1
|
Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, Medbury H. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int J Mol Sci 2023; 24:ijms24108757. [PMID: 37240103 DOI: 10.3390/ijms24108757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The three subsets of human monocytes, classical, intermediate, and nonclassical, show phenotypic heterogeneity, particularly in their expression of CD14 and CD16. This has enabled researchers to delve into the functions of each subset in the steady state as well as in disease. Studies have revealed that monocyte heterogeneity is multi-dimensional. In addition, that their phenotype and function differ between subsets is well established. However, it is becoming evident that heterogeneity also exists within each subset, between health and disease (current or past) states, and even between individuals. This realisation casts long shadows, impacting how we identify and classify the subsets, the functions we assign to them, and how they are examined for alterations in disease. Perhaps the most fascinating is evidence that, even in relative health, interindividual differences in monocyte subsets exist. It is proposed that the individual's microenvironment could cause long-lasting or irreversible changes to monocyte precursors that echo to monocytes and through to their derived macrophages. Here, we will discuss the types of heterogeneity recognised in monocytes, the implications of these for monocyte research, and most importantly, the relevance of this heterogeneity for health and disease.
Collapse
Affiliation(s)
- Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Corinne Mack
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rana Baraz
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rekha Marimuthu
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sravanthi Naralashetty
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Stephen Li
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Chemical Pathology, NSW Health Pathology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
- . Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Western Sydney University, Blacktown, NSW 2148, Australia
| | - Heather Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
2
|
Park MD, Silvin A, Ginhoux F, Merad M. Macrophages in health and disease. Cell 2022; 185:4259-4279. [PMID: 36368305 PMCID: PMC9908006 DOI: 10.1016/j.cell.2022.10.007] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
The heterogeneity of tissue macrophages, in health and in disease, has become increasingly transparent over the last decade. But with the plethora of data comes a natural need for organization and the design of a conceptual framework for how we can better understand the origins and functions of different macrophages. We propose that the ontogeny of a macrophage-beyond its fundamental derivation as either embryonically or bone marrow-derived, but rather inclusive of the course of its differentiation, amidst steady-state cues, disease-associated signals, and time-constitutes a critical piece of information about its contribution to homeostasis or the progression of disease.
Collapse
Affiliation(s)
- Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A(∗)STAR), Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore.
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Hetherington I, Totary-Jain H. Anti-atherosclerotic therapies: Milestones, challenges, and emerging innovations. Mol Ther 2022; 30:3106-3117. [PMID: 36065464 PMCID: PMC9552812 DOI: 10.1016/j.ymthe.2022.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is the main underlying pathology for many cardiovascular diseases (CVDs), which are the leading cause of death globally and represent a serious health crisis. Atherosclerosis is a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease. Elevated plasma lipids, hypertension, and high glucose are the major risk factors for developing atherosclerotic plaques. To date, most pharmacological therapies aim to control these risk factors, but they do not target the plaque-causing cells themselves. In patients with acute coronary syndromes, surgical revascularization with percutaneous coronary intervention has greatly reduced mortality rates. However, stent thrombosis and neo-atherosclerosis have emerged as major safety concerns of drug eluting stents due to delayed re-endothelialization. This review summarizes the major milestones, strengths, and limitations of current anti-atherosclerotic therapies. It provides an overview of the recent discoveries and emerging game-changing technologies in the fields of nanomedicine, mRNA therapeutics, and gene editing that have the potential to revolutionize CVD clinical practice by steering it toward precision medicine.
Collapse
Affiliation(s)
- Isabella Hetherington
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC08, 2170, Tampa, FL 33612, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC08, 2170, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Kondakov A, Berdalin A, Beregov M, Lelyuk V. Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. J Imaging 2022; 8:261. [PMID: 36286355 PMCID: PMC9605050 DOI: 10.3390/jimaging8100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a chronic widespread cardiovascular disease and a major predisposing factor for cardiovascular events, among which there are myocardial infarction and ischemic stroke. Atherosclerotic plaque formation is a process that involves different mechanisms, of which inflammation is the most common. Plenty of radiopharmaceuticals were developed to elucidate the process of plaque formation at different stages, some of which were highly specific for atherosclerotic plaque. This review summarizes the current nuclear medicine imaging landscape of preclinical and small-scale clinical studies of these specific RPs, which are not as widespread as labeled FDG, sodium fluoride, and choline. These include oxidation-specific epitope imaging, macrophage, and other cell receptors visualization, neoangiogenesis, and macrophage death imaging. It is shown that specific radiopharmaceuticals have strength in pathophysiologically sound imaging of the atherosclerotic plaques at different stages, but this also may induce problems with the signal registration for low-volume plaques in the vascular wall.
Collapse
Affiliation(s)
- Anton Kondakov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
- Radiology and Radiotherapy Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander Berdalin
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Mikhail Beregov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Vladimir Lelyuk
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| |
Collapse
|
5
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
6
|
Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J Nanobiotechnology 2022; 20:127. [PMID: 35279135 PMCID: PMC8917374 DOI: 10.1186/s12951-022-01343-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle (NP) is an emerging tool applied in the biomedical field. With combination of different materials and adjustment of their physical and chemical properties, nanoparticles can have diverse effects on the organism and may change the treating paradigm of multiple diseases in the future. More and more results show that nanoparticles can function as immunomodulators and some formulas have been approved for the treatment of inflammation-related diseases. However, our current understanding of the mechanisms that nanoparticles can influence immune responses is still limited, and systemic clinical trials are necessary for the evaluation of their security and long-term effects. This review provides an overview of the recent advances in nanoparticles that can interact with different cellular and molecular components of the immune system and their application in the management of inflammatory diseases, which are caused by abnormal immune reactions. This article focuses on the mechanisms of interaction between nanoparticles and the immune system and tries to provide a reference for the future design of nanotechnology for the treatment of inflammatory diseases.
Collapse
|
7
|
Hossaini Nasr S, Huang X. Nanotechnology for Targeted Therapy of Atherosclerosis. Front Pharmacol 2021; 12:755569. [PMID: 34867370 PMCID: PMC8633109 DOI: 10.3389/fphar.2021.755569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is the major cause of heart attack and stroke that are the leading causes of death in the world. Nanomedicine is a powerful tool that can be engineered to target atherosclerotic plaques for therapeutic and diagnosis purposes. In this review, advances in designing nanoparticles with therapeutic effects on atherosclerotic plaques known as atheroprotective nanomedicine have been summarized to stimulate further development and future translation.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
de Haan L, Suijker J, van Roey R, Berges N, Petrova E, Queiroz K, Strijker W, Olivier T, Poeschke O, Garg S, van den Broek LJ. A Microfluidic 3D Endothelium-on-a-Chip Model to Study Transendothelial Migration of T Cells in Health and Disease. Int J Mol Sci 2021; 22:8234. [PMID: 34361000 PMCID: PMC8347346 DOI: 10.3390/ijms22158234] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luuk de Haan
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Johnny Suijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Ruthger van Roey
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Nina Berges
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Elissaveta Petrova
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Karla Queiroz
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Wouter Strijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Thomas Olivier
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Oliver Poeschke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Sakshi Garg
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Lenie J. van den Broek
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| |
Collapse
|
9
|
Denegri A, Boriani G. High Sensitivity C-reactive Protein (hsCRP) and its Implications in Cardiovascular Outcomes. Curr Pharm Des 2021; 27:263-275. [PMID: 32679014 DOI: 10.2174/1381612826666200717090334] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis and its fearsome complications represent the first cause of morbidity and mortality worldwide. Over the last two decades, several pieces of evidence have been accumulated, suggesting a central role of inflammation in atheroma development. High sensitivity C-reactive protein (hsCRP) is a well-established marker of cardiovascular (CV) disease; high levels of hsCRP have been associated with adverse CV outcome after acute coronary syndrome (ACS) and, despite some controversy, an active role for hsCRP in initiation and development of the atherosclerotic plaque has been also proposed. Randomized clinical trials focusing on hsCRP have been crucial in elucidating the anti-inflammatory effects of statin therapy. Thus, hsCRP has been progressively considered a real CV risk factor likewise to low-density lipoprotein cholesterol (LDL-C), expanding the concept of residual CV inflammatory risk. Subsequent research has been designed to investigate potential new targets of atherothrombotic protection. Despite the fact that the clinical usefulness of hsCRP is widely recognized, hsCRP may not represent the ideal target of specific anti-inflammatory therapies. Clinical investigations, therefore, have also focused on other inflammatory mediators, restricting hsCRP to an indicator rather than a therapeutic target. The aim of the present review is to provide an illustrative overview of the current knowledge of atherosclerosis and inflammation, highlighting the most representative clinical studies of lipid-lowering and antiinflammatory therapies focused on hsCRP in CV diseases.
Collapse
Affiliation(s)
- Andrea Denegri
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Largo del Pozzo, 71, 41125, Modena, Italy
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Largo del Pozzo, 71, 41125, Modena, Italy
| |
Collapse
|
10
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Carrier M, Robert MÈ, González Ibáñez F, Desjardins M, Tremblay MÈ. Imaging the Neuroimmune Dynamics Across Space and Time. Front Neurosci 2020; 14:903. [PMID: 33071723 PMCID: PMC7539119 DOI: 10.3389/fnins.2020.00903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The immune system is essential for maintaining homeostasis, as well as promoting growth and healing throughout the brain and body. Considering that immune cells respond rapidly to changes in their microenvironment, they are very difficult to study without affecting their structure and function. The advancement of non-invasive imaging methods greatly contributed to elucidating the physiological roles performed by immune cells in the brain across stages of the lifespan and contexts of health and disease. For instance, techniques like two-photon in vivo microscopy were pivotal for studying microglial functional dynamics in the healthy brain. Through these observations, their interactions with neurons, astrocytes, blood vessels and synapses were uncovered. High-resolution electron microscopy with immunostaining and 3D-reconstruction, as well as super-resolution fluorescence microscopy, provided complementary insights by revealing microglial interventions at synapses (phagocytosis, trogocytosis, synaptic stripping, etc.). In addition, serial block-face scanning electron microscopy has provided the first 3D reconstruction of a microglial cell at nanoscale resolution. This review will discuss the technical toolbox that currently allows to study microglia and other immune cells in the brain, as well as introduce emerging methods that were developed and could be used to increase the spatial and temporal resolution of neuroimmune imaging. A special attention will also be placed on positron emission tomography and the development of selective functional radiotracers for microglia and peripheral macrophages, considering their strong potential for research translation between animals and humans, notably when paired with other imaging modalities such as magnetic resonance imaging.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Michèle Desjardins
- Axe Oncologie, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
12
|
Hossaini Nasr S, Rashidijahanabad Z, Ramadan S, Kauffman N, Parameswaran N, Zinn KR, Qian C, Arora R, Agnew D, Huang X. Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles. NANOSCALE 2020; 12:9541-9556. [PMID: 32314997 PMCID: PMC7234819 DOI: 10.1039/d0nr00308e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Atherosclerosis is associated with inflammation in the arteries, which is a major cause of heart attacks and strokes. Reducing the extent of local inflammation at atherosclerotic plaques can be an attractive strategy to combat atherosclerosis. While statins can exhibit direct anti-inflammatory activities, the high dose required for such a therapy renders it unrealistic due to their low systemic bioavailabilities and potential side effects. To overcome this, a new hyaluronan (HA)-atorvastatin (ATV) conjugate was designed with the hydrophobic statin ATV forming the core of the nanoparticle (HA-ATV-NP). The HA on the NPs can selectively bind with CD44, a cell surface receptor overexpressed on cells residing in atherosclerotic plaques and known to play important roles in plaque development. HA-ATV-NPs exhibited significantly higher anti-inflammatory effects on macrophages compared to ATV alone in vitro. Furthermore, when administered in an apolipoprotein E (ApoE)-knockout mouse model of atherosclerosis following a 1-week treatment regimen, HA-ATV-NPs markedly decreased inflammation in advanced atherosclerotic plaques, which were monitored through contrast agent aided magnetic resonance imaging. These results suggest CD44 targeting with HA-ATV-NPs is an attractive strategy to reduce harmful inflammation in atherosclerotic plaques.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA
| | - Zahra Rashidijahanabad
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA
| | - Sherif Ramadan
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Nate Kauffman
- Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Biomedical Engineering Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Kurt R Zinn
- Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Biomedical Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Radiology Michigan State University, East Lansing, Michigan 48824, USA
| | - Chunqi Qian
- Department of Radiology Michigan State University, East Lansing, Michigan 48824, USA
| | - Ripla Arora
- Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Obstetrics, Gynecology and Reproductive Biology Michigan State University, East Lansing, Michigan 48824, USA
| | - Dalen Agnew
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuefei Huang
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Biomedical Engineering Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
13
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
14
|
Li B, Li W, Li X, Zhou H. Inflammation: A Novel Therapeutic Target/Direction in Atherosclerosis. Curr Pharm Des 2018; 23:1216-1227. [PMID: 28034355 PMCID: PMC6302344 DOI: 10.2174/1381612822666161230142931] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Over the past two decades, the viewpoint of atherosclerosis has been replaced gradually by a lipid-driven, chronic, low-grade inflammatory disease of the arterial wall. Current treatment of atherosclerosis is focused on limiting its risk factors, such as hyperlipidemia or hypertension. However, treatment targeting the inflammatory nature of atherosclerosis is still very limited and deserves further attention to fight atherosclerosis successfully. Here, we review the current development of inflammation and atherosclerosis to discuss novel insights and potential targets in atherosclerosis, and to address drug discovery based on anti-inflammatory strategy in atherosclerotic disease.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038. China
| | - Weihong Li
- Assisted Reproductive Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016. China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038. China
| | - Hong Zhou
- Department of Pharmacology, College of Pharamacy, The Third Military Medical University, P.O. Box: 400038, Chongqing. China
| |
Collapse
|
15
|
Alaarg A, Pérez-Medina C, Metselaar JM, Nahrendorf M, Fayad ZA, Storm G, Mulder WJM. Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev 2017; 119:143-158. [PMID: 28506745 PMCID: PMC5682240 DOI: 10.1016/j.addr.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
Inflammation and angiogenesis drive the development and progression of multiple devastating diseases such as atherosclerosis, cancer, rheumatoid arthritis, and inflammatory bowel disease. Though these diseases have very different phenotypic consequences, they possess several common pathophysiological features in which monocyte recruitment, macrophage polarization, and enhanced vascular permeability play critical roles. Thus, developing rational targeting strategies tailored to the different stages of the journey of monocytes, from bone marrow to local lesions, and their extravasation from the vasculature in diseased tissues will advance nanomedicine. The integration of in vivo imaging uniquely allows studying nanoparticle kinetics, accumulation, clearance, and biological activity, at levels ranging from subcellular to an entire organism, and will shed light on the fate of intravenously administered nanomedicines. We anticipate that convergence of nanomedicines, biomedical engineering, and life sciences will help to advance clinically relevant therapeutics and diagnostic agents for patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Amr Alaarg
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Josbert M Metselaar
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Institute for Experimental Molecular Imaging, University Clinic, Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gert Storm
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models. Mediators Inflamm 2017; 2017:9746169. [PMID: 28465628 PMCID: PMC5390637 DOI: 10.1155/2017/9746169] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022] Open
Abstract
Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation.
