1
|
Shan SK, Lin X, Wu F, Li CC, Guo B, Li FXZ, Zheng MH, Wang Y, Xu QS, Lei LM, Tang KX, Wu YY, Duan JY, Cao YC, Wu YL, Tan CM, Liu ZH, Zhou ZA, Liao XB, Xu F, Yuan LQ. Vascular wall microenvironment: Endothelial cells original exosomes mediated melatonin-suppressed vascular calcification and vascular ageing in a m6A methylation dependent manner. Bioact Mater 2024; 42:52-67. [PMID: 39280584 PMCID: PMC11399808 DOI: 10.1016/j.bioactmat.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Vascular calcification and vascular ageing are "silent" diseases but are highly prevalent in patients with end stage renal failure and type 2 diabetes, as well as in the ageing population. Melatonin (MT) has been shown to induce cardiovascular protection effects. However, the role of MT on vascular calcification and ageing has not been well-identified. In this study, the aortic transcriptional landscape revealed clues for MT related cell-to-cell communication between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in vascular calcification and vascular ageing. Furthermore, we elucidated that it was exosomes that participate in the information transportation from ECs to VSMCs. The exosomes secreted from melatonin-treated ECs (MT-ECs-Exos) inhibited calcification and senescence of VSMCs. Mechanistically, miR-302d-5p was highly enriched in MT-ECs-Exos, while depletion of miR-302d-5p blocked the ability of MT-ECs-Exos to suppress VSMC calcification and senescence. Notably, Wnt3 was a bona fide target of miR-302d-5p and modulated VSMC calcification and senescence. Furthermore, we found that maturation of endothelial derived exosomal miR-302d-5p was promoted by WTAP in an N6-methyladenosine (m6A)-dependent manner. Interestingly, MT alleviated vascular calcification and ageing in 5/6-nephrectomy (5/6 NTP) mice, a chronic kidney disease (CKD) induced vascular calcification and vascular ageing mouse model. MT-ECs-Exos was absorbed by VSMCs in vivo and effectively prevented vascular calcification and ageing in 5/6 NTP mice. ECs-derived miR-302d-5p mediated MT induced anti-calcification and anti-ageing effects in 5/6 NTP mice. Our study suggests that MT-ECs-Exos alleviate vascular calcification and ageing through the miR-302d-5p/Wnt3 signaling pathway, dependent on m6A methylation.
Collapse
Affiliation(s)
- Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, People's Republic of China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yan-Lin Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Chang-Ming Tan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Zi-Han Liu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Zhi-Ang Zhou
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
2
|
Li Y, Sun Y, Liu T, Liu P, Li G, Zhang Y. Has collateral blood flow any effect on restenosis rate? Our experience. