1
|
García-Martín A, Prados ME, Lastres-Cubillo I, Ponce-Diaz FJ, Cerero L, Garrido-Rodríguez M, Navarrete C, Pineda R, Rodríguez AB, Muñoz I, Moya J, Medeot A, Moreno JA, Chacón A, García-Revillo J, Muñoz E. Etrinabdione (VCE-004.8), a B55α activator, promotes angiogenesis and arteriogenesis in critical limb ischemia. J Transl Med 2024; 22:1003. [PMID: 39506809 DOI: 10.1186/s12967-024-05748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Vasculogenic therapies explored for the treatment of peripheral artery disease (PAD) have encountered minimal success in clinical trials. Addressing this, B55α, an isoform of protein phosphatase 2A (PP2A), emerges as pivotal in vessel remodeling through activation of hypoxia-inducible factor 1α (HIF-1α). This study delves into the pharmacological profile of VCE-004.8 (Etrinabdione) and evaluates its efficacy in a preclinical model of critical limb ischemia, with a focus on its potential as a PP2A/B55α activator to induce angiogenesis and arteriogenesis. METHODS Vascular endothelial cells were used for in vitro experiments. Aorta ring assay was performed to explore sprouting activity. Matrigel plug-in assay was used to assess the angiogenic potential. Critical limb ischemia (CLI) in mice was induced by double ligation in the femoral arteria. Endothelial vascular and fibrotic biomarkers were studied by immunohistochemistry and qPCR. Arteriogenesis was investigated by microvascular casting and micro-CT. Proteomic analysis in vascular tissues was analyzed by LC-MS/MS. Ex-vivo expression of B55α and biomarkers were investigated in artery samples from PAD patients. RESULTS VCE-004.8 exhibited the ability to induce B55α expression and activate the intersecting pathways B55α/AMPK/Sirtuin 1/eNOS and B55α/PHD2/HIF-1α. VCE-004.8 prevented OxLDL and H2O2-induced cytotoxicity, senescence, and inflammation in endothelial cells. Oral VCE-004.8 increased aorta sprouting in vitro and angiogenesis in vivo. In CLI mice VCE-004.8 improved collateral vessel formation and induced endothelial cells proliferation, angiogenic gene expression and prevented fibrosis. The expression of B55α, Caveolin 1 and Sirtuin-1 is reduced in arteries from CLI mice and PAD patient, and the expression of these markers was restored in mice treated with VCE-004.8. CONCLUSIONS The findings presented in this study indicate that Etrinabdione holds promise in mitigating endothelial cell damage and senescence, while concurrently fostering arteriogenesis and angiogenesis. These observations position Etrinabdione as a compelling candidate for the treatment of PAD, and potentially other cardiovascular disorders.
Collapse
Affiliation(s)
- Adela García-Martín
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| | - María E Prados
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Isabel Lastres-Cubillo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco J Ponce-Diaz
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Cerero
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martin Garrido-Rodríguez
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Bioquant, Heidelberg, Germany
| | - Carmen Navarrete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Pineda
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ana B Rodríguez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ignacio Muñoz
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Moya
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Antonella Medeot
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - José A Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Antonio Chacón
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - José García-Revillo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
2
|
Park G, Hwang DY, Kim DY, Han JY, Lee E, Hwang H, Park JS, Kim DW, Hong S, Yim SV, Hong HS, Son Y. Identification of CD141 +vasculogenic precursor cells from human bone marrow and their endothelial engagement in the arteriogenesis by co-transplantation with mesenchymal stem cells. Stem Cell Res Ther 2024; 15:388. [PMID: 39482744 PMCID: PMC11526567 DOI: 10.1186/s13287-024-03994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is a condition characterized by insufficient blood flow to the lower limbs, resulting in severe ischemia and potentially leading to amputation. This study aims to identify novel vasculogenic precursor cells (VPCs) in human bone marrow and evaluate their efficacy in combination with bone marrow-derived mesenchymal stem cells (BM-MSCs) for the treatment of CLI. METHODS Ex vivo cultured VPCs and BM-MSCs from bone marrow were characterized and their effects on neovascularization and long-term tissue regeneration were tested in a mouse CLI model. RESULTS VPCs, expressing high levels of hepatocyte growth factor and c-MET, were identified from human bone marrow aspirates. These cells exhibited strong vasculogenic capacity in vitro but possessed a cellular phenotype distinct from those of previously reported endothelial precursor cells in circulation or cord blood. They also expressed most surface markers of BM-MSCs and demonstrated multipotent differentiation ability. Screening of 376 surface markers revealed that VPCs uniquely display CD141 (thrombomodulin). CD141+VPCs are present in BM aspirates as a rare population and can be expanded ex vivo with a population doubling time of approximately 20 h, generating an elaborate vascular network even under angiogenic factor-deficient conditions and recruiting BM-MSCs to the network as pericyte-like cells. Intramuscular transplantation of a combination of human CD141+VPCs and BM-MSCs at a ratio of 2:1 resulted in limb salvage, blood flow recovery, and regeneration of large vessels in the femoral artery-removed CLI model, with an efficacy superior to that of singular transplantation. Importantly, large arteries and arterioles in dual cell transplantation expressed human CD31 in the intima and human α-smooth muscle actin in media layer at 4 and 12 weeks, likely indicating their lineage commitment to endothelial cells and vascular smooth muscle, respectively, in vivo. CONCLUSION Dual-cell therapy using BM-derived CD141+ VPCs and BM-MSCs holds potential for further development in clinical trials to treat peripheral artery disease and diabetic ulcers.
Collapse
Affiliation(s)
- Gabee Park
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Dae Yeon Hwang
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Ji Young Han
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Euiseon Lee
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Hwakyung Hwang
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Jeong Seop Park
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Dae Wook Kim
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea
| | - Seonmin Hong
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Sung Vin Yim
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea.
- East-West Medical Research Institute, Kyung Hee University, Seoul, Korea.
| | - Youngsook Son
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea.
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea.
| |
Collapse
|
3
|
Yu J, Li Y, Hu J, Wang Y. Interleukin-33 induces angiogenesis after myocardial infarction via AKT/eNOS signaling pathway. Int Immunopharmacol 2024; 143:113433. [PMID: 39486188 DOI: 10.1016/j.intimp.2024.113433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality and morbidity worldwide. MI-damaged vascular structures are difficult to completely restore due to the heart's low regenerative capacity. Given interleukin-33 (IL-33) as a potent endothelial activator promoting angiogenesis, this study investigated the role of IL-33 in angiogenesis and cardiac repair after MI. A mouse model of MI was established. IL-33 improved cardiac function and induced an increase in vascular density after MI. Besides, IL-33 promoted human endothelial cells proliferation, migration, and differentiation under both normoxic and hypoxic conditions, consistently with increased angiogenesis in vivo. Mechanistic studies demonstrated that IL-33 could promote angiogenesis by activating eNOS and AKT, and stimulating NO production in vivo and in vitro. Given that injection of exogenous IL-33 induced an inflammatory response, we employed a multifunctional biomimetic nanoparticle drug delivery system to deliver IL-33, thereby enhancing its targeting to the heart for fibrotic therapy and reducing inflammation. In conclusion, our results indicate that IL-33 promotes endothelial angiogenesis after MI through AKT/eNOS/NO signaling pathway. PM&EM/IL-33 nanoparticles may hold promising therapeutic potential for protecting cardiac ischemic injury and mitigating inflammation.
Collapse
Affiliation(s)
- Jiaqi Yu
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yuyu Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jiaxin Hu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
4
|
Niu K, Zhang C, Liu C, Wu W, Yan Y, Zheng A, Liu S, Shi Z, Yang M, Wang W, Xiao Q. An unexpected role of IL10 in mesoderm induction and differentiation from pluripotent stem cells: Implications in zebrafish angiogenic sprouting, vascular organoid development, and therapeutic angiogenesis. Eur J Cell Biol 2024; 103:151465. [PMID: 39471724 DOI: 10.1016/j.ejcb.2024.151465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
Mesoderm induction is a crucial step for vascular cell specification, vascular development and vasculogenesis. However, the cellular and molecular mechanisms underlying mesoderm induction remain elusive. In the present study, a chemically-defined differentiation protocol was used to induce mesoderm formation and generate functional vascular cells including smooth muscle cells (SMCs) and endothelial cells (ECs) from human induced pluripotent stem cells (hiPSCs). Zebrafish larvae were used to detect an in vivo function of interleukin 10 (IL10) in mesoderm formation and vascular development. A three dimensional approach was used to create hiPSC-derived blood vessel organoid (BVO) and explore a potential impact of IL10 on BVO formation. A murine model hind limb ischemia was applied to investigate a therapeutic potential of hiPSC-derived cells treated with or without IL10 during differentiation. We found that IL10 was significantly and specifically up-regulated during mesoderm stage of vascular differentiation. IL10 addition in mesoderm induction media dramatically increased mesoderm induction and vascular cell generation from hiPSCs, whereas an opposite effect was observed with IL10 inhibition. Mechanistic studies revealed that IL10 promotes mesoderm formation and vascular cell differentiation by activating signal transducer and activator of transcription 3 signal pathway. Functional studies with an in vivo model system confirmed that knockdown of IL10 using morpholino antisense oligonucleotides in zebrafish larvae caused defective mesoderm formation, angiogenic sprouting and vascular development. Additionally, our data also show IL10 promotes blood vessel organoid development and enhances vasculogenesis and angiogenesis. Importantly, we demonstrate that IL10 treatment during mesoderm induction stage enhances blood flow perfusion recovery and increases vasculogenesis and therapeutic angiogenesis after hind limb ischemia. Our data, therefore, demonstrate a regulatory role for IL10 in mesoderm formation from hiPSCs and during zebrafish vascular development, providing novel insights into mesoderm induction and vascular cell specifications.