Collapse
|
17
|
Liu G, Hu Y, Xiao J, Li X, Li Y, Tan H, Zhao Y, Cheng D, Shi H. 99mTc-labelled anti-CD11b SPECT/CT imaging allows detection of plaque destabilization tightly linked to inflammation. Sci Rep 2016; 6:20900. [PMID: 26877097 PMCID: PMC4753504 DOI: 10.1038/srep20900] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/12/2016] [Indexed: 01/04/2023] Open
Abstract
It remains challenging to predict the risk of rupture for a specific atherosclerotic plaque timely, a thrombotic trigger tightly linked to inflammation. CD11b, is a biomarker abundant on inflammatory cells, not restricted to monocytes/macrophages. In this study, we fabricated a probe named as 99mTc-MAG3-anti-CD11b for detecting inflamed atherosclerotic plaques with single photon emission computed tomography/computed tomography (SPECT/CT). The ApoE-knockout (ApoE−/−) mice were selected to establish animal models, with C57BL/6J mice used for control. A higher CD11b+-cell recruitment with higher CD11b expression and more serious whole-body inflammatory status were identified in ApoE−/− mice. The probe showed high in vitro affinity and specificity to the Raw-264.7 macrophages, as well as inflammatory cells infiltrated in atherosclerotic plaques, either in ex vivo fluorescent imaging or in in vivo micro-SPECT/CT imaging, which were confirmed by ex vivo planar gamma imaging, Oil-Red-O staining and CD11b-immunohistochemistry staining. A significant positive relationship was identified between the radioactivity intensity on SPECT/CT images and the CD11b expression in plaques. In summary, this study demonstrates the feasibility of anti-CD11b antibody mediated noninvasive SPECT/CT imaging of inflammatory leukocytes in murine atherosclerotic plaques. This imaging strategy can identify inflammation-rich plaques at risk for rupture and evaluate the effectiveness of inflammation-targeted therapies in atheroma.
Collapse
Affiliation(s)
- Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xiao Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yanli Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Yanzhao Zhao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China.,Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
18
|
Chhour P, Naha PC, O'Neill SM, Litt HI, Reilly MP, Ferrari VA, Cormode DP. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 2016; 87:93-103. [PMID: 26914700 DOI: 10.1016/j.biomaterials.2016.02.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 01/21/2023]
Abstract
Monocytes are actively recruited from the circulation into developing atherosclerotic plaques. In the plaque, monocytes differentiate into macrophages and eventually form foam cells. Continued accumulation of foam cells can lead to plaque rupture and subsequent myocardial infarction. X-ray computed tomography (CT) is the best modality to image the coronary arteries non-invasively, therefore we have sought to track the accumulation of monocytes into atherosclerotic plaques using CT. Gold nanoparticles were synthesized and stabilized with a variety of ligands. Select formulations were incubated with an immortalized monocyte cell line in vitro and evaluated for cytotoxicity, effects on cytokine release, and cell uptake. These data identified a lead formulation, 11-MUDA capped gold nanoparticles, to test for labeling primary monocytes. The formulation did not the affect the viability or cytokine release of primary monocytes and was highly taken up by these cells. Gold labeled primary monocytes were injected into apolipoprotein E deficient mice kept on Western diet for 10 weeks. Imaging was done with a microCT scanner. A significant increase in attenuation was measured in the aorta of mice receiving the gold labeled cells as compared to control animals. Following the experiment, the biodistribution of gold was evaluated in major organs. Additionally, plaques were sectioned and examined with electron microscopy. The results showed that gold nanoparticles were present inside monocytes located within plaques. This study demonstrates the feasibility of using gold nanoparticles as effective cell labeling contrast agents for non-invasive imaging of monocyte accumulation within plaques with CT.
Collapse
Affiliation(s)
- Peter Chhour
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Sean M O'Neill
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Harold I Litt
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Muredach P Reilly
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Victor A Ferrari
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
|
20
|
Sollini M, Boni R, Lazzeri E, Erba PA. PET/CT and PET/MRI in Neurology: Infection/Inflammation. PET-CT AND PET-MRI IN NEUROLOGY 2016:139-176. [DOI: 10.1007/978-3-319-31614-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Torres A, Cachofeiro V, Millán J, Lahera V, Nieto M, Martín R, Bello E, Alvarez-Sala L. Red wine intake but not other alcoholic beverages increases total antioxidant capacity and improves pro-inflammatory profile after an oral fat diet in healthy volunteers. Rev Clin Esp 2015. [DOI: 10.1016/j.rceng.2015.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Verweij SL, van der Valk FM, Stroes ESG. Novel directions in inflammation as a therapeutic target in atherosclerosis. Curr Opin Lipidol 2015; 26:580-5. [PMID: 26382552 DOI: 10.1097/mol.0000000000000233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis is a chronic disease of the arterial wall largely driven by inflammation; hence, therapeutics targeting inflammatory pathways are considered an attractive strategy in atherosclerotic cardiovascular disease (ASCVD). The purpose of this review is to describe the randomized, placebo-controlled clinical trials currently investigating the impact of anti-inflammatory strategies in ASCVD patients, to discuss novel insights and targets into the role of innate immunity in atherosclerosis and to address the promise of local drug delivery as opposed to systemic therapies in atherosclerotic disease. RECENT FINDINGS The first clinical trials using systemic anti-inflammatory drugs in ASCVD patients might be able to strengthen the case for immunomodulation once showing an improved ASCVD outcome. Several specific targets in innate immunity bear therapeutic potential, of which some have already entered the clinical arena. To prevent immunosuppression by systemic effects, drug delivery systems are increasingly being applied to locally attenuate plaque inflammation. SUMMARY Anti-inflammatory therapies seem promising for future treatment of ASCVD. In view of the risk of immunosuppression in case of long term and systemic use of anti-inflammatory drugs, there is a clinical need for highly selective and targeted therapies in patients with atherosclerosis.
