1
|
Wang D, Saleem S, Sullivan RD, Zhao T, Reed GL. Differences in Acute Expression of Matrix Metalloproteinases-9, 3, and 2 Related to the Duration of Brain Ischemia and Tissue Plasminogen Activator Treatment in Experimental Stroke. Int J Mol Sci 2024; 25:9442. [PMID: 39273389 PMCID: PMC11394866 DOI: 10.3390/ijms25179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Matrix metalloproteinases (MMPs) such as MMP-9, 3, and 2 degrade the cellular matrix and are believed to play a crucial role in ischemic stroke. We examined how the duration of ischemia (up to 4 h) and treatment with recombinant tissue plasminogen activator altered the comparative expression of these MMPs in experimental ischemic stroke with reperfusion. Both prolonged ischemia and r-tPA treatment markedly increased MMP-9 expression in the ischemic hemisphere (all p < 0.0001). The duration of ischemia and r-tPA treatment also significantly increased MMP-2 expression (p < 0.01-0.001) in the ischemic hemisphere (p < 0.01) but to a lesser degree than MMP-9. In contrast, MMP-3 expression significantly decreased in the ischemic hemisphere (p < 0.001) with increasing duration of ischemia and r-tPA treatment (p < 0.05-0001). MMP-9 expression was prominent in the vascular compartment and leukocytes. MMP-2 expression was evident in the vascular compartment and MMP-3 in NeuN+ neurons. Prolonging the duration of ischemia (up to 4 h) before reperfusion increased brain hemorrhage, infarction, swelling, and neurologic disability in both saline-treated (control) and r-tPA-treated mice. MMP-9 and MMP-2 expression were significantly positively correlated with, and MMP-3 was significantly negatively correlated with, infarct volume, swelling, and brain hemorrhage. We conclude that in experimental ischemic stroke with reperfusion, the duration of ischemia and r-tPA treatment significantly altered MMP-9, 3, and 2 expression, ischemic brain injury, and neurological disability. Each MMP showed unique patterns of expression that are strongly correlated with the severity of brain infarction, swelling, and hemorrhage. In summary, in experimental ischemic stroke in male mice with reperfusion, the duration of ischemia, and r-tPA treatment significantly altered the immunofluorescent expression of MMP-9, 3, and 2, ischemic brain injury, and neurological disability. In this model, each MMP showed unique patterns of expression that were strongly correlated with the severity of brain infarction, swelling, and hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (D.W.); (S.S.); (R.D.S.); (T.Z.)
| |
Collapse
|
2
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Yu M, Xiao G, Han L, Peng L, Wang H, He S, Lyu M, Zhu Y. QiShen YiQi and its components attenuate acute thromboembolic stroke and carotid thrombosis by inhibition of CD62P/PSGL-1-mediated platelet-leukocyte aggregate formation. Biomed Pharmacother 2023; 160:114323. [PMID: 36738500 DOI: 10.1016/j.biopha.2023.114323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND QiShen YiQi (QSYQ) dropping pill, a component-based Chinese medicine consisting of benefiting Qi (YQ) and activating blood (HX) components, has been reported to exert a beneficial effect on cerebral ischemia-induced stroke. However, its efficacy and pharmacological mechanism on acute thromboembolic stroke is not clear. PURPOSE This study is to explore the preventative effect and pharmacological mechanism of QSYQ and its YQ/HX components on the formation of platelet-leukocyte aggregation (PLA) in acute thromboembolic stroke. STUDY DESIGN AND METHODS In vivo thromboembolic stroke model and FeCl3-induced carotid arterial occlusion models were used. Immunohistochemistry, Western blot, RT-qPCR, and flow cytometry experiments were performed to reveal the pharmacological mechanisms of QSYQ and its YQ/HX components. RESULTS In thromboembolic stroke rats, QSYQ significantly attenuated infarct area, improved neurological recovery, reduced PLA formation, and inhibited P-selection (CD62P)/ P-selectin glycoprotein ligand-1 (PSGL-1) expressions. The YQ component preferentially down-regulated PSGL-1 expression in leukocyte, while the HX component preferentially down-regulated CD62P expression in platelet. In carotid arterial thrombosis mice, QSYQ and its YQ/HX components inhibited thrombus formation, prolonged vessel occlusion time, reduced circulating leukocytes and P-selectin expression. PLA formation and platelet/leukocyte adhesion to endothelial cell were also inhibited by QSYQ and its YQ/HX components in vitro. CONCLUSION QSYQ and YQ/HX components attenuated thromboembolic stroke and carotid thrombosis by decreasing PLA formation via inhibiting CD62P/PSGL-1 expressions. This study shed a new light on the prevention of thromboembolic stroke.
Collapse
Affiliation(s)
- Mingxing Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Linhong Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Li Peng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Huanyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| |
Collapse
|
4
|
Xue Y, Zhang L, Zhang L, Sun W, Fang Z, Leng Y, Li M, Ren X, Zhang R, Zhang Y, Chen L, Wang H. Danshensu prevents thrombosis by inhibiting platelet activation via SIRT1/ROS/mtDNA pathways without increasing bleeding risk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154271. [PMID: 35777120 DOI: 10.1016/j.phymed.2022.154271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary thrombosis and its correlated disorders are main healthcare problems globally. The therapeutic effects of current treatments involving antiplatelet drugs are not fully satisfactory. Danshensu (DSS) is an important monomer obtained from Salvia miltiorrhiza roots that have been widely employed for vascular diseases in medicinal practices. Nonetheless, the underlying mechanisms of DSS are not fully unraveled. PURPOSE The objective of this study was to penetrate the antithrombotic and antiplatelet mechanisms of DSS. METHODS Network pharmacology assay was used to forecast the cellular mechanisms of DSS for treating thrombosis. The work focused the impacts of DSS on platelet activation by analyzing aggregation and adhesion in vitro. Flow cytometry, western blotting, CM-H2DCFDA staining and mitochondrial function assays were performed to reveal the molecular mechanisms. The model of common carotid artery thrombus induced by ferric chloride was established. The wet weight of thrombus was measured, and the thrombosis was observed by hematoxylin and eosin (H&E) staining, in order to support the inhibitory effect of DSS on thrombosis. RESULTS Data mining found the antithrombotic effect of DSS is related to platelet activation and the core target is silent information regulator 1 (SIRT1). We confirmed that DSS dose-dependently inhibited platelet activation in vitro. DSS was further demonstrated to induce the expression of SIRT1 and decreased reactive oxygen species (ROS) burden and thereby prevented mitochondrial dysfunction. Mitochondrial function tests further indicated that DSS prevented mitochondrial DNA (mtDNA) release, which induced activation of platelet in a dendritic cell specific intercellular-adhesion-molecule-3 grabbing non-integrin (DC-SIGN)-dependent manner. In carotid artery injury model induced by ferric chloride, DSS inhibited the development of carotid arterial thrombosis. More encouragingly, in tail bleeding time assay, DSS did not augment bleeding risk. CONCLUSION These findings indicated that DSS effectively inhibited platelet activation by depressing the collection of ROS and the release of platelet mtDNA without arousing hemorrhage risk. DSS might represent a promising candidate drug for thrombosis and cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Liyuan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Zhirui Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Xiuyun Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Rui Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Yingxue Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, 301617 Tianjin, China; Tianjin State Key Laboratory of Modern Chinese Medicine, 301617 Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China.
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, 301617 Tianjin, China; Tianjin State Key Laboratory of Modern Chinese Medicine, 301617 Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China.
| |
Collapse
|
5
|
Ge Y, Liu W, Yin W, Wang X, Wang J, Zhu X, Xu S. Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells. Bioengineered 2021; 12:10837-10848. [PMID: 34637670 PMCID: PMC8809982 DOI: 10.1080/21655979.2021.1989260] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory disease caused by multiple factors. Multiple circRNAs are involved in the development of AS. The present study focusses on delineating the role of circ_0090231 in AS. Human aortic endothelial cells (HAECs) were treated with oxidized low-density lipoprotein (ox-LDL) to construct an in vitro AS model. Real-time quantitative polymerase-chain reaction (RT-qPCR) was used to detect the levels of circ_0090231, IL-1β, and IL-18 transcripts. CircRNA/target gene interactions were predicted using StarBase and TargetScan and confirmed using an RNA pull-down assay and dual-luciferase reporter assay. Further, 3-(4,5)-dimethylthiahiazo(-2)-3,5-diphenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH) release assays were performed to evaluate cell viability and damage in the AS model, respectively. Cell pyroptosis and protein expression were determined using flow cytometry and western blotting respectively. The treatment of HAECs with ox-LDL not only led to significant increase in the levels of circ_0090231 but also resulted in improved cell viability as well as reduced cell injury and pyroptosis as compared to that in non-treated cells. The circ_0090231 was also identified to function as a sponge for miR-635, knockdown of which reverses the effects of circ_0090231 inhibition. Furthermore, our results revealed that levels of NLRP3, a miR-635 target, are not only augmented in the AS model but its overexpression also weakens the miR-635 regulatory effects in the AS development. Taken together, the circ_0090231/miR-635/NLRP3 axis affects the development of AS by regulating cell pyroptosis, thus providing new insights into the mechanism of AS development.
