1
|
Fan G, Liu Q, Bi J, Fang Q, Luo F, Huang X, Li H, Guo W, Liu B, Yan L, Wang Y, Song L. Reproductive factors and biological aging: the association with all-cause and cause-specific premature mortality. Hum Reprod 2025; 40:148-156. [PMID: 39516182 DOI: 10.1093/humrep/deae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
STUDY QUESTION Are reproductive factors associated with biological aging, and does biological aging mediate the associations of reproductive factors with premature mortality? SUMMARY ANSWER Multiple reproductive factors are related to phenotypic age acceleration (PhenoAge-Accel), while adherence to a healthy lifestyle mitigates these harmful effects; PhenoAge-Accel mediated the associations between reproductive factors and premature mortality. WHAT IS KNOWN ALREADY Accelerated aging is a key contributor to mortality, but knowledge about the effect of reproductive factors on aging is limited. STUDY DESIGN, SIZE, DURATION This prospective cohort study included 223 729 women aged 40-69 years from the UK biobank in 2006-2010 and followed up until 12 November 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS Reproductive factors were collected through a touchscreen questionnaire. Biological aging was assessed through PhenoAge-Accel. Multiple linear regression models were used to examine the relationships of reproductive factors with PhenoAge-Accel and estimate the modified effect of a healthy lifestyle. Furthermore, we applied mediation analysis to explore the mediating role of PhenoAge-Accel in the associations between reproductive factors and premature mortality. MAIN RESULTS AND THE ROLE OF CHANCE Early menarche (<12 years vs 13 years, β: 0.37, 95% CI: 0.30, 0.44), late menarche (≥15 years vs 13 years, β: 0.18, 95% CI: 0.11, 0.25), early menopause (<45 years vs 50-51 years, β: 0.62, 95% CI: 0.51, 0.72), short reproductive lifespan (<30 years vs 35-39 years, β: 0.81, 95% CI: 0.70, 0.92), nulliparity (vs two live births, β: 0.36, 95% CI: 0.30, 0.43), high parity (≥4 vs 2 live births, β: 0.49, 95% CI: 0.40, 0.59), early age at first live birth (<20 years vs 25-29 years, β: 0.66, 95% CI: 0.56, 0.75), and stillbirth (β: 0.51, 95% CI: 0.36, 0.65) were associated with increased PhenoAge-Accel. Furthermore, PhenoAge-Accel mediated 6.0%-29.7% of the associations between reproductive factors and premature mortality. Women with an unfavorable lifestyle and reproductive risk factors had the highest PhenoAge-Accel compared to those with a favorable lifestyle and without reproductive risk factors. LIMITATIONS, REASONS FOR CAUTION The participants in the UK Biobank were predominantly of White ethnicity; thus, caution is warranted when generalizing these findings to other ethnic groups. WIDER IMPLICATIONS OF THE FINDINGS Our findings reveal the harmful effects of multiple reproductive factors on biological aging and the mediating role of biological aging in the associations between reproductive factors and premature mortality. They highlight the significance of adhering to a healthy lifestyle to slow biological aging as a potential way to reduce premature mortality among women with reproductive risk factors. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the National Natural Science Foundation of China (82003479, 82073660, 72204215), Hubei Provincial Natural Science Foundation of China (2023AFB663), Zhejiang Province Public Welfare Technology Application Research Project (GF22H269155), and China Postdoctoral Science Foundation (2019M662646, 2020T130220). The authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Luo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofeng Huang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Guo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghai Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianyan Yan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Lin F, Luo J, Zhu Y, Liang H, Li D, Han D, Chang Q, Pan P, Zhang Y. Association Between Adverse Early Life Factors and Telomere Length in Middle and Late Life. Innov Aging 2024; 8:igae070. [PMID: 39350941 PMCID: PMC11441326 DOI: 10.1093/geroni/igae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 10/04/2024] Open
Abstract
Background and Objectives Telomere length (TL) has been acknowledged as biomarker of biological aging. Numerous investigations have examined associations between individual early life factors and leukocyte TL; however, the findings were far from consistent. Research Design and Methods We evaluated the relationship between individual and combined early life factors and leukocytes TL in middle and late life using data from the UK Biobank. The early life factors (eg, maternal smoking, breastfeeding, birth weight, and comparative body size and height to peers at age 10) were measured. The regression coefficients (β) and 95% confidence interval (CI) were applied to assess the link of the early life factors and TL in adulthood. Flexible parametric survival models incorporated age to calculate the relationship between early life factors and life expectancy. Results Exposure to maternal smoking, lack of breastfeeding, low birth weight, and shorter height compared to peers at age 10 were identified to be associated with shorter TL in middle and older age according to the large population-based study with 197 504 participants. Individuals who experienced more than 3 adverse early life factors had the shortest TL in middle and late life (β = -0.053; 95% CI = -0.069 to -0.038; p < .0001), as well as an average of 0.54 years of life loss at the age of 45 and 0.49 years of life loss at the age of 60, compared to those who were not exposed to any early life risk factors. Discussion and Implications Early life factors including maternal smoking, non-breastfed, low birth weight, and shorter height compared to peers at age 10 were associated with shorter TL in later life. In addition, an increased number of the aforementioned factors was associated with a greater likelihood of shorter TL in adulthood, as well as a reduced life expectancy.