Collapse
Affiliation(s)
- Simone L Verweij
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Torres A, Cachofeiro V, Millán J, Lahera V, Nieto M, Martín R, Bello E, Alvarez-Sala L. Red wine intake but not other alcoholic beverages increases total antioxidant capacity and improves pro-inflammatory profile after an oral fat diet in healthy volunteers. Rev Clin Esp 2015; 215:486-94. [DOI: 10.1016/j.rce.2015.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/29/2023]
|
24
|
Kapnisis KK, Pitsillides CM, Prokopi MS, Lapathitis G, Karaiskos C, Eleftheriou PC, Brott BC, Anderson PG, Lemons JE, Anayiotos AS. In vivomonitoring of the inflammatory response in a stented mouse aorta model. J Biomed Mater Res A 2015; 104:227-38. [DOI: 10.1002/jbm.a.35560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/07/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Konstantinos K. Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| | - Costas M. Pitsillides
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| | | | - George Lapathitis
- Neurology Clinic E; Cyprus Institute of Neurology and Genetics; Nicosia 2370 Cyprus
| | - Christos Karaiskos
- Neurology Clinic E; Cyprus Institute of Neurology and Genetics; Nicosia 2370 Cyprus
| | - Polyvios C. Eleftheriou
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| | - Brigitta C. Brott
- Department of Medicine; University of Alabama at Birmingham; Birmingham Alabama 35294-0111
| | - Peter G. Anderson
- Department of Pathology; University of Alabama at Birmingham; Birmingham Alabama 35294-0111
| | - Jack E. Lemons
- Department of Prosthodontics; University of Alabama at Birmingham; Birmingham Alabama 35294-0111
| | - Andreas S. Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| |
Collapse
|
25
|
Lee SJ, Paeng JC. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques. Korean J Radiol 2015; 16:955-66. [PMID: 26357491 PMCID: PMC4559792 DOI: 10.3348/kjr.2015.16.5.955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell accumulation, endothelial activation, proteolysis, neoangiogenesis, hypoxia, apoptosis, and calcification. Many preclinical and clinical studies have been conducted with various imaging probes and some of them have exhibited promising results. Despite some limitations in imaging technology, molecular imaging is expected to be used both in the research and clinical fields as imaging instruments become more advanced.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea. ; Department of Nuclear Medicine, National Cancer Center, Goyang 10408, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
26
|
Passacquale G, Phinikaridou A, Warboys C, Cooper M, Lavin B, Alfieri A, Andia ME, Botnar RM, Ferro A. Aspirin-induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin-1 thus inhibiting monocyte vascular infiltration. Br J Pharmacol 2015; 172:3548-64. [PMID: 25824964 PMCID: PMC4507159 DOI: 10.1111/bph.13144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/19/2015] [Accepted: 03/23/2015] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose There are conflicting data regarding whether netrin-1 retards or accelerates atherosclerosis progression, as it can lead either to monocyte repulsion from or retention within plaques depending on its cellular source. We investigated the effect of aspirin, which is widely used in cardiovascular prophylaxis, on the synthesis of different isoforms of netrin-1 by endothelial cells under pro-inflammatory conditions, and defined the net effect of aspirin-dependent systemic modulation of netrin-1 on atherosclerosis progression. Experimental Approach Netrin-1 synthesis was studied in vitro using human endothelial cells stimulated with TNF-α, with or without aspirin treatment. In vivo experiments were conducted in ApoE−/− mice fed with a high-fat diet (HFD), receiving either aspirin or clopidogrel. Key Results TNF-α-induced NF-κB activation up-regulated the nuclear isoform of netrin-1, while simultaneously reducing secreted netrin-1. Down-regulation of the secreted isoform compromised the chemorepellent action of the endothelium against monocyte chemotaxis. Aspirin counteracted TNF-α-mediated effects on netrin-1 synthesis by endothelial cells through COX-dependent inhibition of NF-κB and concomitant histone hyperacetylation. Administration of aspirin to ApoE−/− mice on HFD increased blood and arterial wall levels of netrin-1 independently of its effects on platelets, accompanied by reduced plaque size and content of monocytes/macrophages, compared with untreated or clopidogrel-treated mice. In vivo blockade of netrin-1 enhanced monocyte plaque infiltration in aspirin-treated ApoE−/− mice. Conclusions and Implications Aspirin counteracts down-regulation of secreted netrin-1 induced by pro-inflammatory stimuli in endothelial cells. The aspirin-dependent increase of netrin-1 in ApoE−/− mice exerts anti-atherogenic effects by preventing arterial accumulation of monocytes.
Collapse
Affiliation(s)
- Gabriella Passacquale
- Department of Clinical Pharmacology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Alkystis Phinikaridou
- Division of Imaging Sciences and Biomedical Engineering, BHF Centre of Research Excellence and the Wellcome Trust/EPSRC Medical Engineering Centre, King's College London, London, UK
| | - Christina Warboys
- Department of Clinical Pharmacology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Margaret Cooper
- Division of Imaging Sciences and Biomedical Engineering, BHF Centre of Research Excellence and the Wellcome Trust/EPSRC Medical Engineering Centre, King's College London, London, UK
| | - Begona Lavin
- Division of Imaging Sciences and Biomedical Engineering, BHF Centre of Research Excellence and the Wellcome Trust/EPSRC Medical Engineering Centre, King's College London, London, UK
| | - Alessio Alfieri
- Department of Vascular Biology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Marcelo E Andia
- Division of Imaging Sciences and Biomedical Engineering, BHF Centre of Research Excellence and the Wellcome Trust/EPSRC Medical Engineering Centre, King's College London, London, UK
| | - Rene M Botnar
- Division of Imaging Sciences and Biomedical Engineering, BHF Centre of Research Excellence and the Wellcome Trust/EPSRC Medical Engineering Centre, King's College London, London, UK
| | - Albert Ferro
- Department of Clinical Pharmacology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| |
Collapse
|
27
|
Wang T, McElroy A, Halaney D, Vela D, Fung E, Hossain S, Phipps J, Wang B, Yin B, Feldman MD, Milner TE. Detection of plaque structure and composition using OCT combined with two-photon luminescence (TPL) imaging. Lasers Surg Med 2015; 47:485-94. [PMID: 26018531 DOI: 10.1002/lsm.22366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Atherosclerosis and plaque rupture leads to myocardial infarction and stroke. A novel hybrid optical coherence tomography (OCT) and two-photon luminescence (TPL) fiber-based imaging system was developed to characterize tissue constituents in the context of plaque morphology. STUDY DESIGN/MATERIALS AND METHODS Ex vivo coronary arteries (34 regions of interest) from three human hearts with atherosclerotic plaques were examined by OCT-TPL imaging. Histological sections (4 μm in thickness) were stained with Oil Red O for lipid, Von Kossa for calcium, and Verhoeff-Masson Tri-Elastic for collagen/elastin fibers and compared with imaging results. RESULTS Biochemical components in plaques including lipid, oxidized-LDL, and calcium, as well as a non-tissue component (metal) are distinguished by multi-channel TPL images with statistical significance (P < 0.001). TPL imaging provides complementary optical contrast to OCT (two-photon absorption/emission vs scattering). Merged OCT-TPL images demonstrate the distribution of lipid deposits in registration with detailed plaque surface profile. CONCLUSIONS Results suggest that multi-channel TPL imaging can effectively identify lipid sub-types and different plaque components. Furthermore, fiber-based hybrid OCT-TPL imaging simultaneously detects plaque structure and composition, improving the efficacy of vulnerable plaque detection and characterization.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Austin McElroy