Collapse
Affiliation(s)
- Yishan Ge
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Wenwu Liu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Wei Yin
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Xuebin Wang
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Wang
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoqing Zhu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Shengkai Xu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Momi S, Falcinelli E, Petito E, Ciarrocca Taranta G, Ossoli A, Gresele P. Matrix metalloproteinase-2 on activated platelets triggers endothelial PAR-1 initiating atherosclerosis. Eur Heart J 2021; 43:504-514. [PMID: 34529782 DOI: 10.1093/eurheartj/ehab631] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Platelets participate in atherogenesis with mechanisms not yet fully clarified. Vascular wall MMP-2 is involved in the arterial remodelling accompanying atherosclerosis. Platelets contain and release MMP-2 but no informations are available on its role in atherosclerotic lesion formation. METHODS AND RESULTS We generated double knockout mice lacking the LDL receptor and MMP-2 only in circulating blood cells showing that they develop significantly lesser femoral intima thickening after photochemical-induced arterial damage and atherosclerotic lesions in the aorta, measured by the en face method, after 4 months of atherogenic diet. Moreover, repeated transfusions of autologous-activated platelets in LDLR-/- mice on atherogenic diet significantly enhanced the extension of aortic atherosclerotic lesions while transfusion of activated platelets from MMP-2-/- mice did not. In vitro coincubation studies showed that platelet-derived MMP-2 plays a pivotal role in the development and progression of atherosclerosis through a complex cross-talk between activated platelets, monocyte/macrophages, and endothelial cells. Translational studies in patients with CAD and chronic HIV infection showed that platelet surface expression of MMP-2 highly significantly correlated with the degree of carotid artery stenosis. CONCLUSION We show a previously unknown mechanism of the pathway through which platelets expressing MMP-2 trigger the initial phases of atherosclerosis and provide a mechanism showing that they activate endothelial PAR-1 triggering endothelial p38MAPK signalling and the expression of adhesion molecules. The development of drugs blocking selectively platelet MMP-2 or its expression may represent a new approach to the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Giulia Ciarrocca Taranta
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacologic and Biomolecular Science, University of Milan, via delle Corse, Milan 06132, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Strada Vicinale Via delle Corse, Perugia 06132, Italy
| |
Collapse
|
7
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Alkarithi G, Duval C, Shi Y, Macrae FL, Ariëns RAS. Thrombus Structural Composition in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41:2370-2383. [PMID: 34261330 PMCID: PMC8384252 DOI: 10.1161/atvbaha.120.315754] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thrombosis is a major complication of cardiovascular disease, leading to myocardial infarction, acute ischemic stroke, or venous thromboembolism. Thrombosis occurs when a thrombus forms inside blood vessels disrupting blood flow. Developments in thrombectomy to remove thrombi from vessels have provided new opportunities to study thrombus composition which may help to understand mechanisms of disease and underpin improvements in treatments. We aimed to review thrombus compositions, roles of components in thrombus formation and stability, and methods to investigate thrombi. Also, we summarize studies on thrombus structure obtained from cardiovascular patients and animal models. Thrombi are composed of fibrin, red blood cells, platelets, leukocytes, and neutrophil extracellular traps. These components have been analyzed by several techniques, including scanning electron microscopy, laser scanning confocal microscopy, histochemistry, and immunohistochemistry; however, each technique has advantages and limitations. Thrombi are heterogenous in composition, but overall, thrombi obtained from myocardial infarction are composed of mainly fibrin and other components, including platelets, red blood cells, leukocytes, and cholesterol crystals. Thrombi from patients with acute ischemic stroke are characterized by red blood cell- and platelet-rich regions. Thrombi from patients with venous thromboembolism contain mainly red blood cells and fibrin with some platelets and leukocytes. Thrombus composition from patients with myocardial infarction is influenced by ischemic time. Animal thrombosis models are crucial to gain further mechanistic information about thrombosis and thrombus structure, with thrombi being similar in composition compared with those from patients. Further studies on thrombus composition and function are key to improve treatment and clinical outcome of thrombosis.
Collapse
Affiliation(s)
- Ghadir Alkarithi
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.).,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (G.A.)
| | - Cédric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| | - Yu Shi
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (G.A., C.D., Y.S., F.L.M., R.A.S.A.)
| |
Collapse
|
9
|
Tian J, Weng Y, Sun R, Zhu Y, Zhang J, Liu H, Liu Y. Contrast-enhanced ultrasound molecular imaging of activated platelets in the progression of atherosclerosis using microbubbles bearing the von Willebrand factor A1 domain. Exp Ther Med 2021; 22:721. [PMID: 34007330 PMCID: PMC8120515 DOI: 10.3892/etm.2021.10153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Platelet-endothelial interactions have been linked to increased inflammatory activation and a prothrombotic state in atherosclerosis. The interaction between von Willebrand factor (vWF)-A1 domain and platelet glycoprotein (GP) Ib/IX plays a significant role in mediating the adhesion of platelets to the injured endothelium. In the present study, contrast-enhanced ultrasound (CEU) molecular imaging with microbubbles bearing the vWF-A1 domain was performed to non-invasively monitor activated platelets on the vascular endothelium in the procession of atherosclerosis. A targeted CEU contrast agent was prepared by attaching the vWF-A1 domain to the shell of microbubbles (MbA1). Rat isotype control antibody was used to produce control (Mbctrl) microbubbles. The binding of MbA1 and Mbctrl to activated platelets was assessed in in vitro flow chamber experiments. Apolipoprotein E (ApoE-/-) deficient mice were studied as a model of atherosclerosis. At 8, 16 and 32 weeks of age, CEU molecular imaging of the proximal aorta with MbA1 and Mbctrl was performed and the imaging signals from microbubbles were quantified. Atherosclerotic lesion severity and platelets on the endothelial surface were assessed by histology and immunohistochemistry. In in vitro flow chamber studies, attachment of MbA1 to activated platelets on culture dishes was significantly greater than that of Mbctrl across a range of shear stresses (P<0.05). The attachment of Mbctrl was sparse and not related to the aggregated platelets. As lesion development progressed in the ApoE-/- mice, molecular imaging of activated platelets demonstrated selective signal enhancement of MbA1 (P<0.05 vs. Mbctrl) at all ages. Selective signal enhancement from MbA1 increased from 8 to 32 weeks of age. Immunohistochemistry for GPIIb revealed the presence of platelets on the endothelial cell surface in each group of ApoE-/- mice and that the degree of platelet deposits was age-dependent. The results of the present study indicated that non-invasive CEU molecular imaging with targeted microbubbles bearing the vWF-A1 domain could not only detect activated platelets on the vascular endothelium but also indicate lesion severity in atherosclerosis.
Collapse
Affiliation(s)
- Jie Tian
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yahui Weng
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ruiying Sun
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying Zhu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jun Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongyun Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021; 460:120-129. [PMID: 33465414 DOI: 10.1016/j.neuroscience.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.
Collapse
|
11
|
Delaney C, Davizon-Castillo P, Allawzi A, Posey J, Gandjeva A, Neeves K, Tuder RM, Di Paola J, Stenmark KR, Nozik ES. Platelet activation contributes to hypoxia-induced inflammation. Am J Physiol Lung Cell Mol Physiol 2020; 320:L413-L421. [PMID: 33264579 DOI: 10.1152/ajplung.00519.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is central to the pathogenesis of pulmonary vascular remodeling and pulmonary hypertension (PH). Inflammation precedes remodeling in preclinical models, thus supporting the concept that changes in immunity drive remodeling in PH. Platelets are recognized as mediators of inflammation, but whether platelets contribute to hypoxia-driven inflammation has not been studied. We utilized a murine hypoxia model to test the hypothesis that platelets drive hypoxia-induced inflammation. We evaluated male and female 9-wk-old normoxic and hypoxic mice and in selected experiments included hypoxic thrombocytopenic mice. Thrombocytopenic mice were generated with an anti-GP1bα rat IgG antibody. We also performed immunostaining of lung sections from failed donor controls and patients with idiopathic pulmonary arterial hypertension. We found that platelets are increased in the lungs of hypoxic mice and hypoxia induces platelet activation. Platelet depletion prevents hypoxia-driven increases in the proinflammatory chemokines CXCL4 and CCL5 and attenuates hypoxia-induced increase in plasma CSF-2. Pulmonary interstitial macrophages are increased in the lungs of hypoxic mice; this increase is prevented in thrombocytopenic mice. To determine the potential relevance to human disease, lung sections from donors and patients with advanced idiopathic pulmonary arterial hypertension (iPAH) were immunostained for the platelet-specific protein CD41. We observed iPAH lungs had a two-fold increase in CD41, compared with controls. Our data provide evidence that the platelet count is increased in the lungs and activated in mice with hypoxia-induced inflammation and provides rationale for the further study of the potential contribution of platelets to inflammatory mediated vascular remodeling and PH.