Collapse
Affiliation(s)
- Kaiyuan Niu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London EC1M 6BQ, UK; Department of Otolaryngology, Head & Neck Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Chengxin Zhang
- Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, PR China
| | - Chenxin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wei Wu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PR China
| | - Ancheng Zheng
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Silin Liu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Zhenning Shi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mei Yang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wen Wang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
5
|
Jiang Y, Hu J, Cui C, Peng Z, Yang S, Lei J, Li B, Yang X, Qin J, Yin M, Liu X, Ye K, Xu Z, Zhang X, Lu X. Netrin1-Enriched Exosomes From Genetically Modified ADSCs as a Novel Treatment for Diabetic Limb Ischemia. Adv Healthc Mater 2024:e2403521. [PMID: 39440618 DOI: 10.1002/adhm.202403521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Diabetic limb ischemia (DLI) is a frequent complication of diabetes and the leading cause of non-traumatic amputation. Traditional treatments like stent placement and bypass surgery may not suit all patients. Exosome transplantation has emerged as a promising therapy. Netrin1, a protective cardiovascular factor, has an unclear role in DLI. This study investigates the role of Netrin1 in DLI patients and evaluates the therapeutic potential of exosomes derived from Netrin1-overexpressing adipose-derived stem cells (N-ADSCs). The expression of Netrin1 is significantly decreased in both endothelial cells and serum of DLI patients, highlighting its potential as a biomarker or therapeutic target. In vitro, Netrin1-enriched exosomes (N-Exos) promoted human umbilical vein endothelial cell (HUVEC) proliferation, migration, tube formation, and increased resistance to apoptosis under high glucose conditions. These protective effects are mediated through PI3K/AKT/eNOS and MEK/ERK pathways, and N-Exos further facilitated macrophage polarization from M1 to M2. In vivo, N-Exos demonstrates superior therapeutic effects over ADSC exosomes (Exos), including enhanced angiogenesis, improved collateral artery remodeling, reduced inflammation, and muscle protection. Collectively, these findings identify Netrin1 as a critical factor in DLI and underscore its significance in disease progression and therapeutic strategies. N-Exos offers a promising non-cellular therapeutic approach for the treatment of DLI.
Collapse
Affiliation(s)
- Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Chaoyi Cui
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhaoxi Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Sen Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jiahao Lei
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Minyi Yin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
6
|
Becker AB, Chen L, Hossack JA, Klibanov AL, Annex BH, French BA. Contrast-Enhanced Ultrasound of Mouse Models of Hindlimb Ischemia Reveals Persistent Perfusion Deficits and Distinctive Muscle Perfusion Patterns. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00321-1. [PMID: 39426845 DOI: 10.1016/j.ultrasmedbio.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Mouse models of hindlimb ischemia (HLI) are used to study peripheral arterial disease and evaluate novel therapies. Contrast-enhanced ultrasound (CEUS) is a noninvasive perfusion measurement technique that is increasingly being employed in these models. The objective of this study was to evaluate two models of severe HLI by CEUS to characterize perfusion recovery and muscle perfusion patterns. METHODS Mice undergoing double femoral artery ligation were measured by CEUS and laser Doppler perfusion imaging (LDPI) at baseline and 1-150 d postsurgery. A second group undergoing femoral artery ligation and excision was measured 1-28 d postsurgery. RESULTS By LDPI, both surgeries showed robust perfusion recovery by 14 d postsurgery. However, by CEUS only a ∼40% perfusion recovery plateau was reached in either group. These results are consistent with our previous work, employing a less severe single femoral artery ligation, that showed perfusion in the ischemic limb does not return to normal by 150 d postsurgery. Cluster analysis of muscle perfusion patterns indicated 3-5 different patterns at day 1 postsurgery. The double ligation model yielded significantly less variable perfusion patterns, suggesting that it can provide more reproducible results. CONCLUSION Contrary to LDPI, perfusion as measured by CEUS never fully recovers after hindlimb surgery, even when followed 28-150 d postsurgery. Individual mice can manifest different patterns of muscle perfusion to the same surgery, but these patterns are conserved within and between different surgical techniques. These results may have significant implications for the evaluation of novel therapeutics to treat PAD in mice.
Collapse
Affiliation(s)
- Alyssa B Becker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lanlin Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - John A Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA, USA
| | - Brian H Annex
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Cardiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Raja A, Ganta V. Synthetic Antiangiogenic Vascular Endothelial Growth Factor-A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease. J Am Heart Assoc 2024; 13:e034304. [PMID: 39392159 DOI: 10.1161/jaha.124.034304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alternative splicing in the eighth exon C-terminus of VEGF-A (vascular endothelial growth factor-A) results in the formation of proangiogenic VEGF165a and antiangiogenic VEGF165b isoforms. The only known difference between these 2 isoform families is a 6-amino acid switch from CDKPRR (in VEGF165a) to SLTRKD (in VEGF165b). We have recently shown that VEGF165b can induce VEGFR2-activation but fails to induce VEGFR1 (VEGF receptor 1)-activation. The molecular mechanisms that regulate VEGF165b's ability toward differential VEGFR2 versus VEGFR1 activation/inhibition are not yet clear. METHODS AND RESULTS Hypoxia serum starvation was used as an in vitro peripheral artery disease model. Unilateral single ligation of the femoral artery was used as a preclinical peripheral artery disease model. VEGFR1 activating ligands have 2 arginine (RR) residues in their eighth exon C-terminus, that were replaced by lysine-aspartic acid (KD) in VEGF165b. A synthetic anti-angiogenic VEGF165b splice variant in which the KD residues were switched to RR (VEGF165bKD→RR) activated both VEGFR1- and VEGFR2-signaling pathways to induce ischemic-endothelial cell angiogenic capacity in vitro and enhance perfusion recovery in a severe experimental-peripheral artery disease model significantly higher than VEGF165a. Phosphoproteome arrays showed that the therapeutic efficacy of VEGF165bKD→RR over VEGF165a is due to its ability to induce P38-activation in ischemic endothelial cells. CONCLUSIONS Our data shows that the KD residues regulate VEGF165b's VEGFR1 inhibitory property but not VEGFR2. Switching these KD residues to RR resulted in the formation of a synthetic/recombinant VEGF165bKD→RR isoform that has the ability to activate both VEGFR1- and VEGFR2-signaling and induce ischemic-endothelial cell angiogenic and proliferative capacity that matched the angiogenic requirement necessary to achieve perfusion recovery in a severe experimental-peripheral artery disease model.
Collapse
Affiliation(s)
- Adarshini Raja
- Medical College of Georgia Augusta University Augusta GA USA
| | - Vijay Ganta
- Vascular Biology Center and Department of Medicine Augusta University Augusta GA USA
| |
Collapse
|
8
|
Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100097. [PMID: 39129826 PMCID: PMC11315062 DOI: 10.1016/j.bbiosy.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.
Collapse
Affiliation(s)
- Jaxson R. Libby
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haley Royce
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
9
|
Ghim M, Wei L, Jung JJ, The E, Kukreja G, Neishabouri A, Ahmad AA, Raza MZ, Golbazi A, Hedayatyanfard K, Nie L, Zhang J, Sadeghi MM. Regulation of angiogenesis by signal sequence-derived peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609269. [PMID: 39229053 PMCID: PMC11370592 DOI: 10.1101/2024.08.22.609269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background The neuropilin-like, Discoidin, CUB and LCCL domain containing 2 (DCBLD2) is a transmembrane protein with an unusually long signal sequence (SS) composed of N-terminal (N) and C-terminal (C) subdomains, separated by a transition (tra) subdomain. DCBLD2 interacts with VEGFR-2 and regulates VEGF-induced endothelial cell signaling, proliferation and migration, as well as angiogenesis. The exact mechanisms by which DCBLD2 interacts with VEGFR2 to modulate VEGF signaling remain unclear. Methods Searching for VEGFR2 interacting DCBLD2 domains, we generated various constructs containing different DCBLD2 domain combinations and conducted co-immunoprecipitation and signaling studies in HEK 293T and endothelial cells. Several peptides were synthesized based on the identified domain, and their effect on VEGF signaling was assessed in vitro in cell culture and in vivo using matrigel plug and corneal micropocket assays. The effect of the lead peptide was further evaluated using a murine hindlimb ischemia model. Results DCBLD2 SS interacted with VEGFR2 and promoted VEGF signaling. SS was not cleaved in the mature DCBLD2 and its hydrophobic transmembrane 'traC' segment, but not the 'N' subdomain, was involved in DCBLD2-VEGFR2 interaction. The smallest unit in DCBLD2 SS that interacts with VEGFR2 was the L5VL5 sequence. Even after the central valine was removed, the L10 sequence mimicked the DCBLD2 SS traC's effect on VEGF-signaling, while shorter or longer poly-leucine sequences were less effective. Finally, a synthetic traC peptide enhanced VEGF signaling in vitro, promoted VEGF-induced angiogenesis in vivo, and improved blood flow recovery following hindlimb ischemia. Conclusion DCBLD2 SS along with its derivative peptides can promote VEGFR2 signaling and angiogenesis. Synthetic peptides based on DCBLD2 SS hold promise as therapeutic agents for regulating angiogenesis. Importantly these findings refine the traditional view of signal sequences as mere targeting elements, revealing a role in cellular signaling. This opens new avenues for research and therapeutic strategies.
Collapse
|
10
|
Jaiyesimi O, Kuppuswamy S, Zhang G, Batan S, Zhi W, Ganta VC. Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia. Arterioscler Thromb Vasc Biol 2024; 44:1764-1783. [PMID: 38934117 PMCID: PMC11323258 DOI: 10.1161/atvbaha.124.320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in an increased perfusion recovery and higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 expression/levels in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-knock-down ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.
Collapse
Affiliation(s)
- Olukemi Jaiyesimi
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Sivaraman Kuppuswamy
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Guangwei Zhang
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Sonia Batan
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Wenbo Zhi
- Department of Obstetrics and Gynecology, Center for Biotechnology and Genomic Medicine (W.Z.), Augusta University, GA
| | - Vijay C Ganta
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| |
Collapse
|
11
|
Wang Y, Liu J, Tong C, Li L, Cui H, Zhang L, Zhang M, Zhang S, Zhou K, Lan X, Chen Q, Zhao Y. Gene therapy by virus-like self-spooling toroidal DNA condensates for revascularization of hindlimb ischemia. J Nanobiotechnology 2024; 22:413. [PMID: 39004736 PMCID: PMC11247739 DOI: 10.1186/s12951-024-02620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Peripheral arterial diseases (PAD) have been reported to be the leading cause for limb amputations, and the current therapeutic strategies including antiplatelet medication or intervene surgery are reported to not clinically benefit the patients with high-grade PAD. To this respect, revascularization based on angiogenetic vascular endothelial growth factor (VEGF) gene therapy was attempted for the potential treatment of critical PAD. Aiming for transcellular delivery of VEGF-encoding plasmid DNA (pDNA), we proposed to elaborate intriguing virus-like DNA condensates, wherein the supercoiled rigid micrometer-scaled plasmid DNA (pDNA) could be regulated in an orderly fashion into well-defined nano-toroids by following a self-spooling process with the aid of cationic block copolymer poly(ethylene glycol)-polylysine at an extraordinary ionic strength (NaCl: 600 mM). Moreover, reversible disulfide crosslinking was proposed between the polylysine segments with the aim of stabilizing these intriguing toroidal condensates. Pertaining to the critical hindlimb ischemia, our proposed toroidal VEGF-encoding pDNA condensates demonstrated high levels of VEGF expression at the dosage sites, which consequently contributed to the neo-vasculature (the particularly abundant formation of micro-vessels in the injected hindlimb), preventing the hindlimb ischemia from causing necrosis at the extremities. Moreover, excellent safety profiles have been demonstrated by our proposed toroidal condensates, as opposed to the apparent immunogenicity of the naked pDNA. Hence, our proposed virus-like DNA condensates herald potentials as gene therapy platform in persistent expressions of the therapeutic proteins, and might consequently be highlighted in the management of a variety of intractable diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China
| | - Jun Liu
- Department of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Changgui Tong
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China
| | - Hongyang Cui
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Liuwei Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Ming Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China
| | - Shijia Zhang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Kehui Zhou
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Xiabin Lan
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China.
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
| | - Qixian Chen
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China.
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China.
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China.
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning, 110042, China.
| |
Collapse
|
12
|
Basuthakur P, Roy A, Ghosh S, Vijay V, Sinha D, Radhakrishnan M, Kumar A, Patra CR, Chakravarty S. Pro-angiogenic Terbium Hydroxide Nanorods Improve Critical Limb Ischemia in Part by Amelioration of Ischemia-Induced Endothelial Injury. ACS APPLIED BIO MATERIALS 2024; 7:4389-4405. [PMID: 38848346 DOI: 10.1021/acsabm.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Critical limb ischemia (CLI) refers to a severe condition resulting from gradual obstruction in the supply of blood, oxygen, and nutrients to the limbs. The most promising clinical solution to CLI is therapeutic angiogenesis. This study explored the potency of pro-angiogenic terbium hydroxide nanorods (THNR) for treatment of CLI, with a major focus on their impact on ischemia-induced maladaptive alterations in endothelial cells as well as on vascularization in ischemic limbs. This study demonstrated that, in hypoxia-exposed endothelial cells, THNR improve survival and promote proliferation, migration, restoration of nitric oxide production, and regulation of vascular permeability. Based on molecular studies, these attributes of THNR can be traced to the stimulation of PI3K/AKT/eNOS signaling pathways. Besides, Wnt/GSK-3β/β-catenin signaling pathways may also play a role in the therapeutic actions of THNR. Furthermore, in the murine model of CLI, THNR administration can integrally re-establish blood perfusion with concomitant reduction of muscle damage and inflammation. Additionally, improvement of locomotor activities and motor coordination in ischemic limbs in THNR treated mice is also evident. Overall, the study demonstrates that THNR have the potential to be developed as an efficacious and cost-effective alternative clinical therapy for CLI, using a nanomedicine approach.
Collapse
Affiliation(s)
- Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Ghosh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vincy Vijay
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debiprasad Sinha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mydhili Radhakrishnan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Wang Y, Gao Y, Shi H, Gao R, Yang J, Qu Y, Hu S, Zhang J, Wang J, Cao J, Zhang F, Ge J. CCL11 released by GSDMD-mediated macrophage pyroptosis regulates angiogenesis after hindlimb ischemia. Cell Death Discov 2024; 10:294. [PMID: 38906863 PMCID: PMC11192718 DOI: 10.1038/s41420-023-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 06/23/2024] Open
Abstract
Peripheral vascular disease (PVD) is an emerging public health burden with a high rate of disability and mortality. Gasdermin D (GSDMD) has been reported to exert pyroptosis and play a critical role in the pathophysiology of many cardiovascular diseases. We ought to determine the role of GSDMD in the regulation of perfusion recovery after hindlimb ischemia (HLI). Our study revealed that GSDMD-mediated pyroptosis occurred in HLI. GSDMD deletion aggravated perfusion recovery and angiogenesis in vitro and in vivo. However, how GSDMD regulates angiogenesis after ischemic injury remains unclear. We then found that GSDMD-mediated pyroptosis exerted the angiogenic capacity in macrophages rather than endothelial cells after HLI. GSDMD deletion led to a lower level of CCL11 in mice serum. GSDMD knockdown in macrophages downregulated the expression and decreased the releasing level of CCL11. Furthermore, recombinant CCL11 improved endothelial functions and angiogenesis, which was attenuated by CCL11 antibody. Taken together, these results demonstrate that GSDMD promotes angiogenesis by releasing CCL11, thereby improving blood flow perfusion recovery after hindlimb ischemic injury. Therefore, CCL11 may be a novel target for prevention and treatment of vascular ischemic diseases.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yang Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Huairui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Rifeng Gao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 200240, Shanghai, China
| | - Ji'e Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ya'nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Shiyu Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jian Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jingpu Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jiatian Cao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, 200032, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, 200032, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, 200032, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
14
|
Quax PHA, Deindl E. The Intriguing World of Vascular Remodeling, Angiogenesis, and Arteriogenesis. Int J Mol Sci 2024; 25:6376. [PMID: 38928082 PMCID: PMC11204171 DOI: 10.3390/ijms25126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular remodeling is a very general feature related to angiogenesis and arteriogenesis, which are involved in neovascularization processes [...].
Collapse
Affiliation(s)
- Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| |
Collapse
|
15
|
Deng X, Wang J, Yu S, Tan S, Yu T, Xu Q, Chen N, Zhang S, Zhang M, Hu K, Xiao Z. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. EXPLORATION (BEIJING, CHINA) 2024; 4:20230090. [PMID: 38939861 PMCID: PMC11189587 DOI: 10.1002/exp.20230090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiujiao Deng
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinghao Wang
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Shanshan Yu
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Suiyi Tan
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Tingting Yu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Qiaxin Xu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Nenghua Chen
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical TranslationJinan UniversityGuangzhouChina
| |
Collapse
|
16
|
Athavale A, Fukaya E, Leeper NJ. Peripheral Artery Disease: Molecular Mechanisms and Novel Therapies. Arterioscler Thromb Vasc Biol 2024; 44:1165-1170. [PMID: 38776386 PMCID: PMC11157452 DOI: 10.1161/atvbaha.124.320195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Anand Athavale
- Division of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA
| | - Eri Fukaya
- Division of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA
| | - Nicholas J Leeper
- Division of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
17
|
Lin S, Zhu P, Jiang L, Hu Y, Huang L, He Y, Zhang H. Neutrophil extracellular traps induced by IL-1β promote endothelial dysfunction and aggravate limb ischemia. Hypertens Res 2024; 47:1654-1667. [PMID: 38605142 DOI: 10.1038/s41440-024-01661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Vascular inflammation and endothelial dysfunction contribute to vascular diseases. While neutrophil extracellular traps (NETs) participate in some vascular pathologies, their roles in lower limb ischemia remain poorly defined. This study investigated the functional significance of NETs in vascular inflammation and remodeling associated with limb ischemia. Single-cell RNA sequencing (scRNA-seq) and flow cytometry revealed neutrophil activation and upregulated NETs formation in human limb ischemia, with immunofluorescence confirming IL-1β-induced release of NETs for vascular inflammation. Endothelial cell activation was examined via scRNA-seq and western blotting, indicating enhanced proliferation, expression of adhesion molecules (VCAM-1, ICAM-1), inflammatory cytokines (IL-1β, IL-6) and decreased expression of VE-cadherin, that could be mediated by NETs to exacerbate endothelial inflammation. Mechanistically, NETs altered endothelial cell function via increased pSTAT1/STAT1 signaling. Vascular inflammation and subsequent ischemia were alleviated in vivo by NETosis or IL-1β inhibition in ischemic mice. IL-1β-NETs induce endothelial activation and inflammation in limb ischemia by stimulating STAT1 signaling. Targeting NETs may thus represent a novel therapeutic strategy for inflammatory vascular diseases associated with limb ischemia. Graphical abstract of NETs regulation of the development of vascular inflammation in lower limb ischemia via pSTAT1/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujian Hu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lirui Huang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongkun Zhang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Florek K, Mendyka D, Gomułka K. Vascular Endothelial Growth Factor (VEGF) and Its Role in the Cardiovascular System. Biomedicines 2024; 12:1055. [PMID: 38791016 PMCID: PMC11117514 DOI: 10.3390/biomedicines12051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with ischemic heart disease (IHD) as the most common. Ischemia-induced angiogenesis is a process in which vascular endothelial growth factor (VEGF) plays a crucial role. To conduct research in the field of VEGF's association in cardiovascular diseases, it is vital to understand its role in the physiological and pathological processes in the heart. VEGF-based therapies have demonstrated a promising role in preclinical studies. However, their potential in human therapies is currently under discussion. Furthermore, VEGF is considered a potential biomarker for collateral circulation assessment and heart failure (HF) mortality. Additionally, as VEGF is involved in angiogenesis, there is a need to elucidate the impact of VEGF-targeted therapies in terms of cardiovascular side effects.
Collapse
Affiliation(s)
- Kamila Florek
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Dominik Mendyka
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Krzysztof Gomułka
- Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
19
|
Deppen JN, Ginn SC, Tang EO, Wang L, Brockman ML, Levit RD. Alginate-Encapsulated Mesenchymal Stromal Cells Improve Hind Limb Ischemia in a Translational Swine Model. J Am Heart Assoc 2024; 13:e029880. [PMID: 38639336 PMCID: PMC11179867 DOI: 10.1161/jaha.123.029880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cellular therapies have been investigated to improve blood flow and prevent amputation in peripheral artery disease with limited efficacy in clinical trials. Alginate-encapsulated mesenchymal stromal cells (eMSCs) demonstrated improved retention and survival and promoted vascular generation in murine hind limb ischemia through their secretome, but large animal evaluation is necessary for human applicability. We sought to determine the efficacy of eMSCs for peripheral artery disease-induced limb ischemia through assessment in our durable swine hind limb ischemia model. METHODS AND RESULTS Autologous bone marrow eMSCs or empty alginate capsules were intramuscularly injected 2 weeks post-hind limb ischemia establishment (N=4/group). Improvements were quantified for 4 weeks through walkway gait analysis, contrast angiography, blood pressures, fluorescent microsphere perfusion, and muscle morphology and histology. Capsules remained intact with mesenchymal stromal cells retained for 4 weeks. Adenosine-induced perfusion deficits and muscle atrophy in ischemic limbs were significantly improved by eMSCs versus empty capsules (mean±SD, 1.07±0.19 versus 0.41±0.16, P=0.002 for perfusion ratios and 2.79±0.12 versus 1.90±0.62 g/kg, P=0.029 for ischemic muscle mass). Force- and temporal-associated walkway parameters normalized (ratio, 0.63±0.35 at week 3 versus 1.02±0.19 preligation; P=0.17), and compensatory footfall patterning was diminished in eMSC-administered swine (12.58±8.46% versus 34.85±15.26%; P=0.043). Delivery of eMSCs was associated with trending benefits in collateralization, local neovascularization, and muscle fibrosis. Hypoxia-cultured porcine mesenchymal stromal cells secreted vascular endothelial growth factor and tissue inhibitor of metalloproteinase 2. CONCLUSIONS This study demonstrates the promise of the mesenchymal stromal cell secretome at improving peripheral artery disease outcomes and the potential for this novel swine model to serve as a component of the preclinical pipeline for advanced therapies.
Collapse
Affiliation(s)
- Juline N. Deppen
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Sydney C. Ginn
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Erica O. Tang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Lanfang Wang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | | | - Rebecca D. Levit
- Division of CardiologyEmory University School of MedicineAtlantaGA
| |
Collapse
|
20
|
Oliveira RHDM, Annex BH, Popel AS. Endothelial cells signaling and patterning under hypoxia: a mechanistic integrative computational model including the Notch-Dll4 pathway. Front Physiol 2024; 15:1351753. [PMID: 38455844 PMCID: PMC10917925 DOI: 10.3389/fphys.2024.1351753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction: Several signaling pathways are activated during hypoxia to promote angiogenesis, leading to endothelial cell patterning, interaction, and downstream signaling. Understanding the mechanistic signaling differences between endothelial cells under normoxia and hypoxia and their response to different stimuli can guide therapies to modulate angiogenesis. We present a novel mechanistic model of interacting endothelial cells, including the main pathways involved in angiogenesis. Methods: We calibrate and fit the model parameters based on well-established modeling techniques that include structural and practical parameter identifiability, uncertainty quantification, and global sensitivity. Results: Our results indicate that the main pathways involved in patterning tip and stalk endothelial cells under hypoxia differ, and the time under hypoxia interferes with how different stimuli affect patterning. Additionally, our simulations indicate that Notch signaling might regulate vascular permeability and establish different Nitric Oxide release patterns for tip/stalk cells. Following simulations with various stimuli, our model suggests that factors such as time under hypoxia and oxygen availability must be considered for EC pattern control. Discussion: This project provides insights into the signaling and patterning of endothelial cells under various oxygen levels and stimulation by VEGFA and is our first integrative approach toward achieving EC control as a method for improving angiogenesis. Overall, our model provides a computational framework that can be built on to test angiogenesis-related therapies by modulation of different pathways, such as the Notch pathway.
Collapse
Affiliation(s)
| | - Brian H. Annex
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
21
|
Sarabipour S, Kinghorn K, Quigley KM, Kovacs-Kasa A, Annex BH, Bautch VL, Mac Gabhann F. Trafficking dynamics of VEGFR1, VEGFR2, and NRP1 in human endothelial cells. PLoS Comput Biol 2024; 20:e1011798. [PMID: 38324585 PMCID: PMC10878527 DOI: 10.1371/journal.pcbi.1011798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/20/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kaitlyn M. Quigley
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anita Kovacs-Kasa
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Brian H. Annex
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Victoria L. Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar AD, Smalling R, Baker AB. Transmembrane stem factor nanodiscs enhanced revascularization in a hind limb ischemia model in diabetic, hyperlipidemic rabbits. Sci Rep 2024; 14:2352. [PMID: 38287067 PMCID: PMC10825164 DOI: 10.1038/s41598-024-52888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
- School of Medicine, Surgery, Stanford University, Stanford, CA, USA
| | - Miles Massidda
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Julia Goldman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gregory Callahan
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Memorial Hermann Heart and Vascular Institute, Houston, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Ganta VC, Jones WS, Annex BH. A conundrum of arterialized capillaries and vascular dilation in chronic limb-threatening ischaemia. Eur Heart J 2024; 45:265-267. [PMID: 38126898 PMCID: PMC11032205 DOI: 10.1093/eurheartj/ehad826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Vijay C Ganta
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30909, USA
| | - W Schuyler Jones
- Division of Cardiology, Duke University Health System and Duke Clinical Research Institute, Durham, NC, USA
| | - Brian H Annex
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30909, USA
| |
Collapse
|
24
|
Webster KA. Translational Relevance of Advanced Age and Atherosclerosis in Preclinical Trials of Biotherapies for Peripheral Artery Disease. Genes (Basel) 2024; 15:135. [PMID: 38275616 PMCID: PMC10815340 DOI: 10.3390/genes15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD), primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revascularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI) and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or progenitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are approved in the US, EU, or China. The reasons are unclear, but animal models that do not represent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on inappropriate models. The question is significant because the former case requires abandonment of current strategies, while the latter encourages continued optimization. These issues are discussed in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse models that include age and atherosclerosis as the only comorbidities that are consistently present and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials, no biopharmacological procedure that failed in clinical trials had been tested in animal models that included advanced age and atherosclerosis relevant to PAD/CLI.
Collapse
Affiliation(s)
- Keith A. Webster
- Vascular Biology Institute, University of Miami, Miami, FL 33146, USA;
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Lei J, Jiang X, Huang D, Jing Y, Yang S, Geng L, Yan Y, Zheng F, Cheng F, Zhang W, Belmonte JCI, Liu GH, Wang S, Qu J. Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner. Protein Cell 2024; 15:36-51. [PMID: 37158785 PMCID: PMC10762672 DOI: 10.1093/procel/pwad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Collapse
Affiliation(s)
- Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shanshan Yang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yupeng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| | - Fangshuo Zheng
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Fang Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, China
| | | | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| |
Collapse
|
26
|
Guo W, Pan L, Yang R, Sun J, Hu Q, Huang P. Acupoint transplantation versus non-acupoint transplantation using autologous peripheral blood mononuclear cells in treating peripheral arterial disease. BLOOD SCIENCE 2024; 6:e00175. [PMID: 38226019 PMCID: PMC10789451 DOI: 10.1097/bs9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024] Open
Abstract
Numerous studies have discussed the therapeutic outcomes of using cell therapy or acupuncture to treat peripheral artery disease (PAD). However, there are no long-term studies on the safety and efficacy of transplanting peripheral blood mononuclear cells (PBMNCs) via acupoints to treat PAD. We first reviewed the short-term and long-term clinical results of PAD patients treated with PBMNCs through intramuscular non-acupoint transplantation (control group; n = 45) or intramuscular acupoint transplantation (acupoint group; n = 45) at a single university hospital general medical center between December 2002 and September 2022. Pain intensity (assessed with the verbal rating scale [VRS] score) in the acupoint group was considerably lower than that in the control group at month 1 (mean ± standard deviation [SD]: 1.29 ± 0.96 vs 1.76 ± 0.82; P = 0.016) and month 3 (mean ± SD: 1.27 ± 0.90 vs 1.61 ± 0.86; P = 0.042). We observed significant improvement of VRS score (P < .001 for all) and ankle-brachial index (ABI; P < .001 for all) from baseline in both groups at months 1, 3, 6, 12, 36, and 60. The 10-year cumulative rate of major amputation-free survival (MAFS) was higher in the acupoint group as compared to the control group (81.9%, 95% confidence interval [CI]: 71.3%-94.1% vs 78.5%, 95% CI: 66.7%-92.3%; P = 0.768). Compared with the routine injection method, intramuscular transplantation of PBMNCs via selected acupoints could significantly decrease the short-term pain intensity in patients with PAD, which remains an option for consideration.
Collapse
Affiliation(s)
- Wenjing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ling Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ruiyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jiali Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Pingping Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
27
|
Patel AS, Ludwinski FE, Mondragon A, Nuthall K, Saha P, Lyons O, Squadrito ML, Siow R, De Palma M, Smith A, Modarai B. HTATIP2 regulates arteriogenic activity in monocytes from patients with limb ischemia. JCI Insight 2023; 8:e131419. [PMID: 37847559 PMCID: PMC10807724 DOI: 10.1172/jci.insight.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Use of autologous cells isolated from elderly patients with multiple comorbidities may account for the modest efficacy of cell therapy in patients with chronic limb threatening ischemia (CLTI). We aimed to determine whether proarteriogenic monocyte/macrophages (Mo/MΦs) from patients with CLTI were functionally impaired and to demonstrate the mechanisms related to any impairment. Proarteriogenic Mo/MΦs isolated from patients with CLTI were found to have an impaired capacity to promote neovascularization in vitro and in vivo compared with those isolated from healthy controls. This was associated with increased expression of human HIV-1 TAT interactive protein-2 (HTATIP2), a transcription factor known to suppress angiogenesis/arteriogenesis. Silencing HTATIP2 restored the functional capacity of CLTI Mo/MΦs, which was associated with increased expression of arteriogenic regulators Neuropilin-1 and Angiopoietin-1, and their ability to enhance angiogenic (endothelial tubule formation) and arteriogenic (smooth muscle proliferation) processes in vitro. In support of the translational relevance of our findings, silencing HTATIP2 in proarteriogenic Mo/MΦs isolated from patients with CLTI rescued their capacity to enhance limb perfusion in the ischemic hindlimb by effecting greater angiogenesis and arteriogenesis. Ex vivo modulation of HTATIP2 may offer a strategy for rescuing the functional impairment of pro-angio/arteriogenic Mo/MΦs prior to autologous delivery and increase the likelihood of clinical efficacy.
Collapse
Affiliation(s)
- Ashish S. Patel
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Francesca E. Ludwinski
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Angeles Mondragon
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Katherine Nuthall
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Oliver Lyons
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Mario Leonardo Squadrito
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Richard Siow
- Department of Vascular Biology and Inflammation, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alberto Smith
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| | - Bijan Modarai
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, King’s BHF Centre of Research Excellence, King’s College London, United Kingdom
| |
Collapse
|
28
|
Zou J, Xu W, Li Z, Gao P, Zhang F, Cui Y, Hu J. Network pharmacology-based approach to research the effect and mechanism of Si-Miao-Yong-An decoction against thromboangiitis obliterans. Ann Med 2023; 55:2218105. [PMID: 37318081 DOI: 10.1080/07853890.2023.2218105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Si-Miao-Yong-An decoction (SMYAD) is a conventional therapeutic formula for treat thromboangiitis obliterans (TAO), consisting of four Chinese herbs: Lonicerae japonicae Thunb. (Jinyinhua), Scrophularia ningpoensis Hemsl. (Xuanshen), Angelica sinensis (Oliv.) Diels (Danggui) and Glycyrrhiza uralensis Fisch. (Gancao). However, the mechanism of SMYAD in TAO treatment remains unclear. METHODS Components, as well as potential targets of SMYAD in TAO therapy, were downloaded from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Subsequently, with the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signalling pathways of the targets enrichment were performed. Next, based on STRING online database, the protein interaction network of vital targets was built and analysed. Molecular docking and calculation of the binding affinity were performed using AutoDock. The PyMOL software was employed to observe docking outcomes of active compounds and protein targets. Based on the predicted outcomes of network pharmacology, in vivo and in vitro tests were performed for validation. In vivo experiment, the TAO rats model was established using sodium laurate injection into the femoral artery. The symptoms as well as pathological changes of the femoral artery were observed. Besides, the predicted targets were verified by the RT-qPCR, in vitro experiment. The cell viability in LPS-induced human umbilical vein endothelial cells (HUVECs) was detected using CCK-8 kit, and the predicted targets were also verified by the RT-qPCR. RESULTS In the network pharmacology analysis, we obtained 105 chemical components in SMYAD and 24 therapeutic targets. We found that the mechanism SMYAD in TAO therapy was primarily associated with inflammation and angiogenesis by constructing multiple networks. Quercetin, vestitol and beta-sitosterol were important compounds, and interleukin-6 (IL6), MMP9, and VEGFA were key targets. According to molecular docking, active compounds (quercetin, vestitol and beta-sitosterol) and targets (IL6, MMP9 and VEGFA) showed good binding interactions. In in vivo experiment, SMYAD ameliorated the physical signs and pathological changes, inhibited the expression of IL6 and MMP9, and enhanced the expression of VEGFA. In an in vitro experiment, SMYAD increased the cell viability of LPS-induced HUVECs and the expression of VEGFA, and reduced the expression of IL6 and MMP9. CONCLUSIONS This study showed that SMYAD improves TAO symptoms and inhibits the development of TAO. The mechanism could be associated with anti-inflammatory and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Jiaxi Zou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiming Xu
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyun Li
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Gao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangyuan Zhang
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| | - Yuting Cui
- Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingqing Hu
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Shah AJ, Pavlatos N, Kalra DK. Preventive Therapies in Peripheral Arterial Disease. Biomedicines 2023; 11:3157. [PMID: 38137379 PMCID: PMC10741180 DOI: 10.3390/biomedicines11123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Atherosclerosis, while initially deemed a bland proliferative process, is now recognized as a multifactorial-lipoprotein-mediated inflammation-driven pathway. With the rising incidence of atherosclerotic disease of the lower extremity arteries, the healthcare burden and clinical morbidity and mortality due to peripheral artery disease (PAD) are currently escalating. With a healthcare cost burden of over 21 billion USD and 200 million patients afflicted worldwide, accurate knowledge regarding the pathophysiology, presentation, and diagnosis of the disease is crucial. The role of lipoproteins and their remnants in atherosclerotic vessel occlusion and plaque formation and progression has been long established. This review paper discusses the epidemiology, pathophysiology, and presentation of PAD. PAD has been repeatedly noted to portend to poor cardiovascular and limb outcomes. We discuss major therapeutic avenues for the prevention of major cardiovascular adverse events and major limb adverse events in patients with PAD.
Collapse
Affiliation(s)
- Aangi J. Shah
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (A.J.S.); (N.P.)
| | - Nicholas Pavlatos
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (A.J.S.); (N.P.)
| | - Dinesh K. Kalra
- Division of Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
30
|
Arderiu G, Civit-Urgell A, Badimon L. Adipose-Derived Stem Cells to Treat Ischemic Diseases: The Case of Peripheral Artery Disease. Int J Mol Sci 2023; 24:16752. [PMID: 38069074 PMCID: PMC10706341 DOI: 10.3390/ijms242316752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Critical limb ischemia incidence and prevalence have increased over the years. However, there are no successful treatments to improve quality of life and to reduce the risk of cardiovascular and limb events in these patients. Advanced regenerative therapies have focused their interest on the generation of new blood vessels to repair tissue damage through the use of stem cells. One of the most promising sources of stem cells with high potential in cell-based therapy is adipose-derived stem cells (ASCs). ASCs are adult mesenchymal stem cells that are relatively abundant and ubiquitous and are characterized by a multilineage capacity and low immunogenicity. The proangiogenic benefits of ASCs may be ascribed to: (a) paracrine secretion of proangiogenic molecules that may stimulate angiogenesis; (b) secretion of microvesicles/exosomes that are also considered as a novel therapeutic prospect for treating ischemic diseases; and (c) their differentiation capability toward endothelial cells (ECs). Although we know the proangiogenic effects of ASCs, the therapeutic efficacy of ASCs after transplantation in peripheral artery diseases patients is still relatively low. In this review, we evidence the potential therapeutic use of ASCs in ischemic regenerative medicine. We also highlight the main challenges in the differentiation of these cells into functional ECs. However, significant efforts are still needed to ascertain relevant transcription factors, intracellular signaling and interlinking pathways in endothelial differentiation.
Collapse
Affiliation(s)
- Gemma Arderiu
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Civit-Urgell
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Facultat de Medicina i Ciències de la Salut—Campus Clínic, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Lina Badimon
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau Barcelona, 08041 Barcelona, Spain; (A.C.-U.); (L.B.)
- Ciber CV, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
31
|
Olson A, Benfor B, Peden E. Stem Cell Therapy: A Possible Role in the Treatment of Patients with Chronic Limb-Threatening Ischemia? Methodist Debakey Cardiovasc J 2023; 19:69-72. [PMID: 38028971 PMCID: PMC10655764 DOI: 10.14797/mdcvj.1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic limb-threatening ischemia (CLTI) is a severe form of peripheral arterial disease that portends high morbidity and mortality. Patients may undergo various endovascular or open procedures with the goal of limb salvage. No-option CLTI patients represent a vulnerable population for whom conventional options have been exhausted, or anatomy precludes any attempts at revascularization, often resulting in amputation. Stem cell therapy is under investigation for these no-option CLTI patients. Regardless of revascularization technique, these patients are clinically challenging and require multidisciplinary efforts to achieve the best outcomes. Here we present a patient with unfavorable anatomy who underwent stem cell therapy injection for a nonhealing right first toe wound, and we include points to remember when considering stem cell treatment in patients with CLTI.
Collapse
Affiliation(s)
- Annabella Olson
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, US
| | - Bright Benfor
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, US
| | - Eric Peden
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, US
| |
Collapse
|
32
|
Narkar VA. Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration. Methodist Debakey Cardiovasc J 2023; 19:58-68. [PMID: 38028974 PMCID: PMC10655757 DOI: 10.14797/mdcvj.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.
Collapse
Affiliation(s)
- Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, US
| |
Collapse
|
33
|
Yadav S, Ganta V, Sudhahar V, Ash D, Nagarkoti S, Das A, McMenamin M, Kelley S, Fukai T, Ushio-Fukai M. Myeloid Drp1 Deficiency Limits Revascularization in Ischemic Muscles via Inflammatory Macrophage Polarization and Metabolic Reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565656. [PMID: 37961122 PMCID: PMC10635146 DOI: 10.1101/2023.11.04.565656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the preclinical model of peripheral arterial disease (PAD), M2-like anti-inflammatory macrophage polarization and angiogenesis are required for revascularization. The regulation of cell metabolism and inflammation in macrophages is tightly linked to mitochondrial dynamics. Drp1, a mitochondrial fission protein, has shown context-dependent macrophage phenotypes with both pro- and anti-inflammatory characteristics. However, the role of macrophage Drp1 in reparative neovascularization remains unexplored. Here we show that Drp1 expression was significantly increased in F4/80+ macrophages within ischemic muscle at day 3 following hindlimb ischemia (HLI), an animal model of PAD. Myeloid-specific Drp1 -/- mice exhibited reduced limb perfusion recovery, angiogenesis and muscle regeneration after HLI. These effects were concomitant with enhancement of pro-inflammatory M1-like macrophages, p-NFkB, and TNFα levels, while showing reduction in anti-inflammatory M2-like macrophages and p-AMPK in ischemic muscle of myeloid Drp1 -/- mice. In vitro, Drp1 -/- macrophages under hypoxia serum starvation (HSS), an in vitro PAD model, demonstrated enhanced glycolysis via reducing p-AMPK as well as mitochondrial dysfunction and excessive mitochondrial ROS, resulting in increased M1-gene and reduced M2-gene expression. Conditioned media from HSS-treated Drp1 -/- macrophages exhibited increased secretion of pro-inflammatory cytokines and suppressed angiogenic responses in cultured endothelial cells. Thus, Drp1 deficiency in macrophages under ischemia drives inflammatory metabolic reprogramming and macrophage polarization, thereby limiting revascularization in experimental PAD.
Collapse
|
34
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
35
|
Kumar A, Narkar VA. Nuclear receptors as potential therapeutic targets in peripheral arterial disease and related myopathy. FEBS J 2023; 290:4596-4613. [PMID: 35942640 PMCID: PMC9908775 DOI: 10.1111/febs.16593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, UTHealth McGovern Medical School, Houston, TX, 77030
- University of Texas MD Anderson and UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030
| |
Collapse
|
36
|
Meng XM, Liu SB, Deng T, Li DY, You L, Hong H, Feng QP, Zhu BM. Loss of Histone Methyltransferase KMT2D Attenuates Angiogenesis in the Ischemic Heart by Inhibiting the Transcriptional Activation of VEGF-A. J Cardiovasc Transl Res 2023; 16:1032-1049. [PMID: 36947365 PMCID: PMC10616223 DOI: 10.1007/s12265-023-10373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Angiogenesis occurred after myocardial infarction (MI) protects heart failure (HF). The aim of our study was to explore function of histone methyltransferase KMT2D (MLL4, mixed-lineage leukemia 4) in angiogenesis post-MI. Western blotting showed that KMT2D protein expression was elevated in MI mouse myocardial. Cardiomyocyte-specific Kmt2d-knockout (Kmt2d-cKO) mice were generated, and echocardiography and immunofluorescence staining detected significantly attenuated cardiac function and insufficient angiogenesis following MI in Kmt2d-cKO mice. Cross-talk assay suggested that Kmt2d-KO H9c2-derived conditioned medium attenuates EA.hy926 EC function. ELISA further identified that VEGF-A released from Kmt2d-KO H9c2 was significantly reduced. CUT&Tag and RT-qPCR revealed that KMT2D deficiency reduced Vegf-a mRNA expression and enrichment of H3K4me1 on the Vegf-a promoter. Moreover, KMT2D silencing in ECs also suppressed endothelial function. Our study indicates that KMT2D depletion in both cardiomyocytes and ECs attenuates angiogenesis and that loss of KMT2D exacerbates heart failure after MI in mice.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Machado I, Ferreira J, Magalhães C, Sousa P, Dias L, Santarém D, Sousa N, Paredes H, Abrantes C. Six-month effects of supervised exercise on walking ability and health-related factors in peripheral arterial disease: a pilot study. INT ANGIOL 2023; 42:371-381. [PMID: 37870494 DOI: 10.23736/s0392-9590.23.05085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND In peripheral arterial disease (PAD) patients with intermittent claudication (IC), the combination of aerobic and resistance exercises could counteract muscle loss and attenuate disease progression. This study analyzed the effects of six months of a combined exercise program on walking ability, lower limb body composition, cardiovascular risk factors, and Ankle-Brachial Index (ABI). METHODS Twenty-three patients (age 63.2±1.5 years and ABI 0.58±0.07) with PAD and IC were allocated to a control group (CG) or a supervised exercise group (SUP). Ten patients underwent six months of treadmill walking combined with resistance exercises, three times a week. The CG (N.=13) received a recommendation for walking. All patients were measured at baseline (M0), after three months (M3), and six months (M6). RESULTS During constant treadmill protocol, the claudication onset time/distance (COT/COD), absolute claudication time/distance (ACT/ACD), and number of pauses of overall patients significantly improved at M3 and M6. Between groups were found significant differences in COT and COD at M6 (P=0.005 and P=0.007, respectively); and in ACT and ACD at M3 (P=0.003 for both) and at M6 (P=0.005 and P=0.005, respectively), with major improvements in the SUP. Over the six months, a significant group effect was found in fat-free mass (P=0.041) and predicted muscle mass (P=0.039) of the lower ABI leg, with greater improvements in the SUP. CONCLUSIONS A supervised exercise program that combines aerobic and resistance training improves PAD symptoms and has additional benefits for patients. Patients in the program showed improvements in walking ability, lower-limb body composition, perceived exertion, and heart rate during treadmill walking.
Collapse
Affiliation(s)
- Isabel Machado
- Department of Sports Sciences, Exercise and Health, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal -
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Vila Real, Portugal -
| | - Joana Ferreira
- Department of Angiology and Vascular Surgery, Trás-os-Montes e Alto Douro Hospital Center (CHTMAD), Vila Real, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Carlos Magalhães
- Department of Physical Medicine and Rehabilitation, Trás-os-Montes e Alto Douro Hospital Center (CHTMAD), Vila Real, Portugal
| | - Pedro Sousa
- Department of Imagiology, Trás-os-Montes e Alto Douro Hospital Center (CHTMAD), Vila Real, Portugal
| | - Lúcia Dias
- Department of Physical Medicine and Rehabilitation, Trás-os-Montes e Alto Douro Hospital Center (CHTMAD), Vila Real, Portugal
| | - Daniel Santarém
- Department of Sports Sciences, Exercise and Health, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Nelson Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Vila Real, Portugal
- Public Health Unit of Santo Tirso, ACES Grande Porto I-Santo Tirso/Trofa, Santo Tirso, Portugal
| | - Hugo Paredes
- Department of Engineering, School of Sciences and Technology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Center for Human Center Computing and Information Science (HUMANISE), Porto, Portugal
| | - Catarina Abrantes
- Department of Sports Sciences, Exercise and Health, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Vila Real, Portugal
| |
Collapse
|
38
|
Fletcher E, Miserlis D, Sorokolet K, Wilburn D, Bradley C, Papoutsi E, Wilkinson T, Ring A, Ferrer L, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Diet-induced obesity augments ischemic myopathy and functional decline in a murine model of peripheral artery disease. Transl Res 2023; 260:17-31. [PMID: 37220835 PMCID: PMC11388035 DOI: 10.1016/j.trsl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Dylan Wilburn
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | | | | | | | - Andrew Ring
- Department of Biology, Baylor University, Waco, Texas
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
39
|
Fayed HS, Bakleh MZ, Ashraf JV, Howarth A, Ebner D, Al Haj Zen A. Selective ROCK Inhibitor Enhances Blood Flow Recovery after Hindlimb Ischemia. Int J Mol Sci 2023; 24:14410. [PMID: 37833857 PMCID: PMC10572734 DOI: 10.3390/ijms241914410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The impairment in microvascular network formation could delay the restoration of blood flow after acute limb ischemia. A high-content screen of a GSK-published kinase inhibitor library identified a set of ROCK inhibitor hits enhancing endothelial network formation. Subsequent kinase activity profiling against a panel of 224 protein kinases showed that two indazole-based ROCK inhibitor hits exhibited high selectivity for ROCK1 and ROCK2 isoforms compared to other ROCK inhibitors. One of the chemical entities, GSK429286, was selected for follow-up studies. We found that GSK429286 was ten times more potent in enhancing endothelial tube formation than Fasudil, a classic ROCK inhibitor. ROCK1 inhibition by RNAi phenocopied the angiogenic phenotype of the GSK429286 compound. Using an organotypic angiogenesis co-culture assay, we showed that GSK429286 formed a dense vascular network with thicker endothelial tubes. Next, mice received either vehicle or GSK429286 (10 mg/kg i.p.) for seven days after hindlimb ischemia induction. As assessed by laser speckle contrast imaging, GSK429286 potentiated blood flow recovery after ischemia induction. At the histological level, we found that GSK429286 significantly increased the size of new microvessels in the regenerating areas of ischemic muscles compared with vehicle-treated ones. Our findings reveal that selective ROCK inhibitors have in vitro pro-angiogenic properties and therapeutic potential to restore blood flow in limb ischemia.
Collapse
Affiliation(s)
- Hend Salah Fayed
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Mouayad Zuheir Bakleh
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | | | - Alison Howarth
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
40
|
Song M, Wang Y, Annex BH, Popel AS. Experiment-based computational model predicts that IL-6 classic and trans-signaling exhibit similar potency in inducing downstream signaling in endothelial cells. NPJ Syst Biol Appl 2023; 9:45. [PMID: 37735165 PMCID: PMC10514195 DOI: 10.1038/s41540-023-00308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Inflammatory cytokine mediated responses are important in the development of many diseases that are associated with angiogenesis. Targeting angiogenesis as a prominent strategy has shown limited effects in many contexts such as cardiovascular diseases and cancer. One potential reason for the unsuccessful outcome is the mutual dependent role between inflammation and angiogenesis. Inflammation-based therapies primarily target inflammatory cytokines such as interleukin-6 (IL-6) in T cells, macrophages, cancer cells, and muscle cells, and there is a limited understanding of how these cytokines act on endothelial cells. Thus, we focus on one of the major inflammatory cytokines, IL-6, mediated intracellular signaling in endothelial cells by developing a detailed computational model. Our model quantitatively characterized the effects of IL-6 classic and trans-signaling in activating the signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and mitogen-activated protein kinase (MAPK) signaling to phosphorylate STAT3, extracellular regulated kinase (ERK) and Akt, respectively. We applied the trained and validated experiment-based computational model to characterize the dynamics of phosphorylated STAT3 (pSTAT3), Akt (pAkt), and ERK (pERK) in response to IL-6 classic and/or trans-signaling. The model predicts that IL-6 classic and trans-signaling induced responses are IL-6 and soluble IL-6 receptor (sIL-6R) dose-dependent. Also, IL-6 classic and trans-signaling showed similar potency in inducing downstream signaling; however, trans-signaling induces stronger downstream responses and plays a dominant role in the overall effects from IL-6 due to the in vitro experimental setting of abundant sIL-6R. In addition, both IL-6 and sIL-6R levels regulate signaling strength. Moreover, our model identifies the influential species and kinetic parameters that specifically modulate the downstream inflammatory and/or angiogenic signals, pSTAT3, pAkt, and pERK responses. Overall, the model predicts the effects of IL-6 classic and/or trans-signaling stimulation quantitatively and provides a framework for analyzing and integrating experimental data. More broadly, this model can be utilized to identify potential targets that influence IL-6 mediated signaling in endothelial cells and to study their effects quantitatively in modulating STAT3, Akt, and ERK activation.
Collapse
Affiliation(s)
- Min Song
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Youli Wang
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, GA, 30912, USA
| | - Brian H Annex
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, GA, 30912, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
41
|
Lörchner H, Cañes Esteve L, Góes ME, Harzenetter R, Brachmann N, Gajawada P, Günther S, Doll N, Pöling J, Braun T. Neutrophils for Revascularization Require Activation of CCR6 and CCL20 by TNFα. Circ Res 2023; 133:592-610. [PMID: 37641931 DOI: 10.1161/circresaha.123.323071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Activation of immune-inflammatory pathways involving TNFα (tumor necrosis factor alpha) signaling is critical for revascularization and peripheral muscle tissue repair after ischemic injury. However, mechanisms of TNFα-driven inflammatory cascades directing recruitment of proangiogenic immune cells to sites of ischemia are unknown. METHODS Muscle tissue revascularization after permanent femoral artery ligation was monitored in mutant mice by laser Doppler imaging and light sheet fluorescence microscopy. TNFα-mediated signaling and the role of the CCL20 (C-C motif chemokine ligand 20)-CCR6 (C-C chemokine receptor 6) axis for formation of new vessels was studied in vitro and in vivo using bone marrow transplantation, flow cytometry, as well as biochemical and molecular biological techniques. RESULTS TNFα-mediated activation of TNFR (tumor necrosis factor receptor) 1 but not TNFR2 was found to be required for postischemic muscle tissue revascularization. Bone marrow-derived CCR6+ neutrophil granulocytes were identified as a previously undescribed TNFα-induced population of proangiogenic neutrophils, characterized by increased expression of VEGFA (vascular endothelial growth factor A). Mechanistically, postischemic activation of TNFR1 induced expression of the CCL20 in vascular cells and promoted translocation of the CCL20 receptor CCR6 to the cell surface of neutrophils, essentially conditioning VEGFA-expressing proangiogenic neutrophils for CCL20-dependent recruitment to sites of ischemia. Moreover, impaired revascularization of ischemic peripheral muscle tissue in diabetic mice was associated with reduced numbers of proangiogenic neutrophils and diminished CCL20 expression. Administration of recombinant CCL20 enhanced recruitment of proangiogenic neutrophils and improved revascularization of diabetic ischemic skeletal muscles, which was sustained by sequential treatment with fluvastatin. CONCLUSIONS We demonstrate that site-specific activation of the CCL20-CCR6 axis via TNFα recruits proangiogenic VEGFA-expressing neutrophils to sites of ischemic injury for initiation of muscle tissue revascularization. The findings provide an attractive option for tissue revascularization, particularly under diabetic conditions.
Collapse
Affiliation(s)
- Holger Lörchner
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (H.L., L.C.E., M.E.G., R.H., N.B., S.G., T.B.)
- German Centre for Cardiovascular Research (DZHK), Frankfurt am Main, Germany (H.L., J.P.)
| | - Laia Cañes Esteve
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (H.L., L.C.E., M.E.G., R.H., N.B., S.G., T.B.)
| | - Maria Elisa Góes
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (H.L., L.C.E., M.E.G., R.H., N.B., S.G., T.B.)
| | - Roxanne Harzenetter
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (H.L., L.C.E., M.E.G., R.H., N.B., S.G., T.B.)
| | - Nathalie Brachmann
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (H.L., L.C.E., M.E.G., R.H., N.B., S.G., T.B.)
| | - Praveen Gajawada
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany (P.G.)
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (H.L., L.C.E., M.E.G., R.H., N.B., S.G., T.B.)
| | - Nicolas Doll
- Schüchtermann-Klinik, Bad Rothenfelde, Germany (N.D., J.P.)
| | - Jochen Pöling
- Schüchtermann-Klinik, Bad Rothenfelde, Germany (N.D., J.P.)
- German Centre for Cardiovascular Research (DZHK), Frankfurt am Main, Germany (H.L., J.P.)
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (H.L., L.C.E., M.E.G., R.H., N.B., S.G., T.B.)
| |
Collapse
|
42
|
Zhang M, Chen Y, Qiu Y, Sun J, He J, Liu Z, Shi J, Wei W, Wu G, Liang J. PCSK9 Promotes Hypoxia-Induced EC Pyroptosis by Regulating Smac Mitochondrion-Cytoplasm Translocation in Critical Limb Ischemia. JACC Basic Transl Sci 2023; 8:1060-1077. [PMID: 37791316 PMCID: PMC10544082 DOI: 10.1016/j.jacbts.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/05/2023]
Abstract
Hypoxia-induced endothelial cell death and impaired angiogenesis are the main pathophysiological features of critical limb ischemia. Mechanistically, proprotein convertase subtilisin/kexin type 9 (PCSK9) promoted Smac translocation from mitochondria to the cytoplasm. Inhibition of Smac release into the cytoplasm attenuated PCSK9-mediated hypoxia-induced pyroptosis. Functionally, PCSK9 overexpression impaired angiogenesis in vitro and reduced blood perfusion in mice with lower limb ischemia, but the effect was reversed by PCSK9 inhibition. This study demonstrates that PCSK9 aggravates pyroptosis by regulating Smac mitochondrion-cytoplasm translocation in the vascular endothelium, providing novel insights into PCSK9 as a potential therapeutic target in critical limb ischemia.
Collapse
Affiliation(s)
- Meixin Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yixi Chen
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiapan Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Jiang He
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhefu Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Shi
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenbin Wei
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianwen Liang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
43
|
Li H, He C, Zhu R, Chen FM, Wang L, Leung FP, Tian XY, Tse G, Wong WT. Type 2 cytokines promote angiogenesis in ischemic muscle via endothelial IL-4Rα signaling. Cell Rep 2023; 42:112964. [PMID: 37556326 DOI: 10.1016/j.celrep.2023.112964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/21/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Peripheral arterial disease (PAD) is one of the leading causes of cardiovascular morbidity and mortality worldwide, yet current trials on therapeutic angiogenesis remain suboptimal. Type 2 immunity is critical for post-ischemic regeneration, but its regulatory role in revascularization is poorly characterized. Here, we show that type 2 cytokines, interleukin-4 (IL-4) and interleukin-13 (IL-13), are the key mediators in post-ischemic angiogenesis. IL-4/IL-13-deficient mice exhibit impaired reperfusion and muscle repair in an experimental model of PAD. We find that deletion of IL-4Rα in the endothelial compartment, rather than the myeloid compartment, leads to remarkable impairment in revascularization. Mechanistically, IL-4/IL-13 promote endothelial cell proliferation, migration, and tube formation via IL-4Rα/STAT6 signaling. Furthermore, attenuated IL-4/IL-13 expression is associated with the angiogenesis deficit in the setting of diabetic PAD, while IL-4/IL-13 treatment rescues this defective regeneration. Our findings reveal the therapeutic potential of type 2 cytokines in treating patients with muscle ischemia.