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - David Halaney
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas
| | | | - Edmund Fung
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Shafat Hossain
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Jennifer Phipps
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas
| | - Bingqing Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Biwei Yin
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| | - Marc D Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas
| | - Thomas E Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas
| |
Collapse
|
28
|
Wang T, McElroy A, Halaney D, Vela D, Fung E, Hossain S, Phipps J, Wang B, Yin B, Feldman MD, Milner TE. Dual-modality fiber-based OCT-TPL imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques. BIOMEDICAL OPTICS EXPRESS 2015; 6:1665-78. [PMID: 26137371 PMCID: PMC4467709 DOI: 10.1364/boe.6.001665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 05/25/2023]
Abstract
New optical imaging techniques that provide contrast to study both the anatomy and composition of atherosclerotic plaques can be utilized to better understand the formation, progression and clinical complications of human coronary artery disease. We present a dual-modality fiber-based optical imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques that combines optical coherence tomography (OCT) and two-photon luminescence (TPL) imaging. Experimental results from ex vivo human coronary arteries show that OCT and TPL optical contrast in recorded OCT-TPL images is complimentary and in agreement with histological analysis. Molecular composition (e.g., lipid and oxidized-LDL) detected by TPL imaging can be overlaid onto plaque microstructure depicted by OCT, providing new opportunities for atherosclerotic plaque identification and characterization.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Austin McElroy
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - David Halaney
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Deborah Vela
- Texas Heart Institute, Houston, Texas 77030, USA
| | - Edmund Fung
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Shafat Hossain
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Jennifer Phipps
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Bingqing Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Biwei Yin
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Marc D Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Thomas E Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| |
Collapse
|
29
|
Palekar RU, Jallouk AP, Goette MJ, Chen J, Myerson JW, Allen JS, Akk A, Yang L, Tu Y, Miller MJ, Pham CTN, Wickline SA, Pan H. Quantifying progression and regression of thrombotic risk in experimental atherosclerosis. FASEB J 2015; 29:3100-9. [PMID: 25857553 DOI: 10.1096/fj.14-269084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/16/2015] [Indexed: 12/17/2022]
Abstract
Currently, there are no generally applicable noninvasive methods for defining the relationship between atherosclerotic vascular damage and risk of focal thrombosis. Herein, we demonstrate methods to delineate the progression and regression of vascular damage in response to an atherogenic diet by quantifying the in vivo accumulation of semipermeable 200-300 nm perfluorocarbon core nanoparticles (PFC-NP) in ApoE null mouse plaques with [(19)F] magnetic resonance spectroscopy (MRS). Permeability to PFC-NP remained minimal until 12 weeks on diet, then increased rapidly following 12 weeks, but regressed to baseline within 8 weeks after diet normalization. Markedly accelerated clotting (53.3% decrease in clotting time) was observed in carotid artery preparations of fat-fed mice subjected to photochemical injury as defined by the time to flow cessation. For all mice on and off diet, an inverse linear relationship was observed between the permeability to PFC-NP and accelerated thrombosis (P = 0.02). Translational feasibility for quantifying plaque permeability and vascular damage in vivo was demonstrated with clinical 3 T MRI of PFC-NP accumulating in plaques of atherosclerotic rabbits. These observations suggest that excessive permeability to PFC-NP may indicate prothrombotic risk in damaged atherosclerotic vasculature, which resolves within weeks after dietary therapy.
Collapse
Affiliation(s)
- Rohun U Palekar
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Andrew P Jallouk
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Matthew J Goette
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Junjie Chen
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jacob W Myerson
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - John S Allen
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Antonina Akk
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Lihua Yang
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Yizheng Tu
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Mark J Miller
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Christine T N Pham
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Samuel A Wickline
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Hua Pan
- *Department of Biomedical Engineering and Department of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Robinet P, Smith JD. Development and Use of Mouse Models of Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Kessinger CW, Kim JW, Henke PK, Thompson B, McCarthy JR, Hara T, Sillesen M, Margey RJP, Libby P, Weissleder R, Lin CP, Jaffer FA. Statins improve the resolution of established murine venous thrombosis: reductions in thrombus burden and vein wall scarring. PLoS One 2015; 10:e0116621. [PMID: 25680183 PMCID: PMC4334538 DOI: 10.1371/journal.pone.0116621] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022] Open
Abstract
Despite anticoagulation therapy, up to one-half of patients with deep vein thrombosis (DVT) will develop the post-thrombotic syndrome (PTS). Improving the long-term outcome of DVT patients at risk for PTS will therefore require new approaches. Here we investigate the effects of statins—lipid-lowering agents with anti-thrombotic and anti-inflammatory properties—in decreasing thrombus burden and decreasing vein wall injury, mediators of PTS, in established murine stasis and non-stasis chemical-induced venous thrombosis (N = 282 mice). Treatment of mice with daily atorvastatin or rosuvastatin significantly reduced stasis venous thrombus burden by 25% without affecting lipid levels, blood coagulation parameters, or blood cell counts. Statin-driven reductions in VT burden (thrombus mass for stasis thrombi, intravital microscopy thrombus area for non-stasis thrombi) compared similarly to the therapeutic anticoagulant effects of low molecular weight heparin. Blood from statin-treated mice showed significant reductions in platelet aggregation and clot stability. Statins additionally reduced thrombus plasminogen activator inhibitor-1 (PAI-1), tissue factor, neutrophils, myeloperoxidase, neutrophil extracellular traps (NETs), and macrophages, and these effects were most notable in the earlier timepoints after DVT formation. In addition, statins reduced DVT-induced vein wall scarring by 50% durably up to day 21 in stasis VT, as shown by polarized light microscopy of picrosirius red-stained vein wall collagen. The overall results demonstrate that statins improve VT resolution via profibrinolytic, anticoagulant, antiplatelet, and anti-vein wall scarring effects. Statins may therefore offer a new pharmacotherapeutic approach to improve DVT resolution and to reduce the post-thrombotic syndrome, particularly in subjects who are ineligible for anticoagulation therapy.