Collapse
Affiliation(s)
- Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Section of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Pavel Davizon-Castillo
- Section of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayed Allawzi
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Division of Pediatrics-Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Janelle Posey
- Section of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Keith Neeves
- Section of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rubin M Tuder
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Division of Pediatrics-Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Division of Pediatrics-Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
12
|
Kyselova A, Elgheznawy A, Wittig I, Heidler J, Mann AW, Ruf W, Fleming I, Randriamboavonjy V. Platelet-derived calpain cleaves the endothelial protease-activated receptor 1 to induce vascular inflammation in diabetes. Basic Res Cardiol 2020; 115:75. [PMID: 33258989 PMCID: PMC7716944 DOI: 10.1007/s00395-020-00833-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is a major risk factor for cardiovascular disease. Platelets from diabetic patients are hyperreactive and release microparticles that carry activated cysteine proteases or calpains. Whether platelet-derived calpains contribute to the development of vascular complications in diabetes is unknown. Here we report that platelet-derived calpain1 (CAPN1) cleaves the protease-activated receptor 1 (PAR-1) on the surface of endothelial cells, which then initiates a signaling cascade that includes the activation of the tumor necrosis factor (TNF)-α converting enzyme (TACE). The latter elicits the shedding of the endothelial protein C receptor and the generation of TNF-α, which in turn, induces intracellular adhesion molecule (ICAM)-1 expression to promote monocyte adhesion. All of the effects of CAPN1 were mimicked by platelet-derived microparticles from diabetic patients or from wild-type mice but not from CAPN1−/− mice, and were not observed in PAR-1-deficient endothelial cells. Importantly, aortae from diabetic mice expressed less PAR-1 but more ICAM-1 than non-diabetic mice, effects that were prevented by treating diabetic mice with a calpain inhibitor as well as by the platelet specific deletion of CAPN1. Thus, platelet-derived CAPN1 contributes to the initiation of the sterile vascular inflammation associated with diabetes via the cleavage of PAR-1 and the release of TNF-α from the endothelial cell surface.
Collapse
Affiliation(s)
- Anastasia Kyselova
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Amro Elgheznawy
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Ilka Wittig
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Functional Proteomics, SFB 815 Core Unit, Goethe University, Frankfurt am Main, Germany
| | - Juliana Heidler
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Functional Proteomics, SFB 815 Core Unit, Goethe University, Frankfurt am Main, Germany
| | | | - Wolfram Ruf
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany. .,German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Pei L, Shen X, Yan Y, Tan C, Qu K, Zou J, Wang Y, Ping F. Virtual Screening of the Multi-pathway and Multi-gene Regulatory Molecular Mechanism of Dachengqi Decoction in the Treatment of Stroke Based on Network Pharmacology. Comb Chem High Throughput Screen 2020; 23:775-787. [PMID: 32160845 DOI: 10.2174/1386207323666200311113747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Stroke is ranked second among diseases that cause mortality worldwide. Owing to its complicated pathogenesis, no satisfactory treatment strategies for stroke are available. Dachengqi decoction (DCQD), a traditional Chinese herbal medicine, has been widely used in China for a long time, as it has a good effect on stroke. However, the molecular mechanism underlying this effect of DCQD is unclear. OBJECTIVE In the present study, we aimed to reveal and explore the multi-pathway and multi-gene regulatory molecular mechanism of Dachengqi decoction in the treatment of stroke. METHODS In this study, a network pharmacology method, in combination with oral bioavailability prediction and drug-likeness evaluation, was employed to predict the active ingredients of DCQD. The target genes of the active components and the traced pathways related to these target genes were predicted. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using clusterProfiler software package on the R platform and ClueGo+CluePedia plug-ins. Finally, the key DCQD targets were verified using the Gene Expression Omnibus (GEO) dataset. RESULTS AND DISCUSSION According to the ADME model, 52 active components were screened from 296 active components of DCQD. After prediction and screening, 215 stroke-related targets were obtained and analyzed via GO and KEGG analyses. GO analysis showed that DCQD targets were mainly involved in the regulation of oxidative stress, lipid metabolism, inflammation, and other biological processes. KEGG pathway analysis further revealed pathways involved in stroke, such as arachidonic acid metabolic, HIF-1 signaling pathway, estrogen signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, platelet activation pathway, VEGF signaling pathway, and cAMP signaling pathway. Network analysis revealed that DCQD might be involved in the regulation of lipid metabolism, blood pressure, inflammation, angiogenesis, neuroprotection, platelet aggregation, apoptosis, and oxidation in stroke treatment. GEO dataset analysis showed that DCQD's therapeutic effects might be exerted via the bidirectional regulation principle. CONCLUSION Based on the methods of network pharmacology and GEO analysis, it was found that, during stroke treatment, DCQD regulates and controls multiple genes and multiple pathways in a synergistic manner, providing a new strategy for stroke treatment.
Collapse
Affiliation(s)
- Lishan Pei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xia Shen
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yonggang Yan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Conge Tan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Kai Qu
- Department of Nephrology, Shaanxi Hospital of Chinese Medicine, Xi'an 710003, China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanxia Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fan Ping
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
14
|
Abstract
Platelets - blood cells continuously produced from megakaryocytes mainly in the bone marrow - are implicated not only in haemostasis and arterial thrombosis, but also in other physiological and pathophysiological processes. This Review describes current evidence for the heterogeneity in platelet structure, age, and activation properties, with consequences for a diversity of platelet functions. Signalling processes of platelet populations involved in thrombus formation with ongoing coagulation are well understood. Genetic approaches have provided information on multiple genes related to normal haemostasis, such as those encoding receptors and signalling or secretory proteins, that determine platelet count and/or responsiveness. As highly responsive and secretory cells, platelets can alter the environment through the release of growth factors, chemokines, coagulant factors, RNA species, and extracellular vesicles. Conversely, platelets will also adapt to their environment. In disease states, platelets can be positively primed to reach a pre-activated condition. At the inflamed vessel wall, platelets interact with leukocytes and the coagulation system, interactions mediating thromboinflammation. With current antiplatelet therapies invariably causing bleeding as an undesired adverse effect, novel therapies can be more beneficial if directed against specific platelet responses, populations, interactions, or priming conditions. On the basis of these novel concepts and processes, we discuss several initiatives to target platelets therapeutically.
Collapse
|
15
|
Karel MFA, Hechler B, Kuijpers MJE, Cosemans JMEM. Atherosclerotic plaque injury-mediated murine thrombosis models: advantages and limitations. Platelets 2020; 31:439-446. [DOI: 10.1080/09537104.2019.1708884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- MFA Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - B. Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - MJE Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - JMEM Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
16
|
Abstract
The ferric chloride models of arterial thrombosis are useful tools with which to investigate the cellular and molecular mechanisms that contribute to arterial thrombosis. Recent insights have, however, revealed the complex and multifaceted mechanism by which ferric chloride induces thrombus formation. Here, we discuss the strengths and weaknesses of the ferric chloride models of arterial thrombosis. Particular focus is given to the phenotypes of different knockout mice in the ferric chloride models and how these compare to other models with independent modes of initiation. Further, we discuss the relevance of the ferric chloride models to the human pathology of atherothrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| |
Collapse
|
17
|
Luan P, Jian W, Xu X, Kou W, Yu Q, Hu H, Li D, Wang W, Feinberg MW, Zhuang J, Xu Y, Peng W. NLRC5 inhibits neointima formation following vascular injury and directly interacts with PPARγ. Nat Commun 2019; 10:2882. [PMID: 31253783 PMCID: PMC6599027 DOI: 10.1038/s41467-019-10784-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
NLR Family CARD Domain Containing 5 (NLRC5), an important immune regulator in innate immunity, is involved in regulating inflammation and antigen presentation. However, the role of NLRC5 in vascular remodeling remains unknown. Here we report the role of NLRC5 on vascular remodeling and provide a better understanding of its underlying mechanism. Nlrc5 knockout (Nlrc5−/−) mice exhibit more severe intimal hyperplasia compared with wild-type mice after carotid ligation. Ex vivo data shows that NLRC5 deficiency leads to increased proliferation and migration of human aortic smooth muscle cells (HASMCs). NLRC5 binds to PPARγ and inhibits HASMC dedifferentiation. NACHT domain of NLRC5 is essential for the interaction with PPARγ and stimulation of PPARγ activity. Pioglitazone significantly rescues excessive intimal hyperplasia in Nlrc5−/− mice and attenuates the increased proliferation and dedifferentiation in NLRC5-deficient HASMCs. Our study demonstrates that NLRC5 regulates vascular remodeling by directly inhibiting SMC dysfunction via its interaction with PPARγ. NLRC5 is known for its role in inflammation and antigen presentation. Here Luan et al. find that NLRC5 protects mice from intimal hyperplasia following vascular injury, and regulates the response of vascular smooth muscle cells to injury through direct interaction with PPARγ.
Collapse
Affiliation(s)
- Peipei Luan
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Weixia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Xu Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Handan Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
18
|
Gautam D, Tiwari A, Nath Chaurasia R, Dash D. Glutamate induces synthesis of thrombogenic peptides and extracellular vesicle release from human platelets. Sci Rep 2019; 9:8346. [PMID: 31171802 PMCID: PMC6554302 DOI: 10.1038/s41598-019-44734-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/09/2019] [Indexed: 01/10/2023] Open
Abstract
Platelets are highly sensitive blood cells, which play central role in hemostasis and thrombosis. Platelet dense granules carry considerable amount of neurotransmitter glutamate that is exocytosed upon cell activation. As platelets also express glutamate receptors on their surface, it is pertinent to ask whether exposure to glutamate would affect their signalling within a growing thrombus. In this study we demonstrate that, glutamate per se induced synthesis of thrombogenic peptides, plasminogen activator inhibitor-1 and hypoxia-inducible factor-2α, from pre-existing mRNAs in enucleate platelets, stimulated cytosolic calcium entry, upregulated RhoA-ROCK-myosin light chain/myosin light chain phosphatase axis, and elicited extensive shedding of extracellular vesicles from platelets. Glutamate, too, incited platelet spreading and adhesion on to immobilized matrix under arterial shear, raised mitochondrial transmembrane potential associated with generation of reactive oxygen species and induced activation of AMP-activated protein kinase in platelets. Taken together, glutamate switches human platelets to pro-activation phenotype mediated mostly through AMPA receptors and thus targeting glutamate receptors may be a promising anti-platelet strategy.
Collapse
Affiliation(s)
- Deepa Gautam
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Arundhati Tiwari
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
19
|
Zgheel F, Perrier S, Remila L, Houngue U, Mazzucotelli JP, Morel O, Auger C, Schini-Kerth VB. EPA:DHA 6:1 is a superior omega-3 PUFAs formulation attenuating platelets-induced contractile responses in porcine coronary and human internal mammary artery by targeting the serotonin pathway via an increased endothelial formation of nitric oxide. Eur J Pharmacol 2019; 853:41-48. [DOI: 10.1016/j.ejphar.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
|
20
|
Bastida JM, Morais S, Palma-Barqueros V, Benito R, Bermejo N, Karkucak M, Trapero-Marugan M, Bohdan N, Pereira M, Marin-Quilez A, Oliveira J, Yucel Y, Santos R, Padilla J, Janusz K, Lau C, Martin-Izquierdo M, Couto E, Francisco Ruiz-Pividal J, Vicente V, Hernández-Rivas JM, González-Porras JR, Luisa Lozano M, Lima M, Rivera J. Identification of novel variants in ten patients with Hermansky-Pudlak syndrome by high-throughput sequencing. Ann Med 2019; 51:141-148. [PMID: 30990103 PMCID: PMC7857454 DOI: 10.1080/07853890.2019.1587498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Background: Hermansky-Pudlak syndrome (HPS) is a rare inherited platelet disorder characterized by bleeding diathesis, oculocutaneous albinism (OCA) and a myriad of often-serious clinical complications. Methods: We established the clinical and laboratory phenotype and genotype of six unrelated pedigrees comprising ten patients with clinical suspicion of HPS; including platelet aggregation, flow cytometry, platelet dense granule content, electron microscopy and high-throughput sequencing (HTS). Results: The clinical presentation showed significant heterogeneity and no clear phenotype-genotype correlations. HTS revealed two known and three novel disease-causing variants. The Spanish patients carried a homozygous p.Pro685Leufs17* deletion (n = 2) in HPS4, or the novel p.Arg822* homozygous variant (n = 1) in HPS3. In the case of two Turkish sisters, a novel missense homozygous HPS4 variant (p.Leu91Pro) was found. In two Portuguese families, genetic studies confirmed a previously reported nonsense variant (p.Gln103*) in DTNBP1 in three patients and a novel duplication (p.Leu22Argfs*33) in HPS6 in two unrelated patients. Conclusions: Our findings expand the mutational spectrum of HPS, which may help in investigating phenotype-genotype relationships and assist genetic counselling for affected individuals. This approach is a proof of principle that HTS can be considered and used in the first-line diagnosis of patients with biological and clinical manifestations suggestive of HPS. Key messages We established the relationships between the clinical and laboratory phenotype and genotype of six unrelated pedigrees comprising ten patients with clinical suspicion of HPS. Molecular analysis is useful in confirming the diagnosis and may offer some prognostic information that will aid in optimizing monitoring and surveillance for early detection of end-organ damage. This approach is a proof of principle that HTS can be considered and used in the first-line diagnosis of patients with biological and clinical manifestations suggestive of HPS.
Collapse
Affiliation(s)
- Jose María Bastida
- a Department of Hematology , University Hospital of Salamanca-IBSAL , Salamanca , Spain
| | - Sara Morais
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Veronica Palma-Barqueros
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Rocio Benito
- d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | - Nuria Bermejo
- e Department of Hematology , Hospital of San Pedro de Alcantara , Cáceres , Spain
| | - Mutlu Karkucak
- f Department of Medical Genetics , Sakarya University Training and Research Hospital , Sakarya , Turkey
| | - Maria Trapero-Marugan
- g Department of Hematology , University Hospital of Puerta de Hierro , Majadahonda , Spain
| | - Natalia Bohdan
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Mónica Pereira
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Ana Marin-Quilez
- d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | - Jorge Oliveira
- h Department of Molecular Genetics, Medical Center of Genetics Dr. Jacinto Magalhães, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Yusuf Yucel
- f Department of Medical Genetics , Sakarya University Training and Research Hospital , Sakarya , Turkey
| | - Rosario Santos
- h Department of Molecular Genetics, Medical Center of Genetics Dr. Jacinto Magalhães, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Jose Padilla
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Kamila Janusz
- d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | - Catarina Lau
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | | | - Eduarda Couto
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Juan Francisco Ruiz-Pividal
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Vicente Vicente
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Jesus Maria Hernández-Rivas
- a Department of Hematology , University Hospital of Salamanca-IBSAL , Salamanca , Spain.,d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | | | - Maria Luisa Lozano
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Margarida Lima
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Jose Rivera
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| |
Collapse
|
21
|
Al‐Amri ASH, Al‐Marzooqi W, Al‐Abri M, Johnson EH. Ultrastructural observations on the platelets of the Arabian oryx (Oryx leucoryx). Anat Histol Embryol 2019; 48:244-249. [DOI: 10.1111/ahe.12429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed Saif Hilal Al‐Amri
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| | - Waleed Al‐Marzooqi
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| | - Mohammed Al‐Abri
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| | - Eugene H. Johnson
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University Al‐Khod Oman
| |
Collapse
|
22
|
Lopez JJ, El Haouari M, Jardin I, Alonso N, Regodon S, Diez-Bello R, Redondo PC, Rosado JA. Flavonoids and Platelet-Derived Thrombotic Disorders. Curr Med Chem 2019; 26:7035-7047. [DOI: 10.2174/0929867325666180417170218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023]
Abstract
:
Thrombotic disorders are characterized by an increase in the probability of the
formation of unnecessary thrombi that might be due to the activation of the coagulation cascade
or the circulating platelets. Platelets or thrombocytes play an essential role in hemostasis
but abnormal platelet function leads to the development of a number of cardiovascular
complications, including thrombotic disorders. Under pathological conditions, platelets are
associated with the development of different thrombotic disorders, including atherosclerosis,
arterial thrombosis and stroke, deep venous thrombosis and pulmonary embolism; therefore,
platelets are the target of a number of anti-thrombotic strategies. Flavonoids, a large group
of polyphenols ubiquitously expressed in fruits and vegetables that have attracted considerable
attention because of their benefits in human health, including the reduction of the risk
of cardiovascular disease. Flavonoids have been reported to reduce platelet activity by attenuating
agonist-induced GPIIb/IIIa receptor activation, mobilization of intracellular free
Ca2+, granule exocytosis, as well as activation of different signaling molecules such as mitogen-
activated protein kinases or phospholipases. This review summarizes the current studies
concerning the modulation of platelet activation by flavonoids, giving especial attention to
those events associated to thrombotic disorders.
Collapse
Affiliation(s)
- Jose J. Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Mohammed El Haouari
- Faculté Polydisciplinaire de Taza, Laboratoire des Matériaux, Substances Naturelles, Environnement et Modélisation (LMSNEM), Université Sidi Mohamed Ben Abdellah, B.P. 1223, Taza Gare, Morocco
| | - Isaac Jardin
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Nieves Alonso
- Department of Hematology, Hospital Infanta Cristina, 06006 Badajoz, Spain
| | - Sergio Regodon
- Department of Animal Medicine, University of Extremadura, 10003-Cáceres, Spain
| | - Raquel Diez-Bello
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Pedro C. Redondo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| | - Juan A. Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Cáceres, Spain
| |
Collapse
|
23
|
|
24
|
|
25
|
Rigg RA, Healy LD, Chu TT, Ngo ATP, Mitrugno A, Zilberman-Rudenko J, Aslan JE, Hinds MT, Vecchiarelli LD, Morgan TK, Gruber A, Temple KJ, Lindsley CW, Duvernay MT, Hamm HE, McCarty OJT. Protease-activated receptor 4 activity promotes platelet granule release and platelet-leukocyte interactions. Platelets 2018; 30:126-135. [PMID: 30560697 DOI: 10.1080/09537104.2017.1406076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human platelets express two protease-activated receptors (PARs), PAR1 (F2R) and PAR4 (F2RL3), which are activated by a number of serine proteases that are generated during pathological events and cause platelet activation. Recent interest has focused on PAR4 as a therapeutic target, given PAR4 seems to promote experimental thrombosis and procoagulant microparticle formation, without a broadly apparent role in hemostasis. However, it is not yet known whether PAR4 activity plays a role in platelet-leukocyte interactions, which are thought to contribute to both thrombosis and acute or chronic thrombo-inflammatory processes. We sought to determine whether PAR4 activity contributes to granule secretion from activated platelets and platelet-leukocyte interactions. We performed in vitro and ex vivo studies of platelet granule release and platelet-leukocyte interactions in the presence of PAR4 agonists including PAR4 activating peptide, thrombin, cathepsin G, and plasmin in combination with small-molecule PAR4 antagonists. Activation of human platelets with thrombin, cathepsin G, or plasmin potentiated platelet dense granule secretion that was specifically impaired by PAR4 inhibitors. Platelet-leukocyte interactions and platelet P-selectin exposure the following stimulation with PAR4 agonists were also impaired by activated PAR4 inhibition in either a purified system or in whole blood. These results indicate PAR4-specific promotion of platelet granule release and platelet-leukocyte aggregate formation and suggest that pharmacological control of PAR4 activity could potentially attenuate platelet granule release or platelet-leukocyte interaction-mediated pathological processes.
Collapse
Affiliation(s)
- Rachel A Rigg
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Laura D Healy
- b Department of Cell, Developmental & Cancer Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Tiffany T Chu
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Anh T P Ngo
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Annachiara Mitrugno
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Jevgenia Zilberman-Rudenko
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Joseph E Aslan
- d Department of Biochemistry and Molecular Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,e Knight Cardiovascular Institute , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Monica T Hinds
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Lisa Dirling Vecchiarelli
- f Department of Pathology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Terry K Morgan
- f Department of Pathology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - András Gruber
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology & Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| | - Kayla J Temple
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA.,h Vanderbilt Center for Neuroscience Drug Discovery , Nashville , TN , USA
| | - Craig W Lindsley
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA.,h Vanderbilt Center for Neuroscience Drug Discovery , Nashville , TN , USA
| | - Matthew T Duvernay
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Heidi E Hamm
- g Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Owen J T McCarty
- a Department of Biomedical Engineering , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,b Department of Cell, Developmental & Cancer Biology , School of Medicine, Oregon Health & Science University , Portland , OR , USA.,c Division of Hematology & Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
26
|
Claushuis TAM, de Vos AF, Roelofs JJTH, de Boer OJ, van 't Veer C, van der Poll T. Platelet-Dense Granules Worsen Pre-Infection Thrombocytopenia during Gram-Negative Pneumonia-Derived Sepsis. J Innate Immun 2018; 11:168-180. [PMID: 30557883 DOI: 10.1159/000494147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Platelet-dense (δ) granules are important for platelet function. Platelets contribute to host defense and vascular integrity during pneumonia and sepsis, and δ granule products, including adenosine diphosphate (ADP), can influence inflammatory responses. We therefore aimed to study the role of platelet δ granules in the host response during sepsis. Hermansky-Pudlak syndrome (Hps)3coa mice (with reduced δ granule content), mice treated with the platelet ADP receptor inhibitor clopidogrel, and appropriate control mice were infected with the human sepsis pathogen Klebsiella pneumoniae via the airways to induce pneumonia and sepsis. In order to override potential redundancy in platelet functions, we also studied Hps3coa and control mice with moderate antibody-induced thrombocytopenia (10%) prior to infection. We found that sepsis-induced thrombocytopenia tended to be less severe in Hps3coa mice, and was significantly ameliorated in Hps3coa mice with low pre-infection platelet counts. Bacterial growth was similar in Hps3coa and control mice in the presence of normal platelet counts prior to infection, but lower in the lungs of Hps3coa mice with low pre-infection platelet counts. Hps3coa mice had unaltered lung pathology and distant organ injury during pneumosepsis, irrespective of pre-infection platelet counts; lung bleeding did not differ between Hps3coa and control mice. Clopidogrel did not influence any host response parameter. These data suggest that platelet δ granules can play a detrimental role in pneumosepsis by aggravating thrombocytopenia and impairing local antibacterial defense, but that these unfavorable effects only become apparent in the presence of low platelet counts.
Collapse
Affiliation(s)
- Theodora A M Claushuis
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Platelets in cancer development and diagnosis. Biochem Soc Trans 2018; 46:1517-1527. [PMID: 30420412 DOI: 10.1042/bst20180159] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/08/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
Platelets are involved in the development and progression of cancer through several mechanisms. Platelet activation at the site of tissue damage contributes to the initiation of a cascade of events which promote tumorigenesis. In fact, platelets release a wide array of proteins, including growth and angiogenic factors, lipids and extracellular vesicles rich in genetic material, which can mediate the induction of phenotypic changes in target cells, such as immune, stromal and tumor cells, and promote carcinogenesis and metastasis formation. Importantly, the role of platelets in tumor immune escape has been described. These lines of evidence open the way to novel strategies to fight cancer based on the use of antiplatelet agents. In addition to their ability to release factors, platelets are able of up-taking proteins and genetic material present in the bloodstream. Platelets are like 'sentinels' of the disease state. The evaluation of proteomics and transcriptomics signature of platelets and platelet-derived microparticles could represent a new strategy for the development of biomarkers for early cancer detection and/or therapeutic drug monitoring in cancer chemotherapy. Owing to the ability of platelets to interact with cancer cells and to deliver their cargo, platelets have been proposed as a 'biomimetic drug delivery system' for anti-tumor drugs to prevent the occurrence of off-target adverse events associated with the use of traditional chemotherapy.
Collapse
|
28
|
The diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding risk. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:673-684. [DOI: 10.1016/j.nano.2017.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
|
29
|
Cho K, Kim J, Kim GW. Changes in Blood Factors and Ultrasound Findings in Mild Cognitive Impairment and Dementia. Front Aging Neurosci 2018; 9:427. [PMID: 29311909 PMCID: PMC5742568 DOI: 10.3389/fnagi.2017.00427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/12/2017] [Indexed: 01/16/2023] Open
Abstract
The present study aimed to assess the changes in blood factors and ultrasound measures of atherosclerosis burden patient with mild cognitive impairment (MCI) and dementia. Peripheral blood samples and ultrasonography findings were obtained for 53 enrolled participants. Flow cytometry was used to evaluate levels of activated platelets and platelet-leukocyte aggregates (PLAs). The number of platelets expressing p-selectin was correlated with intima media thickness (IMT) and plaque number in both the MCI and dementia groups. The number of platelets expressing p-selectin glycoprotein ligand (PSGL) was strongly correlated with IMT in patients with MCI, whereas the number of platelets expressing PGSL was correlated with plaque number rather than IMT in patients with dementia. PLAs was associated with both IMT and plaque number in patients with MCI but not in those with dementia. Our findings demonstrate that alterations in IMT and plaque number are associated with an increased risk of cognitive decline as well as conversion from MCI to dementia and that blood factor analysis may aid to detect the severity of cognitive decline.
Collapse
Affiliation(s)
- Kyoungjoo Cho
- Department of Life Science, Kyonggi University, Suwon, South Korea
| | - Jihye Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Gyung W Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
30
|
Rupprecht B, Wolf D, Hergeth S, Hoppe N, Dufner B, Schulte L, Michel N, Bukosza N, Marchini T, Jäckel M, Stachon P, Hilgendorf I, Zeschky K, Schleicher R, Langer HF, von zur Muhlen C, Bode C, Peter K, Willecke F, Tiwari S, Zirlik A. Interruption of classic CD40L-CD40 signalling but not of the novel CD40L-Mac-1 interaction limits arterial neointima formation in mice. Thromb Haemost 2017; 112:379-89. [DOI: 10.1160/th13-08-0653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/26/2014] [Indexed: 11/05/2022]
Abstract
SummaryThe co-stimulatory immune molecule CD40L figures prominently in a variety of inflammatory conditions including arterial disease. Recently, we made the surprising finding that CD40L mediates atherogenesis independently of its classic receptor CD40 via a novel interaction with the leukocyte integrin Mac-1. Here, we hypothesised that selective blockade of the CD40L-Mac-1 interaction may also retard restenosis. We induced neointima formation in C57/BL6 mice by ligation of the left carotid artery. Mice were randomised to daily intraperitoneal injections of either cM7, a small peptide selectively inhibiting the CD40L-Mac-1 interaction, scM7, a scrambled control peptide, or saline for 28 days. Interestingly, cM7-treated mice developed neointima of similar size compared with mice receiving the control peptide or saline as assessed by computer-assisted analysis of histological cross sections. These data demonstrate that the CD40L-Mac-1 interaction is not required for the development of restenosis. In contrast, CD40-deficient mice subjected to carotid ligation in parallel, developed significantly reduced neointimal lesions compared with respective wild-type controls (2872 ± 843 µm² vs 35469 ± 11870 µm²). Flow cytometry in CD40-deficient mice revealed reduced formation of platelet-granulocyte and platelet-inflammatory monocyte-aggregates. In vitro, supernatants of CD40-deficient platelet-leukocyte aggregates attenuated proliferation and increased apoptosis of smooth muscle cells. Unlike in the setting of atherosclerosis, CD40L mediates neointima formation via its classic receptor CD40 rather than via its recently described novel interaction with Mac-1. Therefore, selective targeting of CD40L-Mac-1 binding does not appear to be a favorable strategy to fight restenosis.