Collapse
Affiliation(s)
- Huixian Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Chufeng He
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruiwen Zhu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Francis M Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lin Wang
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Fung Ping Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong 999077, China; Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
44
|
Sopariwala DH, Rios AS, Saley A, Kumar A, Narkar VA. Estrogen-Related Receptor Gamma Gene Therapy Promotes Therapeutic Angiogenesis and Muscle Recovery in Preclinical Model of PAD. J Am Heart Assoc 2023; 12:e028880. [PMID: 37548153 PMCID: PMC10492941 DOI: 10.1161/jaha.122.028880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
Background Peripheral arterial disease and critical limb ischemia are cardiovascular complications associated with vascular insufficiency, oxidative metabolic dysfunction, and myopathy in the limbs. Estrogen-related receptor gamma (ERRγ) has emerged as a dual regulator of paracrine angiogenesis and oxidative metabolism through transgenic mouse studies. Here our objective was to investigate whether postischemic intramuscular targeting of ERRγ via gene therapy promotes ischemic recovery in a preclinical model of peripheral arterial disease/critical limb ischemia. Methods and Results Adeno-associated virus 9 (AAV9) Esrrg gene delivery vector was developed and first tested via intramuscular injection in murine skeletal muscle. AAV9-Esrrg robustly increased ERRγ protein expression, induced angiogenic and oxidative genes, and boosted capillary density and succinate dehydrogenase oxidative metabolic activity in skeletal muscles of C57Bl/6J mice. Next, hindlimb ischemia was induced via unilateral femoral vessel ligation in mice, followed by intramuscular AAV9-Esrrg (or AAV9-green fluorescent protein) gene delivery 24 hours after injury. ERRγ overexpression increased ischemic neoangiogenesis and markers of endothelial activation, and significantly improved ischemic revascularization measured using laser Doppler flowmetry. Moreover, ERRγ overexpression restored succinate dehydrogenase oxidative metabolic capacity in ischemic muscle, which correlated with increased mitochondrial respiratory complex protein expression. Most importantly, myofiber size to number quantification revealed that AAV9-Esrrg restores myofibrillar size and mitigates ischemia-induced myopathy. Conclusions These results demonstrate that intramuscular AAV9-Esrrg delivery rescues ischemic pathology after hindlimb ischemia, underscoring that Esrrg gene therapy or pharmacological activation could be a promising strategy for the management of peripheral arterial disease/critical limb ischemia.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular MedicineMcGovern Medical School at The University of Texas Health Science Center (UTHealth)HoustonTXUSA
| | - Andrea S. Rios
- Brown Foundation Institute of Molecular MedicineMcGovern Medical School at The University of Texas Health Science Center (UTHealth)HoustonTXUSA
| | - Addison Saley
- Department of BiosciencesRice UniversityHoustonTXUSA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical SciencesUniversity of HoustonTXUSA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular MedicineMcGovern Medical School at The University of Texas Health Science Center (UTHealth)HoustonTXUSA
- Graduate School of Biomedical Sciences at UTHealthHoustonTXUSA
| |
Collapse
|
45
|
Tawagi E, Ung T, Cheng HLM, Santerre JP. Arrhenius-model-based degradable oligourethane hydrogels for controlled growth factor release. Acta Biomater 2023; 166:167-186. [PMID: 37207744 DOI: 10.1016/j.actbio.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Biodegradable hydrogels are growing in demand to enable the delivery of biomolecules (e.g. growth factors) for regenerative medicine. This research investigated the resorption of an oligourethane/polyacrylic acid hydrogel, a biodegradable hydrogel which supports tissue regeneration. The Arrhenius model was used to characterize the resorption of the polymeric gels in relevant in vitro conditions, and the Flory-Rehner equation was used to correlate the volumetric swelling ratio with the extent of degradation. The study found that the swelling rate of the hydrogel follows the Arrhenius model at elevated temperatures, estimating degradation time in saline solution at 37°C to be between 5 and 13 months, serving as a preliminary approximation of degradation in vivo. The degradation products had low cytotoxicity towards endothelial cells, and the hydrogel supported stromal cell proliferation. Additionally, the hydrogels were able to release growth factors and maintain the biomolecules' bioactivity towards cell proliferation. The study of the vascular endothelial growth factor (VEGF) release from the hydrogel used a diffusion process model, showing that the electrostatic attraction between VEGF and the anionic hydrogel allowed for controlled and sustained VEGF release over three weeks. In a rat subcutaneous implant model, a selected hydrogel with desired degradation rates exhibited minimal foreign body response and supported M2a macrophage phenotype, and vascularization. The low M1 and high M2a macrophage phenotypes within the implants were associated with tissue integration. This research supports the use of oligourethane/polyacrylic acid hydrogels as a promising material for delivering growth factors and supporting tissue regeneration. STATEMENT OF SIGNIFICANCE: There is a need for degradable elastomeric hydrogels that can support the formation of soft tissues and minimize long-term foreign body responses. An Arrhenius model was used to estimate the relative breakdown of hydrogels, in-vitro. The results demonstrate that hydrogels made from a combination of poly(acrylic acid) and oligo-urethane diacrylates can be designed to resorb over defined periods ranging from months to years depending on the chemical formulation prescribed by the model. The hydrogel formulations also provided for different release profiles of growth factors, relevant to tissue regeneration. In-vivo, these hydrogels had minimal inflammatory effects and showed evidence of integration into the surrounding tissue. The hydrogel approach can help the field design a broader range of biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Eric Tawagi
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Trevor Ung
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Naserinejad N, Costanian C, Birot O, Barboni T, Roudier E. Wildland fire, air pollution and cardiovascular health: is it time to focus on the microvasculature as a risk assessment tool? Front Physiol 2023; 14:1225195. [PMID: 37538378 PMCID: PMC10394245 DOI: 10.3389/fphys.2023.1225195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.
Collapse
Affiliation(s)
- Nazgol Naserinejad
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
| | - Christy Costanian
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Toussaint Barboni
- Laboratoire des Sciences Pour l’Environnement (SPE), UMR-CNRS 6134, University of Corsica Pasquale Paoli, Campus Grimaldi, Corte, France
| | - Emilie Roudier
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
47
|
Lamin V, Mani AM, Singh MV, Dokun AO. Endothelial Progenitor Cells and Macrophage Subsets Recruitment in Postischemic Mouse Hind Limbs. J Vasc Res 2023; 60:148-159. [PMID: 37336198 DOI: 10.1159/000530732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/14/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Peripheral arterial disease (PAD) occurs from atherosclerotic obstruction of arteries in the lower extremities. Restoration of perfusion requires angiogenesis and arteriogenesis through migration and differentiation of endothelial progenitor cells (EPCs) and macrophages at the site of injury. The time of recruitment has not been fully investigated. In this study, we investigated the infiltration of these cells in murine hind limb ischemia (HLI) model of PAD. METHODS EPCs and M1-like and M2-like macrophages from ischemic skeletal muscles were quantified by flow cytometry at day-0, 1, 3, 7, and 14 post-HLI. RESULTS The abundance of EPCs increased from day 1 and was highest on day 7 until day 14. M1-like population similarly increased and was highest on day 14 during the experiment. M2-like population was significantly greater than M1-like at baseline but surpassed the highest value of M1-like by day 7 during the experiment. Muscle regeneration and capillary density also increased and were highest at days 3 and 7, respectively, during the experiment. All mice achieved near full perfusion recovery by day 14. CONCLUSION Thus, we observed a gradual increase in the percentage of EPC's and this was temporally paralleled with initial increase in M1-like followed by sustained increased in M2-like macrophages and perfusion recovered post-HLI.
Collapse
Affiliation(s)
- Victor Lamin
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Arul M Mani
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Madhu V Singh
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ayotunde O Dokun
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
48
|
Markina YV, Kirichenko TV, Tolstik TV, Bogatyreva AI, Zotova US, Cherednichenko VR, Postnov AY, Markin AM. Target and Cell Therapy for Atherosclerosis and CVD. Int J Mol Sci 2023; 24:10308. [PMID: 37373454 DOI: 10.3390/ijms241210308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular diseases (CVD) and, in particular, atherosclerosis, remain the main cause of death in the world today. Unfortunately, in most cases, CVD therapy begins after the onset of clinical symptoms and is aimed at eliminating them. In this regard, early pathogenetic therapy for CVD remains an urgent problem in modern science and healthcare. Cell therapy, aimed at eliminating tissue damage underlying the pathogenesis of some pathologies, including CVD, by replacing it with various cells, is of the greatest interest. Currently, cell therapy is the most actively developed and potentially the most effective treatment strategy for CVD associated with atherosclerosis. However, this type of therapy has some limitations. In this review, we have tried to summarize the main targets of cell therapy for CVD and atherosclerosis in particular based on the analysis using the PubMed and Scopus databases up to May 2023.
Collapse
Affiliation(s)
- Yuliya V Markina
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Taisiya V Tolstik
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Ulyana S Zotova
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | | | - Anton Yu Postnov
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | - Alexander M Markin
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
- Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| |
Collapse
|
49
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar A, Smalling R, Baker A. Transmembrane Stem Factor Nanodiscs Enhanced Revascularization in a Hind Limb Ischemia Model in Diabetic, Hyperlipidemic Rabbits. RESEARCH SQUARE 2023:rs.3.rs-2997323. [PMID: 37398327 PMCID: PMC10312936 DOI: 10.21203/rs.3.rs-2997323/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
Affiliation(s)
| | | | - Gretchen Howe
- The University of Texas Health Science Center at Houston
| | - Julia Goldman
- The University of Texas Health Science Center at Houston
| | - Patricia Felli
- The University of Texas Health Science Center at Houston
| | - Lei Mei
- The University of Texas at Austin
| | | | | | | | | |
Collapse
|
50
|
Oliveira RHM, Annex BH, Popel AS. Endothelial cells signaling and patterning under hypoxia: a mechanistic integrative computational model including the Notch-Dll4 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539270. [PMID: 37205581 PMCID: PMC10187169 DOI: 10.1101/2023.05.03.539270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several signaling pathways are activated during hypoxia to promote angiogenesis, leading to endothelial cell patterning, interaction, and downstream signaling. Understanding the mechanistic signaling differences between normoxia and hypoxia can guide therapies to modulate angiogenesis. We present a novel mechanistic model of interacting endothelial cells, including the main pathways involved in angiogenesis. We calibrate and fit the model parameters based on well-established modeling techniques. Our results indicate that the main pathways involved in the patterning of tip and stalk endothelial cells under hypoxia differ, and the time under hypoxia affects how a reaction affects patterning. Interestingly, the interaction of receptors with Neuropilin1 is also relevant for cell patterning. Our simulations under different oxygen concentrations indicate time- and oxygen-availability-dependent responses for the two cells. Following simulations with various stimuli, our model suggests that factors such as period under hypoxia and oxygen availability must be considered for pattern control. This project provides insights into the signaling and patterning of endothelial cells under hypoxia, contributing to studies in the field.
Collapse
Affiliation(s)
- Rebeca Hannah M Oliveira
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Brian H Annex
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| |
Collapse
|