Collapse
Affiliation(s)
- Chase W. Kessinger
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jin Won Kim
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Multimodal Imaging and Theranostic Lab, Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Peter K. Henke
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian Thompson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason R. McCarthy
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tetsuya Hara
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin Sillesen
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ronan J. P. Margey
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ralph Weissleder
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Charles P. Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Farouc A. Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Tavakoli S, Vashist A, Sadeghi MM. Molecular imaging of plaque vulnerability. J Nucl Cardiol 2014; 21:1112-28; quiz 1129. [PMID: 25124827 PMCID: PMC4229449 DOI: 10.1007/s12350-014-9959-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/08/2014] [Indexed: 01/24/2023]
Abstract
Over the past decade, significant progress has been made in the development of novel imaging strategies focusing on the biology of the vessel wall for identification of vulnerable plaques. While the majority of these studies are still in the pre-clinical stage, few techniques (e.g., (18)F-FDG and (18)F-NaF PET imaging) have already been evaluated in clinical studies with promising results. Here, we will briefly review the pathobiology of atherosclerosis and discuss molecular imaging strategies that have been developed to target these events, with an emphasis on mechanisms that are associated with atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Sina Tavakoli
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Aseem Vashist
- Section of Cardiology, University of Connecticut School of Medicine, Farmington, CT, United States
- VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mehran M. Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
33
|
In vivo imaging of enhanced leukocyte accumulation in atherosclerotic lesions in humans. J Am Coll Cardiol 2014; 64:1019-29. [PMID: 25190238 DOI: 10.1016/j.jacc.2014.06.1171] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Understanding how leukocytes impact atherogenesis contributes critically to our concept of atherosclerosis development and the identification of potential therapeutic targets. OBJECTIVES The study evaluates an in vivo imaging approach to visualize peripheral blood mononuclear cell (PBMC) accumulation in atherosclerotic lesions of cardiovascular (CV) patients using hybrid single-photon emission computed tomography/computed tomography (SPECT/CT). METHODS At baseline, CV patients and healthy controls underwent (18)fluorodeoxyglucose positron emission tomography-computed tomography and magnetic resonance imaging to assess arterial wall inflammation and dimensions, respectively. For in vivo trafficking, autologous PBMCs were isolated, labeled with technetium-99m, and visualized 3, 4.5, and 6 h post-infusion with SPECT/CT. RESULTS Ten CV patients and 5 healthy controls were included. Patients had an increased arterial wall inflammation (target-to-background ratio [TBR] right carotid 2.00 ± 0.26 in patients vs. 1.51 ± 0.12 in controls; p = 0.022) and atherosclerotic burden (normalized wall index 0.52 ± 0.09 in patients vs. 0.33 ± 0.02 in controls; p = 0.026). Elevated PBMC accumulation in the arterial wall was observed in patients; for the right carotid, the arterial-wall-to-blood ratio (ABR) 4.5 h post-infusion was 2.13 ± 0.35 in patients versus 1.49 ± 0.40 in controls (p = 0.038). In patients, the ABR correlated with the TBR of the corresponding vessel (for the right carotid: r = 0.88; p < 0.001). CONCLUSIONS PBMC accumulation is markedly enhanced in patients with advanced atherosclerotic lesions and correlates with disease severity. This study provides a noninvasive imaging tool to validate the development and implementation of interventions targeting leukocytes in atherosclerosis.
Collapse
|
34
|
Taqueti VR, Nahrendorf M, Di Carli MF. Translational molecular imaging: repurposing an old technique to track cell migration into human atheroma. J Am Coll Cardiol 2014; 64:1030-2. [PMID: 25190239 DOI: 10.1016/j.jacc.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022]
Affiliation(s)
- Viviany R Taqueti
- Noninvasive Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcelo F Di Carli
- Noninvasive Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
35
|
Wildgruber M, Swirski FK, Zernecke A. Molecular imaging of inflammation in atherosclerosis. Am J Cancer Res 2013; 3:865-84. [PMID: 24312156 PMCID: PMC3841337 DOI: 10.7150/thno.5771] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/29/2013] [Indexed: 01/13/2023] Open
Abstract
Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic.
Collapse
|
36
|
Lee YJ, Koh YS, Park HE, Lee HJ, Hwang BH, Kang MK, Lee SY, Kim PJ, Ihm SH, Seung KB, Chang K. Spatial and temporal expression, and statin responsiveness of galectin-1 and galectin-3 in murine atherosclerosis. Korean Circ J 2013; 43:223-30. [PMID: 23682281 PMCID: PMC3654109 DOI: 10.4070/kcj.2013.43.4.223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/14/2013] [Accepted: 02/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background and Objectives Existing data on the spatiotemporal expression patterns of a variety of galectins in murine atherosclerosis are limited. We investigated the expression levels of galectins, and their in vivo spatiotemporal expression patterns and statin responsiveness in the inflamed atherosclerotic plaques of apolipoprotein E (apoE)-/- mice. Materials and Methods Galectins expression patterns in aortic atherosclerotic plaques and serum galectin-3 levels were investigated in 26-week-old apoE-/- (n=6) and C57BL/6 mice (n=9). To investigate the spatial and temporal patterns of galectin-1 and galectin-3 in plaques, high-cholesterol diet-fed 26-week-old (n=12) and 36-week-old apoE-/- mice (n=6) were sacrificed and their aortas were examined for galectins' expression using immunoblot analysis and immunohistochemical stain. 36-week-old apoE-/- mice were treated with atorvastatin (n=3, 0.57 mg/kg/day) for the evaluation of its effect on aortic galectins' expression. Results Immunoblot analyses showed that galectin-1 and galectin-3 were the predominant galectins expressed in murine atherosclerosis. The serum galectin-3 level was significantly higher in apoE-/- mice (p<0.001). While galectin-1 was weakly expressed in both intimal plaques and the media of atherosclerotic aortas, galectin-3 was heavily and exclusively accumulated in intimal plaques. Galectin-3 distribution was colocalized with plaque macrophages' distribution (r=0.66). As the degree of plaque extent and inflammation increased, the intraplaque galectin-3 expression levels proportionally elevated (p<0.01 vs. baseline), whereas galectin-1 expression had not elevated (p=0.14 vs. baseline). Atorvastatin treatment markedly reduced intraplaque galectin-3 and macrophage signals (p<0.001 vs. baseline), whereas it failed to reduce galectin-1 expression in the aortas. Conclusion Galectin-3 is the predominant gal and is colocalized with macrophages within atherosclerotic plaques. Intraplaque galectin-3 expression reflects the degree of plaque inflammation.
Collapse
Affiliation(s)
- Yong-Jin Lee
- Cardiovascular Research Center, Seoul St. Mary's Hospital, Seoul, Korea. ; Department of Cardiovascular Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Macrophages are central regulators of disease progression in both atherosclerosis and myocardial infarction (MI). In atherosclerosis, macrophages are the dominant leukocyte population that influences lesional development. In MI, which is caused by atherosclerosis, macrophages accumulate readily and have important roles in inflammation and healing. Molecular imaging has grown considerably as a field and can reveal biological process at the molecular, cellular and tissue levels. Here, we explore how various imaging modalities, from intravital microscopy in mice to organ-level imaging in patients, are contributing to our understanding of macrophages and their progenitors in cardiovascular disease.
Collapse
|
38
|
Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proc Natl Acad Sci U S A 2012. [PMID: 23185003 DOI: 10.1073/pnas.1210269109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Leukocyte trafficking plays a critical role in determining the progress and resolution of inflammation. Although significant progress has been made in understanding the role of leukocyte activation in inflammation, dissecting the interactions between different leukocyte subpopulations during trafficking is hampered by the complexity of in vivo conditions and the lack of detail of current in vitro assays. To measure the effects of the interactions between neutrophils and monocytes migrating in response to various chemoattractants, at single-cell resolution, we developed a microfluidic platform that replicates critical features of focal inflammation sites. We integrated an elastase assay into the focal chemotactic chambers (FCCs) of our device that enabled us to distinguish between phlogistic and nonphlogistic cell recruitment. We found that lipoxin A(4) and resolvin D1, in solution or incorporated into nano-proresolving medicines, reduced neutrophil and monocyte trafficking toward leukotriene B(4). Lipoxin A(4) also reduced the elastase release from homogenous and heterogenous mixtures of neutrophils and monocytes. Surprisingly, the effect of resolvin D1 on heterogenous mixtures was antisynergistic, resulting in a transient spike in elastase activity, which was quickly terminated, and the degraded elastin removed by the leukocytes inside the FCCs. Therefore, the microfluidic assay provides a robust platform for measuring the effect of leukocyte interactions during trafficking and for characterizing the effects of inflammation mediators.
