1
|
Coker ZN, Troyanova-Wood M, Steelman ZA, Ibey BL, Bixler JN, Scully MO, Yakovlev VV. Brillouin microscopy monitors rapid responses in subcellular compartments. PHOTONIX 2024; 5:9. [PMID: 38618142 PMCID: PMC11006764 DOI: 10.1186/s43074-024-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.
Collapse
Affiliation(s)
- Zachary N. Coker
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- SAIC, Fort Sam Houston, TX 78234 USA
| | | | - Zachary A. Steelman
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Marlan O. Scully
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Vladislav V. Yakovlev
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, 101 Bizzell Street, College Station, TX 77843 USA
| |
Collapse
|
2
|
Ibarrola J, Kim SK, Lu Q, DuPont JJ, Creech A, Sun Z, Hill MA, Jaffe JD, Jaffe IZ. Smooth muscle mineralocorticoid receptor as an epigenetic regulator of vascular ageing. Cardiovasc Res 2023; 118:3386-3400. [PMID: 35020830 PMCID: PMC10060709 DOI: 10.1093/cvr/cvac007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Vascular stiffness increases with age and independently predicts cardiovascular disease risk. Epigenetic changes, including histone modifications, accumulate with age but the global pattern has not been elucidated nor are the regulators known. Smooth muscle cell-mineralocorticoid receptor (SMC-MR) contributes to vascular stiffness in ageing mice. Thus, we investigated the regulatory role of SMC-MR in vascular epigenetics and stiffness. METHODS AND RESULTS Mass spectrometry-based proteomic profiling of all histone modifications completely distinguished 3 from 12-month-old mouse aortas. Histone-H3 lysine-27 (H3K27) methylation (me) significantly decreased in ageing vessels and this was attenuated in SMC-MR-KO littermates. Immunoblotting revealed less H3K27-specific methyltransferase EZH2 with age in MR-intact but not SMC-MR-KO vessels. These ageing changes were examined in primary human aortic (HA)SMC from adult vs. aged donors. MR, H3K27 acetylation (ac), and stiffness gene (connective tissue growth factor, integrin-α5) expression significantly increased, while H3K27me and EZH2 decreased, with age. MR inhibition reversed these ageing changes in HASMC and the decline in stiffness genes was prevented by EZH2 blockade. Atomic force microscopy revealed that MR antagonism decreased intrinsic stiffness and the probability of fibronectin adhesion of aged HASMC. Conversely, ageing induction in young HASMC with H2O2; increased MR, decreased EZH2, enriched H3K27ac and MR at stiffness gene promoters by chromatin immunoprecipitation, and increased stiffness gene expression. In 12-month-old mice, MR antagonism increased aortic EZH2 and H3K27 methylation, increased EZH2 recruitment and decreased H3K27ac at stiffness genes promoters, and prevented ageing-induced vascular stiffness and fibrosis. Finally, in human aortic tissue, age positively correlated with MR and stiffness gene expression and negatively correlated with H3K27me3 while MR and EZH2 are negatively correlated. CONCLUSION These data support a novel vascular ageing model with rising MR in human SMC suppressing EZH2 expression thereby decreasing H3K27me, promoting MR recruitment and H3K27ac at stiffness gene promoters to induce vascular stiffness and suggests new targets for ameliorating ageing-associated vascular disease.
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| | - Seung Kyum Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
- Department of Sports Science, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, 01811 Republic of Korea, Seoul, South Korea
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| | - Amanda Creech
- Broad Institute, Proteomics Platform, Cambridge, MA 02142, USA
| | - Zhe Sun
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65203, USA
| | - Michael A Hill
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65203, USA
| | - Jacob D Jaffe
- Broad Institute, Proteomics Platform, Cambridge, MA 02142, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| |
Collapse
|