Collapse
|
31
|
Xin G, Wei Z, Ji C, Zheng H, Gu J, Ma L, Huang W, Morris-Natschke SL, Yeh JL, Zhang R, Qin C, Wen L, Xing Z, Cao Y, Xia Q, Li K, Niu H, Lee KH, Huang W. Xanthohumol isolated from Humulus lupulus prevents thrombosis without increased bleeding risk by inhibiting platelet activation and mtDNA release. Free Radic Biol Med 2017; 108:247-257. [PMID: 28188927 PMCID: PMC5508526 DOI: 10.1016/j.freeradbiomed.2017.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 02/05/2023]
Abstract
AIM As the global population has reached 7 billion and the baby boom generation reaches old age, thrombosis has become the major contributor to the global disease burden. It has been reported that, in moderate doses, beer may protect against thrombosis. Xanthohumol (XN), an antioxidant, is found at high concentrations in hop cones (Humulus lupulus L.) and is a common ingredient of beer. Here, the aim of the present work was to investigate the effects of XN on antithrombotic and antiplatelet activities, and study its mechanism. APPROACH AND RESULTS Using ferric chloride-induced carotid artery injury, inferior vena cava ligation model, and platelet function tests, we demonstrated that XN uniquely prevents both venous and arterial thrombosis by inhibiting platelet activation. Interestingly, in tail bleeding time studies, XN did not increase bleeding risk, which is recognized as a major limitation of current antithrombotic therapies. We also demonstrated that XN induces Sirt1 expression and thereby decreases reactive oxygen species (ROS) overload, prevents mitochondrial dysfunction, and reduces activated platelet-induced mitochondrial hyperpolarization, respiratory disorders, and associated membrane damage at low concentrations. In mitochondrial function assays designed to detect amounts of extracellular mitochondrial DNA (mtDNA), we found that XN prevents mtDNA release, which induces platelet activation in a DC-SIGN-dependent manner. CONCLUSIONS XN exemplifies a promising new class of antiplatelet agents that are highly effective at inhibiting platelet activation by decreasing ROS accumulation and platelet mtDNA release without incurring a bleeding risk. This study has also provided novel insights into mechanisms of thrombotic diseases with possible therapeutic implications.
Collapse
Affiliation(s)
- Guang Xin
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengjie Ji
- Clinical Laboratory, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Huajie Zheng
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Limei Ma
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenfang Huang
- Clinical Laboratory, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rui Zhang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Wen
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Ke Li
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; College of Mathematics, Sichuan University, Chengdu, Sichuan, China.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Wen Huang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Abstract
Platelets are classically known for their roles in bleeding control and occlusive thrombus formation causing ischemic tissue damage. Recently, nonclassical roles for platelets have been described, many of which may be mediated by the heterogeneous cargo that platelets secrete from granular stores upon activation. Using an in vitro model of ischemic injury to ventricular cardiomyocytes, we observed that platelets, through secreted factors, delayed the rate of cardiomyocyte death during ischemia. This protective effect appeared independent of platelet dense granule cargo, but required α-granule components stromal cell-derived factor-1α and transforming growth factor-β1. Protein kinase C activity within cardiomyocytes was responsible for mediating the protective signals initiated by the released platelet cargo. Importantly, pretreating platelets with a P2Y
12
antagonist, but not the cyclooxygenase inhibitor aspirin, substantially attenuated this protective effect. These findings therefore reveal a paradoxically protective role for platelet activation during cardiac ischemia and could have important implications for the use of antiplatelet therapeutics in the management of myocardial infarction.
Collapse
Affiliation(s)
- Tony G Walsh
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
33
|
Kucheryavykh LY, Dávila-Rodríguez J, Rivera-Aponte DE, Zueva LV, Washington AV, Sanabria P, Inyushin MY. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res Bull 2016; 128:98-105. [PMID: 27908798 DOI: 10.1016/j.brainresbull.2016.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Platelets contain beta-amyloid precursor protein (APP) as well as Aβ peptide (Aβ) that can be released upon activation. During thrombosis, platelets are concentrated in clots and activated. METHODS We used in vivo fluorescent analysis and electron microscopy in mice to determine to what degree platelets are concentrated in clots. We used immunostaining to visualize Aβ after photothrombosis in mouse brains. RESULTS Both in vivo results and electron microscopy revealed that platelets were 300-500 times more concentrated in clots than in non-clotted blood. After thrombosis in control mice, but not in thrombocytopenic animals, Aβ immunofluorescence was present inside blood vessels in the visual cortex and around capillaries in the entorhinal cortex. CONCLUSION The increased concentration of platelets allows enhanced release of Aβ during thrombosis, suggesting an additional source of Aβ in the brains of Alzheimer's patients that may arise if frequent micro-thrombosis events occur in their brains.
Collapse
Affiliation(s)
- Lilia Y Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Josué Dávila-Rodríguez
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - David E Rivera-Aponte
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Lidia V Zueva
- Department of Physics, University of Puerto Rico Rio Piedras, San Juan, PR 00936, USA.
| | - A Valance Washington
- Department of Anatomy, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA; The Department of Biology, University of Puerto Rico Rio Piedras, San Juan, PR 00936, USA.
| | - Priscilla Sanabria
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| | - Mikhail Y Inyushin
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-6032, (P.O. Box 60327), USA.
| |
Collapse
|
34
|
Xin G, Wei Z, Ji C, Zheng H, Gu J, Ma L, Huang W, Morris-Natschke SL, Yeh JL, Zhang R, Qin C, Wen L, Xing Z, Cao Y, Xia Q, Lu Y, Li K, Niu H, Lee KH, Huang W. Metformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release. Sci Rep 2016; 6:36222. [PMID: 27805009 PMCID: PMC5090250 DOI: 10.1038/srep36222] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/12/2016] [Indexed: 02/05/2023] Open
Abstract
Thrombosis and its complications are the leading cause of death in patients with diabetes. Metformin, a first-line therapy for type 2 diabetes, is the only drug demonstrated to reduce cardiovascular complications in diabetic patients. However, whether metformin can effectively prevent thrombosis and its potential mechanism of action is unknown. Here we show, metformin prevents both venous and arterial thrombosis with no significant prolonged bleeding time by inhibiting platelet activation and extracellular mitochondrial DNA (mtDNA) release. Specifically, metformin inhibits mitochondrial complex I and thereby protects mitochondrial function, reduces activated platelet-induced mitochondrial hyperpolarization, reactive oxygen species overload and associated membrane damage. In mitochondrial function assays designed to detect amounts of extracellular mtDNA, we found that metformin prevents mtDNA release. This study also demonstrated that mtDNA induces platelet activation through a DC-SIGN dependent pathway. Metformin exemplifies a promising new class of antiplatelet agents that are highly effective at inhibiting platelet activation by decreasing the release of free mtDNA, which induces platelet activation in a DC-SIGN-dependent manner. This study has established a novel therapeutic strategy and molecular target for thrombotic diseases, especially for thrombotic complications of diabetes mellitus.
Collapse
Affiliation(s)
- Guang Xin
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengjie Ji
- Clinical Laboratory, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Huajie Zheng
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Limei Ma
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenfang Huang
- Clinical Laboratory, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rui Zhang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Wen
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Ke Li
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Mathematics, Sichuan University, Chengdu, Sichuan, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Wen Huang
- Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Baldwin WM, Morelli AE. Strategically Altering the Balance of Macrophage Subpopulations to Inhibit Chronic Rejection. Am J Transplant 2016; 16:2510-1. [PMID: 27136758 PMCID: PMC6479223 DOI: 10.1111/ajt.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/28/2016] [Indexed: 01/25/2023]
Affiliation(s)
- W. M. Baldwin
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195,Corresponding Author: William M Baldwin III,
| | - Adrian E. Morelli
- T.E. Starzl Institute and Department of Surgery. University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
36
|
Zhou D, Fan Y, Wan Z, Wen W, Wang X, Zhou J, Chen T, Yuan Z. Platelet-to-Lymphocyte Ratio Improves the Predictive Power of GRACE Risk Score for Long-Term Cardiovascular Events in Patients with Acute Coronary Syndrome. Cardiology 2016; 134:39-46. [PMID: 26866504 DOI: 10.1159/000442939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study aims to evaluate the relationship between platelet-to-lymphocyte ratio (PLR) and GRACE risk score and to examine whether PLR on admission can improve the predictive value of GRACE risk score for cardiovascular disease (CVD) events in patients with acute coronary syndrome (ACS). METHODS PLR was calculated from the platelet and lymphocyte counts from the complete blood count of 2,230 ACS patients upon admission. The GRACE risk score was also calculated. RESULTS Spearman's rank correlation demonstrated that GRACE risk score was positively correlated with PLR (r = 0.190, p < 0.001). After a median follow-up period of 58 months, multivariate Cox analysis showed that both GRACE risk score [hazard ratio (HR) 1.092, 95% confidence interval (CI) 1.067-1.117, p < 0.001] and PLR (HR 1.100, 95% CI 1.088-1.112, p < 0.001) could independently predict CVD events. Receiver-operating characteristic curve (ROC) analysis proved that using PLR together with GRACE risk score improved the score from 0.70 (95% CI 0.67-0.73, p < 0.001) when used alone to 0.81 (95% CI 0.79-0.83, p < 0.001) for CVD events and from 0.73 (95% CI 0.70-0.77, p < 0.001) when used alone to 0.80 (95% CI 0.77-0.83, p < 0.001) for all-cause mortality. CONCLUSIONS This study proves, for the first time, a positive association between GRACE risk score and PLR, and that a combination of PLR and GRACE risk score is more effective in predicting CVD events in ACS patients.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Walker B, Schmid E, Russo A, Schmidt EM, Burk O, Münzer P, Velic A, Macek B, Schaller M, Schwab M, Seabra MC, Gawaz M, Lang F, Borst O. Impact of the serum- and glucocorticoid-inducible kinase 1 on platelet dense granule biogenesis and secretion. J Thromb Haemost 2015; 13:1325-34. [PMID: 25944668 DOI: 10.1111/jth.12998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Platelet secretion is critical to development of acute thrombotic occlusion. Platelet dense granules contain a variety of important hemostatically active substances. Nevertheless, biogenesis of platelet granules is poorly understood. OBJECTIVES Serum- and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be highly expressed in platelets and megakaryocytes, but its role in the regulation of platelet granule biogenesis and its impact on thrombosis has not been investigated so far. METHODS AND RESULTS Electron microscopy analysis of the platelet ultrastructure revealed a significant reduction in the number and packing of dense granules in platelets lacking SGK1 (sgk1(-/-) ). In sgk1(-/-) platelets serotonin content was significantly reduced and activation-dependent secretion of ATP, serotonin and CD63 significantly impaired. In vivo adhesion after carotis ligation was significantly decreased in platelets lacking SGK1 and occlusive thrombus formation after FeCl3 -induced vascular injury was significantly diminished in sgk1(-/-) mice. Transcript levels and protein abundance of dense granule biogenesis regulating GTPase Rab27b were significantly reduced in sgk1(-/-) platelets without affecting Rab27b mRNA stability. In MEG-01 cells transfection with constitutively active (S422) (D) SGK1 but not with inactive (K127) (N) SGK1 significantly enhanced Rab27b mRNA levels. Sgk1(-/-) megakaryocytes show significantly reduced expression of Rab27b and serotonin/CD63 levels compared with sgk1(+/+) megakaryocytes. Proteome analysis identified nine further vesicular transport proteins regulated by SGK1, which may have an impact on impaired platelet granule biogenesis in sgk1(-/-) platelets independent of Rab27b. CONCLUSIONS The present observations identify SGK1 as a novel powerful regulator of platelet dense granule biogenesis, platelet secretion and thrombus formation. SGK1 is at least partially effective because it regulates transcription of Rab27b in megakaryocytes.