Collapse
|
39
|
Temma T, Saji H. Radiolabelled probes for imaging of atherosclerotic plaques. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:432-447. [PMID: 23145360 PMCID: PMC3484420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Unstable atherosclerotic plaques are prone to rupture followed by thrombus formation, vessel stenosis, and occlusion and frequently lead to acute myocardial infarction and brain infarction. As such, unstable plaques represent an important diagnostic target in clinical settings and the specific diagnosis of unstable plaques would enable preventive treatments for cardiovascular disease. To date, various imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and intravascular ultrasound (IVUS) have been widely used clinically. Although these methods have advantages in terms of spatial resolution and the ability to make detailed identification of morphological alterations such as calcifications and vessel stenosis, these techniques require skill or expertise to discriminate plaque instability, which is essential for early diagnosis and treatment and can present difficulties for quantitative estimation. On the other hand, nuclear imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) can noninvasively collect quantitative information on the expression levels of functional molecules and metabolic activities in vivo and thus provide functional diagnoses of unstable plaques with high sensitivity. Specifically, unstable plaques are characterized by an abundance of invasive inflammatory cells (macrophages), increased oxidative stress that increases oxidized LDL and its receptor expressed on cells in the lesions, increased occurrence of apoptosis of macrophages and other cells involved in disease progression, increased protease expression and activity, and finally thrombus formation triggered by plaque rupture, which is the most important mechanism leading to the onset of infarctions and ischemic sudden death. Therefore, these characteristics can all be targets for molecular imaging by PET and SPECT. In this paper, we review the present state and future of radiolabelled probes that have been developed for detecting atherosclerotic unstable plaques with nuclear imaging techniques.
Collapse
Affiliation(s)
- Takashi Temma
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
40
|
Haka AS, Potteaux S, Fraser H, Randolph GJ, Maxfield FR. Quantitative analysis of monocyte subpopulations in murine atherosclerotic plaques by multiphoton microscopy. PLoS One 2012; 7:e44823. [PMID: 23024767 PMCID: PMC3443108 DOI: 10.1371/journal.pone.0044823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022] Open
Abstract
The progressive accumulation of monocyte-derived cells in the atherosclerotic plaque is a hallmark of atherosclerosis. However, it is now appreciated that monocytes represent a heterogeneous circulating population of cells that differ in functionality. New approaches are needed to investigate the role of monocyte subpopulations in atherosclerosis since a detailed understanding of their differential mobilization, recruitment, survival and emigration during atherogenesis is of particular importance for development of successful therapeutic strategies. We present a novel methodology for the in vivo examination of monocyte subpopulations in mouse models of atherosclerosis. This approach combines cellular labeling by fluorescent beads with multiphoton microscopy to visualize and monitor monocyte subpopulations in living animals. First, we show that multiphoton microscopy is an accurate and timesaving technique to analyze monocyte subpopulation trafficking and localization in plaques in excised tissues. Next, we demonstrate that multiphoton microscopy can be used to monitor monocyte subpopulation trafficking in atherosclerotic plaques in living animals. This novel methodology should have broad applications and facilitate new insights into the pathogenesis of atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Abigail S. Haka
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephane Potteaux
- Department of Gene and Cell Medicine and the Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Haley Fraser
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Gwendalyn J. Randolph
- Department of Gene and Cell Medicine and the Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
42
|
Degnan AJ, Young VEL, Gillard JH. Advances in noninvasive imaging for evaluating clinical risk and guiding therapy in carotid atherosclerosis. Expert Rev Cardiovasc Ther 2012; 10:37-53. [PMID: 22149525 DOI: 10.1586/erc.11.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Managing asymptomatic carotid atherosclerosis with a view to preventing ischemic stroke is a challenging task. As the annual risk of stroke in untreated asymptomatic patients on average is less than the risk of surgical intervention, the key question is how to identify those asymptomatic individuals whose risk of stroke is elevated and who would benefit from surgery, while sparing low-risk asymptomatic patients from the risks of surgical intervention. The advent of a multitude of noninvasive carotid imaging techniques offers an opportunity to improve risk stratification in patients and to monitor the response to medical therapies; assessing efficacy at individual and population levels. As part of this, plaque measurement techniques (using ultrasound, computed tomography or MRI) may be employed in monitoring plaque/component regression and progression. Novel imaging applications targeted to plaque characteristics, inflammation and neovascularization, including contrast-enhanced ultrasound and MRI, dynamic contrast-enhanced MRI, and fluorodeoxyglucose-PET, are also being explored. Ultimately, noninvasive imaging and other advances in risk stratification aim to improve and individualize the management of patients with carotid atherosclerosis.
Collapse
Affiliation(s)
- Andrew J Degnan
- University Department of Radiology, Addenbrooke's Hospital, Box 218, Hills Road, Cambridge, Cambridgeshire, CB2 2QQ, UK
| | | | | |
Collapse
|
43
|
Kircher MF, Hricak H, Larson SM. Molecular imaging for personalized cancer care. Mol Oncol 2012; 6:182-95. [PMID: 22469618 PMCID: PMC5528375 DOI: 10.1016/j.molonc.2012.02.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/19/2022] Open
Abstract
Molecular imaging is rapidly gaining recognition as a tool with the capacity to improve every facet of cancer care. Molecular imaging in oncology can be defined as in vivo characterization and measurement of the key biomolecules and molecularly based events that are fundamental to the malignant state. This article outlines the basic principles of molecular imaging as applied in oncology with both established and emerging techniques. It provides examples of the advantages that current molecular imaging techniques offer for improving clinical cancer care as well as drug development. It also discusses the importance of molecular imaging for the emerging field of theranostics and offers a vision of how molecular imaging may one day be integrated with other diagnostic techniques to dramatically increase the efficiency and effectiveness of cancer care.