Collapse
Affiliation(s)
- Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiefeng Luo
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiqun Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
| | - Huaying Liang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dianwu Li
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duoduo Han
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinyu Chang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Crestol A, de Lange AMG, Schindler L, Subramaniapillai S, Nerland S, Oppenheimer H, Westlye LT, Andreassen OA, Agartz I, Tamnes CK, Barth C. Linking menopause-related factors, history of depression, APOE ε4, and proxies of biological aging in the UK biobank cohort. Horm Behav 2024; 164:105596. [PMID: 38944998 PMCID: PMC11372440 DOI: 10.1016/j.yhbeh.2024.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39-82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health.
Collapse
Affiliation(s)
- Arielle Crestol
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ann-Marie G de Lange
- Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Louise Schindler
- Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sivaniya Subramaniapillai
- Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hannah Oppenheimer
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm Health Care Services, Karolinska Institute, Stockholm County Council, Stockholm, Sweden; Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian K Tamnes
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Barth
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Raisi-Estabragh Z, Szabo L, Schuermans A, Salih AM, Chin CWL, Vágó H, Altmann A, Ng FS, Garg P, Pavanello S, Marwick TH, Petersen SE. Noninvasive Techniques for Tracking Biological Aging of the Cardiovascular System: JACC Family Series. JACC Cardiovasc Imaging 2024; 17:533-551. [PMID: 38597854 DOI: 10.1016/j.jcmg.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.
Collapse
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Liliana Szabo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Art Schuermans
- Faculty of Medicine, KU Leuven, Leuven, Belgium; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed M Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Department of Population Health Sciences, University of Leicester, Leicester UK; Department of Computer Science, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore; Cardiovascular Academic Clinical Programme, Duke National University of Singapore Medical School, Singapore, Singapore
| | - Hajnalka Vágó
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pankaj Garg
- University of East Anglia, Norwich Medical School, Norwich, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy; Padua Hospital, Occupational Medicine Unit, Padua, Italy; University Center for Space Studies and Activities "Giuseppe Colombo" - CISAS, University of Padua, Padua, Italy
| | | | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Health Data Research UK, London, United Kingdom
| |
Collapse
|
5
|
Stuenkel CA. Ovarian Insufficiency: Clinical Spectrum and Management Challenges. J Womens Health (Larchmt) 2024; 33:397-406. [PMID: 38190309 DOI: 10.1089/jwh.2023.0942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The term "ovarian insufficiency" describes the decline of ovarian function resulting in fertility loss and the marked decrease of ovarian steroid hormone production. From a clinical standpoint, ovarian insufficiency presents in three different settings. The first is natural menopause at midlife occurring at the average age of 51 years. The second arises after surgical oophorectomy owing to disease or elective cancer prophylaxis. Finally, primary or premature ovarian insufficiency is characterized by menopause occurring before age 40, often of undetermined etiology, but at times linked with genetic mutations, autoimmune syndromes, metabolic conditions, iatrogenic etiologies, and toxic exposures. Each clinical situation presents unique concerns and management challenges. The majority of women with intact ovaries who live to age 51 experience natural menopause, with early menopause <45 years. In the United States, surgical menopause with bilateral oophorectomy occurs in ∼600,000 women per year. The timing and specific clinical indication for oophorectomy alters management. Primary ovarian insufficiency occurs in 1% of women, although recent estimates suggest the prevalence may be increasing. Symptoms of ovarian insufficiency include hot flashes or vasomotor symptoms, mood disorders, sleep disruption, and vaginal/urinary symptoms. Health concerns include bone, cardiovascular, and cognitive health. Management of symptoms and preventive strategies varies depending upon the age, clinical situation, and specific health concerns of each individual. Treatment options for symptom relief include cognitive behavior therapy and hypnosis, nonhormonal prescription therapies, and hormone therapy. Tailoring the therapeutic approach over time in response to age, emerging medical issues, and patient desires constitutes individualized care.
Collapse
Affiliation(s)
- Cynthia A Stuenkel
- Department of Medicine, UC San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|