cutaneous nervous system can treat psoriasis remains to be determined. Here we conducted a pilot study using epidural injection of lidocaine to treat patients with psoriasis. Lidocaine treatment markedly reduced patients' clinical scores, and improved an imiquimod (IMQ)-induced rat model of psoriasis as competent as systemic delivery of a TNF-α antibody. IMQ application elicited aberrant cutaneous nerve outgrowth and excessive generation of neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion (DRG) neurons, both of which were inhibited by epidural lidocaine treatment. Single-cell RNA sequencing unveiled the overrepresentation of CGRP receptors in dermal dendritic cell (DC) populations of patients with psoriasis. Through disturbing CGRP signaling, lidocaine inhibited IL-23 production by DCs co-cultured with DRG neurons. Thus, epidural nerve block with lidocaine demonstrates an effective therapy for psoriasis, which suppresses both inordinate sensory nerve growth in the inflamed skin and CGRP-mediated IL-23 production from psoriatic DCs.
Collapse
|
9
|
Kumar A, Belhaj M, DiPette DJ, Potts JD. A Novel Alginate-Based Delivery System for the Prevention and Treatment of Pressure-Overload Induced Heart Failure. Front Pharmacol 2021; 11:602952. [PMID: 33603665 PMCID: PMC7884831 DOI: 10.3389/fphar.2020.602952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Background: α-CGRP (alpha-calcitonin gene related peptide) is a cardioprotective neuropeptide. Our recent study demonstrated that the administration of native α-CGRP, using osmotic mini-pumps, protected against transverse aortic constriction (TAC) pressure-induced heart failure in mice. However, the short half-life of peptides and the non-applicability of osmotic pumps in humans limits the use of α-CGRP as a therapeutic agent for heart failure (HF). Here, we sought to comprehensively study a novel α-CGRP delivery system using alginate microcapsules to determine its bioavailability in vivo and to test for cardioprotective effects in HF mice. Methods: Native α-CGRP filled alginate microcapsules (200 µm diameter) were prepared using an electrospray method. The prepared alginate-α-CGRP microcapsules were incubated with rat cardiac H9c2 cells, mouse cardiac HL-1 cells, and human umbilical vein endothelial cells (HUVECs), and the cytotoxicity of the alginate-α-CGRP microcapsules was measured by a trypan-blue cell viability assay and a calcium dye fluorescent based assay. The efficacy of the alginate-α-CGRP microcapsules was tested in a TAC-pressure overload mouse model of heart failure. Male C57BL6 mice were divided into four groups: sham, sham-alginate-α-CGRP, TAC-only, and TAC-alginate-α-CGRP, and the TAC procedure was performed in the TAC-only and TAC-alginate-α-CGRP groups of mice to induce pressure-overload heart failure. After 2 or 15 days post-TAC, alginate-α-CGRP microcapsules (containing an α-CGRP dose of 6 mg/kg/mouse) were administered subcutaneously on alternate days, for 28 days, and echocardiography was performed weekly. After 28 days of peptide delivery, the mice were sacrificed and their hearts were collected for histological and biochemical analyses. Results: Our in vitro cell culture assays showed that alginate-α-CGRP microcapsules did not affect the viability of the cell lines tested. The alginate-α-CGRP microcapsules released their peptides for an extended period of time. Our echocardiography, biochemical, and histology data from HF mice demonstrated that the administration of alginate-α-CGRP microcapsules significantly improved all cardiac parameters examined in TAC-mice. When compared to sham mice, TAC significantly decreased cardiac functions (as determined by fraction shortening and ejection fraction) and markedly increased heart and lung weight, left ventricle (LV) cardiac cell size, cardiac apoptosis, and oxidative stress. In contrast, the administration of alginate-α-CGRP microcapsules significantly attenuated the increased heart and lung weight, LV cardiac cell size, apoptosis, and oxidative stress in TAC mice. Conclusion: Our results demonstrate that the encapsulation of α-CGRP in an alginate polymer is an effective strategy to improve peptide bioavailability in plasma and increase the duration of the therapeutic effect of the peptide throughout the treatment period. Furthermore, alginate mediates α-CGRP delivery, either prior to the onset or after the initiation of the symptom progression of pressure-overload, improves cardiac function, and protects hearts against pressure-induced HF.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Marwa Belhaj
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
10
|
Skaria T, Wälchli T, Vogel J. CGRP Receptor Antagonism in COVID-19: Potential Cardiopulmonary Adverse Effects. Trends Mol Med 2021; 27:7-10. [PMID: 33129692 PMCID: PMC7580524 DOI: 10.1016/j.molmed.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Recently, the US FDA has authorized a drug repurposing trial with calcitonin gene-related peptide (CGRP) receptor antagonists to reduce lung inflammation in coronavirus 2019 (COVID-19). However, the well-established cardiopulmonary protective effects of CGRP raise concerns about the safety of antagonizing CGRP in COVID-19. Awareness regarding potential cardiopulmonary adverse effects may enable their early detection and prevent illness from worsening.
Collapse
Affiliation(s)
- Tom Skaria
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Wälchli
- Department of Fundamental Neurobiology, Krembil Research Institute, University Health Network, University of Toronto, Toronto, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada; Group of Brain Vasculature and Neurovascular Unit, Division of Neurosurgery, Department of Clinical Neurosciences, University Hospital Geneva, Geneva, Switzerland; Group of CNS Angiogenesis and Neurovascular Link, Institute for Regenerative Medicine, Neuroscience Center Zürich, University Hospital Zürich, Zürich, Switzerland; Division of Neurosurgery, University Hospital Zürich, Zürich, Switzerland
| | - Johannes Vogel
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|