Collapse
Affiliation(s)
- Moritz F. Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room C-278, NY 10065, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room C-278, NY 10065, USA
| | - Steven M. Larson
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room C-278, NY 10065, USA
| |
Collapse
|
44
|
Stojanov K, de Vries EF, Hoekstra D, van Waarde A, Dierckx RA, Zuhorn IS. [
18
F]FDG Labeling of Neural Stem Cells for in Vivo Cell Tracking with Positron Emission Tomography: Inhibition of Tracer Release by Phloretin. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Katica Stojanov
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F.J. de Vries
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dick Hoekstra
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A.J.O. Dierckx
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Inge S. Zuhorn
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
45
|
Wang T, Mancuso JJ, Kazmi SS, Dwelle J, Sapozhnikova V, Willsey B, Ma LL, Qiu J, Li X, Dunn AK, Johnston KP, Feldman MD, Milner TE. Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose. Lasers Surg Med 2012; 44:49-59. [PMID: 22246984 PMCID: PMC3696498 DOI: 10.1002/lsm.21153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES The macrophage is an important early cellular marker related to risk of future rupture of atherosclerotic plaques. Two-channel two-photon luminescence (TPL) microscopy combined with optical coherence tomography (OCT) was used to detect, and further characterize the distribution of aorta-based macrophages using plasmonic gold nanorose as an imaging contrast agent. STUDY DESIGN/MATERIALS AND METHODS Nanorose uptake by macrophages was identified by TPL microscopy in macrophage cell culture. Ex vivo aorta segments (8 × 8 × 2 mm(3) ) rich in macrophages from a rabbit model of aorta inflammation were imaged by TPL microscopy in combination with OCT. Aorta histological sections (5 µm in thickness) were also imaged by TPL microscopy. RESULTS Merged two-channel TPL images showed the lateral and depth distribution of nanorose-loaded macrophages (confirmed by RAM-11 stain) and other aorta components (e.g., elastin fiber and lipid droplet), suggesting that nanorose-loaded macrophages are diffusively distributed and mostly detected superficially within 20 µm from the luminal surface of the aorta. Moreover, OCT images depicted detailed surface structure of the diseased aorta. CONCLUSIONS Results suggest that TPL microscopy combined with OCT can simultaneously reveal macrophage distribution with respect to aorta surface structure, which has the potential to detect vulnerable plaques and monitor plaque-based macrophages overtime during cardiovascular interventions.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712
| | - J. Jacob Mancuso
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - S.M. Shams Kazmi
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712
| | - Jordan Dwelle
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712
| | - Veronika Sapozhnikova
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Brian Willsey
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712
| | - Li L. Ma
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712
| | - Jinze Qiu
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712
| | - Xiankai Li
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Andrew K. Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712
| | - Keith P. Johnston
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712
| | - Marc D. Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229
- South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Thomas E. Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712
| |
Collapse
|
46
|
Hajjar RJ, Cormode DP. Tracking Cell Therapy. JACC Cardiovasc Imaging 2012; 5:56-8. [DOI: 10.1016/j.jcmg.2011.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/20/2011] [Indexed: 11/25/2022]
|
47
|
Abstract
Cell-based therapies, such as adoptive immunotherapy and stem-cell therapy, have received considerable attention as novel therapeutics in oncological research and clinical practice. The development of effective therapeutic strategies using tumor-targeted cells requires the ability to determine in vivo the location, distribution, and long-term viability of the therapeutic cell populations as well as their biological fate with respect to cell activation and differentiation. In conjunction with various noninvasive imaging modalities, cell-labeling methods, such as exogenous labeling or transfection with a reporter gene, allow visualization of labeled cells in vivo in real time, as well as monitoring and quantifying cell accumulation and function. Such cell-tracking methods also have an important role in basic cancer research, where they serve to elucidate novel biological mechanisms. In this Review, we describe the basic principles of cell-tracking methods, explain various approaches to cell tracking, and highlight recent examples for the application of such methods in animals and humans.
Collapse
|
48
|
Jayapaul J, Hodenius M, Arns S, Lederle W, Lammers T, Comba P, Kiessling F, Gaetjens J. FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells. Biomaterials 2011; 32:5863-71. [PMID: 21605902 DOI: 10.1016/j.biomaterials.2011.04.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/22/2011] [Indexed: 11/16/2022]
Abstract
Riboflavin is an essential vitamin for cellular metabolism and is highly upregulated in metabolically active cells. Consequently, targeting the riboflavin carrier protein (RCP) may be a promising strategy for labeling cancer and activated endothelial cells. Therefore, Ultrasmall SuperParamagnetic Iron Oxide nanoparticles (USPIO) were adsorptively coated with the endogenous RCP ligand flavin mononucleotide (FMN), which renders them target-specific and fluorescent. The core diameter, surface morphology and surface coverage of the resulting FMN-coated USPIO (FLUSPIO) were evaluated using a variety of physico-chemical characterization techniques (TEM, DLS, MRI and fluorescence spectroscopy). The biocompatibility of FLUSPIO was confirmed using three different cell viability assays (Trypan blue staining, 7-AAD staining and TUNEL). In vitro evaluation of FLUSPIO using MRI and fluorescence microscopy demonstrated high labeling efficiency of cancer cells (PC-3, DU-145, LnCap) and activated endothelial cells (HUVEC). Competition experiments (using MRI and ICP-MS) with a 10- and 100-fold excess of free FMN confirmed RCP-specific uptake of the FLUSPIO by PC-3 cells and HUVEC. Hence, RCP-targeting via FMN may be an elegant way to render nanoparticles fluorescent and to increase the labeling efficacy of cancer and activated endothelial cells. This was shown for FLUSPIO, which due to their high T(2)-relaxivity, are favorably suited for MR cell tracking experiments and cancer detection in vivo.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Morales-Villegas EC, Di Sciascio G, Briguori C. Statins: cardiovascular risk reduction in percutaneous coronary intervention-basic and clinical evidence of hyperacute use of statins. Int J Hypertens 2011; 2011:904742. [PMID: 21461336 PMCID: PMC3065660 DOI: 10.4061/2011/904742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 01/03/2023] Open
Abstract
Reduction of LDL-cholesterol concentration in serum, blocking the isoprenylation of GTPases and the activation of myocyte-protective enzyme systems are three mechanisms that currently explain the lipid and non-lipid effects of statins. However, the decrease of LDL-cholesterol, the reduction of inflammation biomarkers and even the atheroregresion, as surrogate effects to the mechanisms of action of statins would be irrelevant if not accompanied by a significant decrease in the incidence of cardiovascular events. Statins like no other pharmacological group have proven to reduce the incidence of cardiovascular events and prolong life in any clinical scenario. This article review the basic and clinical evidence that support a new indication for HMG-CoA reductase inhibitors "pharmacological myocardial preconditioning before anticipated ischemia" or hyperacute use of statins in subjects with any coronary syndrome eligible for elective, semi-urgent or primary percutaneous coronary intervention: ARMYDA-Original, NAPLES I-II, ARMYDA-ACS, ARMYDA-RECAPTURE, Non-STEMI-Korean, Korean-STEMI trials.
Collapse
Affiliation(s)
- Enrique C. Morales-Villegas
- Centro de Investigación Cardiometabólica, Quinta Avenida 702-210, Frac. Agricultura, Aguascalientes, 20234 México, AGS, Mexico
| | - Germano Di Sciascio
- Università Campus Bio-Medico di Roma, 00128 Rome, Italy
- Università di Roma “La Sapienza”, 00185 Rome, Italy
| | - Carlo Briguori
- Clinica Mediterranea, Laboratorio di Emodinamica e Cardiologia Interventistica, 80122 Naples, Italy
| |
Collapse
|
50
|
Villa C, Erratico S, Razini P, Farini A, Meregalli M, Belicchi M, Torrente Y. In VivoTracking of Stem Cell by Nanotechnologies: Future Prospects for Mouse to Human Translation. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:1-11. [DOI: 10.1089/ten.teb.2010.0362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chiara Villa
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università dėgli Studi di Milano, Milano, Italy
| | - Silvia Erratico
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università dėgli Studi di Milano, Milano, Italy
| | - Paola Razini
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università dėgli Studi di Milano, Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università dėgli Studi di Milano, Milano, Italy
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università dėgli Studi di Milano, Milano, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università dėgli Studi di Milano, Milano, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università dėgli Studi di Milano, Milano, Italy
| |
Collapse
|