Collapse
Affiliation(s)
- B Walker
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - E Schmid
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - A Russo
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - E-M Schmidt
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - O Burk
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - P Münzer
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - A Velic
- Proteom Center Tübingen, University of Tübingen, Tübingen, Germany
| | - B Macek
- Proteom Center Tübingen, University of Tübingen, Tübingen, Germany
| | - M Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - M Schwab
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital, Tübingen, Germany
| | - M C Seabra
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - M Gawaz
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
| | - F Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - O Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Mastenbroek TG, van Geffen JP, Heemskerk JWM, Cosemans JMEM. Acute and persistent platelet and coagulant activities in atherothrombosis. J Thromb Haemost 2015; 13 Suppl 1:S272-80. [PMID: 26149036 DOI: 10.1111/jth.12972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential relevance of murine atherothrombosis models for understanding human disease has been debated in the past. Despite this, in the last decade, many thrombosis studies with atherogenic Apoe(-/-) mice have been performed, which provide novel insight into the molecular mechanisms by which platelet and coagulation processes accomplish acute thrombus formation after plaque disruption in vivo. Support for these mechanisms has come from whole blood flow perfusion studies over plaque material in vitro, which are also reviewed in this study. The main plaque-derived triggers for thrombus formation appear to be collagen and tissue factor, next to bioactive mediators such as prostaglandin E2. The atherothrombotic process relies on collagen- and ADP-receptor-induced platelet activation as well as on thrombin/fibrin generation via the extrinsic and intrinsic coagulation pathways. Less is known of the persistent effects of a thrombus on atherosclerosis progression, but evidence suggests roles herein of activated platelets and ongoing thrombin generation.
Collapse
Affiliation(s)
- T G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - J P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - J W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
39
|
Abstract
P2Y(12) receptor antagonism inhibits platelet aggregation by preventing adenosine diphosphate (ADP)-mediated amplification of activation pathways downstream of primary agonists, such as thrombin and collagen. However, the role of ADP signaling in maintaining aggregate stability and the effects of P2Y(12) antagonists on preestablished aggregates in vitro and arterial thrombus in vivo are not well understood. This study evaluated the impact of P2Y(12) signaling on platelet aggregate stability and early thrombotic occlusion using a reversible P2Y(12) antagonist, ticagrelor. There were 2 study objectives: (1) to determine if there was a time-dependent factor on the capacity of a P2Y(12) antagonist to affect human platelet aggregate stability in vitro using light transmission aggregometry and (2) to evaluate the extent of arterial thrombus reversal in a preclinical model upon administration of ticagrelor in vivo. Platelet aggregates were exposed to ticagrelor after ADP or collagen activation, monitored for stability by aggregometry, and visualized by microscopy. Freshly formed ADP- and collagen-induced platelet aggregates were more rapidly dispersed by a P2Y(12) antagonist than drug carrier control at clinically relevant concentrations (P < 0.05). However, stable aggregates were not noticeably affected. A murine arterial thrombosis model was used to evaluate thrombus stability in an in vivo mouse model. Thrombotic occlusion was induced by FeCl(3), followed by a bolus intravenous administration of ticagrelor or vehicle control. Doppler blood flow was monitored before injury and 30 minutes after bolus administration. Arteries were retrieved for inspection for residual thrombus. Early arterial thrombotic occlusion in vivo was partially reversed by ticagrelor administration. Blood flow through the injured artery increased, and thrombus size within the artery decreased (P < 0.05, n = 3). In conclusion, P2Y(12) antagonism disrupts the stability of newly formed platelet aggregates, promoting disaggregation, and reverses thrombotic vascular occlusion. Thus, in addition to activating platelets, signaling via P2Y(12) seems to be required for stabilizing platelet thrombi.
Collapse
|
40
|
Golebiewska EM, Harper MT, Williams CM, Savage JS, Goggs R, Fischer von Mollard G, Poole AW. Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. J Biol Chem 2014; 290:1536-45. [PMID: 25404741 PMCID: PMC4340400 DOI: 10.1074/jbc.m114.602615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Platelet secretion not only drives thrombosis and hemostasis, but also mediates a variety of other physiological and pathological processes. The ubiquitous SNARE machinery and a number of accessory proteins have been implicated in regulating secretion in platelet. Although several platelet SNAREs have been identified, further members of the SNARE family may be needed to fine-tune platelet secretion. In this study we identified expression of the t-SNARE syntaxin 8 (STX8) (Qc SNARE) in mouse and human platelets. In mouse studies, whereas STX8 was not essential for α-granule or lysosome secretion, Stx8−/− platelets showed a significant defect in dense granule secretion in response to thrombin and CRP. This was most pronounced at intermediate concentrations of agonists. They also showed an aggregation defect that could be rescued with exogenous ADP and increased embolization in Stx8−/− mice in vivo consistent with an important autocrine and paracrine role for ADP in aggregation and thrombus stabilization. STX8 therefore specifically contributes to dense granule secretion and represents another member of a growing family of genes that play distinct roles in regulating granule release from platelets and thus platelet function in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert Goggs
- the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and
| | | | - Alastair W Poole
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom,
| |
Collapse
|
41
|
Duerschmied D, Bode C, Ahrens I. Immune functions of platelets. Thromb Haemost 2014; 112:678-91. [PMID: 25209670 DOI: 10.1160/th14-02-0146] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
This review collects evidence about immune and inflammatory functions of platelets from a clinician's point of view. A focus on clinically relevant immune functions aims at stimulating further research, because the complexity of platelet immunity is incompletely understood and not yet translated into patient care. Platelets promote chronic inflammatory reactions (e.g. in atherosclerosis), modulate acute inflammatory disorders such as sepsis and other infections (participating in the host defense against pathogens), and contribute to exacerbations of autoimmune conditions (like asthma or arthritis). It would hence be obsolete to restrict a description of platelet functions to thrombosis and haemostasis--platelets clearly are the most abundant cells with immune functions in the circulation.
Collapse
Affiliation(s)
- Daniel Duerschmied
- Daniel Duerschmied, MD, Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, Tel.: +49 761 207 34410, Fax: +49 761 270 37855, E-mail:
| | | | | |
Collapse
|
42
|
Ginkgolide B inhibits platelet release by blocking Syk and p38 MAPK phosphorylation in thrombin-stimulated platelets. Thromb Res 2014; 134:1066-73. [PMID: 25223809 DOI: 10.1016/j.thromres.2014.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Atherosclerosis is a chronic vascular inflammatory disease. Platelets play a critic role in the initiation of vascular inflammation in atherosclerosis. In the present study, we investigated the effects of ginkgolide B on the inhibition of platelet release and the potential mechanisms. METHODS Experiments were performed in freshly human platelets. Platelet aggregation and ATP release were measured with a Lumi-aggregometer. Thrombin (0.5 U/ml) was used to induce platelet activation. Protein expression and phosphorylation was examined by Western blotting. RESULTS The results showed that ginkgolide B significantly suppressed ATP release by 50.8% in thrombin-activated platelets. Ginkgolide B completely abolished the expression of platelet factor 4 (PF4) and CD40 Ligand (CD40L). Moreover, ginkgolide B fully attenuated the phosphorylation of Syk and p38MAPK. Similarly, R788 (a syk inhibitor) and SB203580 (a p38 MAPK inhibitor) inhibited the expression PF4 and CD40L, respectively. Furthermore, the combination of low concentrations of ginkgolide B and R788 or SB203580 has synergistic inhibition on the expression of PF4 and CD40L. Ginkgolide B partially reduced calcium efflux by 52.7% in thrombin-stimulated platelets. CONCLUSION Ginkgolide B potently inhibited the expression of PF4 and CD40L in thrombin-activated platelets. Ginkgolide B partially decreased ATP release and Ca(2+) efflux. The mechanism might be associated with the inhibition of Syk and p38 MAPK phosphorylation. These results demonstrated that ginkgolide B might be a promising drug on inhibiting platelet function and reducing inflammation in atherosclerosis.
Collapse
|
43
|
von Hundelshausen P, Schmitt MMN. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol 2014; 5:294. [PMID: 25152735 PMCID: PMC4126210 DOI: 10.3389/fphys.2014.00294] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022] Open
Abstract
The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich Munich, Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance Munich, Germany
| | - Martin M N Schmitt
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
44
|
Song F, Zhu Y, Shi Z, Tian J, Deng X, Ren J, Andrews MC, Ni H, Ling W, Yang Y. Plant food anthocyanins inhibit platelet granule secretion in hypercholesterolaemia: Involving the signalling pathway of PI3K-Akt. Thromb Haemost 2014; 112:981-91. [PMID: 25077916 DOI: 10.1160/th13-12-1002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/13/2014] [Indexed: 11/05/2022]
Abstract
Controlling platelet granule secretion has been considered an effective strategy to dampen thrombosis and prevent atherosclerosis. Anthocyanins are natural plant pigments and possess a wide range of biological activities, including cardiovascular protective activity. In the present study we explored the effects and the potential mechanisms of anthocyanins on platelet granule secretion in hypercholesterolemia. In a randomised, double-blind clinical trial, 150 hypercholesterolaemic individuals were treated with purified anthocyanins (320 mg/day) or placebo for 24 weeks. Anthocyanins consumption significantly reduced plasma levels of β-thromboglobulin (β-TG), soluble P-selectin, and of Regulated on Activation Normal T cell Expressed and Secreted (RANTES) as compared with the placebo. A minor reduction in platelet factor 4 (PF4) and transforming growth factor β1 (TGF-β1) levels were also observed. In in vitro experiments, we observed that puriӿed anthocyanin mixture, as well as its two main anthocyanin components, delphinidin-3-glucoside (Dp-3-g) and cyanidin-3-glucoside (Cy-3g) directly inhibited platelet á-granule, dense granule, and lysosome secretion evaluated by P-selectin, RANTES, β-TG, PF4, TGF-β1, serotonin, ATP, and CD63 release. Further, anthocyanins inhibited platelet PI3K/Akt activation and consequently attenuated eNOS phosphorylation and cGMP production, thus interrupting MAPK activation. LY294002, a PI3K inhibitor, did not cause additional inhibitory efficacy, indicating that anthocyanin-induced effects may be involved in inhibition of the PI3K/Akt signalling pathway. These results provide evidence that by inhibiting platelet granule secretion, anthocyanins may be a potent cardioprotective agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Yang
- Prof. Yan Yang, MD, PhD, Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), No. 74, Zhongshan 2 Road, 510080 Guangzhou, PR China, Tel.: +86 20 87330687, E-mail:
| |
Collapse
|
45
|
Reversing the deleterious effects of α2-antiplasmin on tissue plasminogen activator therapy improves outcomes in experimental ischemic stroke. Exp Neurol 2014; 255:56-62. [PMID: 24556477 DOI: 10.1016/j.expneurol.2014.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Abstract
High blood levels of α2-antiplasmin have been associated with failed tissue plasminogen activator (TPA) therapy for ischemic stroke. Yet, other data suggests that α2-antiplasmin may be protective in stroke, because it defends against bleeding and excitotoxicity. To address this paradox, we examined the effects of high α2-antiplasmin levels and α2-antiplasmin inactivation in mice treated with TPA 0.5-2.5h after middle cerebral artery (MCA) thromboembolism. Brain infarction, swelling, hemorrhage, blood brain barrier breakdown and neuronal apoptosis were measured by a blinded observer. Thrombus dissolution was determined by gamma counting. During TPA treatment, high α2-antiplasmin blood levels increased brain infarction (2.2-fold) and swelling (3.7-fold), but decreased MCA thrombus dissolution. Conversely, α2-antiplasmin inactivation during TPA treatment reduced brain infarction, hemorrhage and swelling, but increased MCA thrombus dissolution. Inactivation of α2-antiplasmin during TPA treatment reduced neuronal apoptosis and blood brain barrier breakdown. Inactivation of α2-antiplasmin also reduced short-term mortality. Taken together these data show that α2-antiplasmin opposes the effects of TPA therapy and contributes to enhanced brain injury after experimental thromboembolic stroke. Conversely, α2-antiplasmin inactivation during TPA treatment improves thrombus dissolution and reduces brain infarction, swelling and hemorrhage. Consistent with clinical observations, these data suggest that α2-antiplasmin exerts deleterious effects that reduce the efficacy and safety of TPA therapy for ischemic stroke.
Collapse
|
46
|
Dynamic changes and associated factors of clopidogrel resistance in patients after cerebral infarction. J Neurol 2013; 260:2928-37. [DOI: 10.1007/s00415-013-7140-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/17/2013] [Accepted: 09/28/2013] [Indexed: 12/21/2022]
|
47
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
48
|
von Papen M, Gambaryan S, Schütz C, Geiger J. Determination of ATP and ADP Secretion from Human and Mouse Platelets by an HPLC Assay. ACTA ACUST UNITED AC 2013; 40:109-16. [PMID: 23652982 DOI: 10.1159/000350294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/26/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Secretion of ADP and ATP is an essential prerequisite for platelet aggregation. Impaired nucleotide secretion can cause aggregation defects and increased bleeding risk. Quantitative determination of platelet nucleotide content and exocytosis is thus of importance for the characterization and diagnosis of bleeding phenotypes. For transgenic animal models with hemostatic defects analysis of potential secretion defects is as well imperative. METHODS Supernatants of washed platelets and platelet-rich plasma were analyzed by HPLC for ADP and ATP concentration. Calibration of the HPLC data was accomplished with an internal standard compensating for loss of analyte, detection sensitivity, and interference of the biomatrix. RESULTS HPLC analysis of nucleotide secretion was carried out with human and mouse platelets. Detection limits were determined for washed platelet and platelet-rich plasma samples. In the physiological concentration range linearity with respect to the peak area is maintained. CONCLUSION The method combines reasonable sensitivity with robustness. The internal standard ensures reliable quantification of nucleotide concentrations even in presence of otherwise interfering substances. The low sample consumption renders possible the application to analysis of small samples like in mouse experiments.
Collapse
Affiliation(s)
- Michael von Papen
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Germany
| | | | | | | |
Collapse
|
49
|
|
50
|
Liu X, Zhao G, Yan Y, Bao L, Chen B, Qi R. Ginkgolide B reduces atherogenesis and vascular inflammation in ApoE(-/-) mice. PLoS One 2012; 7:e36237. [PMID: 22662117 PMCID: PMC3359353 DOI: 10.1371/journal.pone.0036237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/29/2012] [Indexed: 11/18/2022] Open
Abstract
Aims To investigate whether ginkgolide B (a platelet-activating factor inhibitor) affects vascular inflammation in atherosclerosis-prone apolipoprotein E-deficient (ApoE−/−) mice. Methods and Results Human platelets were used to evaluate the effects of ginkgolide B on platelet aggregation and signal transduction. Ginkgolide B attenuated platelet aggregation and inhibited phosphatidylinositol 3 kinase (PI3K) activation and Akt phosphorylation in thrombin- and collagen-activated platelets. ApoE−/− mice were administered a high-cholesterol diet for 8 weeks. Plasma platelet factor 4 (PF4) and RANTES (regulated upon activation, normal T-cell expressed, and secreted protein) were then measured using an enzyme-linked immunosorbent assay. Scanning electron microscopy and immunohistochemistry were used to determine atherosclerotic lesions. Ginkgolide B decreased plasma PF4 and RANTES levels in ApoE−/− mice. Scanning electron microscopic examination showed that ginkgolide B reduced aortic plaque in ApoE−/− mice. Immunohistochemistry analysis demonstrated that ginkgolide B diminished P-selectin, PF4, RANTES, and CD40L expression in aortic plaque in ApoE−/− mice. Moreover, ginkgolide B suppressed macrophage and vascular cell adhesion protein 1 (VCAM-1) expression in aorta lesions in ApoE−/− mice. Similar effects were observed in aspirin-treated ApoE−/− mice. Conclusion Ginkgolide B significantly reduced atherosclerotic lesions and P-selectin, PF4, RANTES, and CD40L expression in aortic plaque in ApoE−/− mice. The efficacy of ginkgolide B was similar to aspirin. These results provide direct evidence that ginkgolide B inhibits atherosclerosis, which may be associated with inhibition of the PI3K/Akt pathway in activated platelets.
Collapse
Affiliation(s)
- Xiyun Liu
- Beijing Institute of Geriatrics, Beijing Hospital and Key Laboratory of Geriatrics, Ministry of Health, Beijing, China
| | - Gexin Zhao
- Beijing Institute of Geriatrics, Beijing Hospital and Key Laboratory of Geriatrics, Ministry of Health, Beijing, China
| | - Yan Yan
- Beijing Institute of Geriatrics, Beijing Hospital and Key Laboratory of Geriatrics, Ministry of Health, Beijing, China
| | - Li Bao
- Beijing Institute of Geriatrics, Beijing Hospital and Key Laboratory of Geriatrics, Ministry of Health, Beijing, China
| | - Beidong Chen
- Beijing Institute of Geriatrics, Beijing Hospital and Key Laboratory of Geriatrics, Ministry of Health, Beijing, China
| | - Ruomei Qi
- Beijing Institute of Geriatrics, Beijing Hospital and Key Laboratory of Geriatrics, Ministry of Health, Beijing, China
- * E-mail:
| |
Collapse
|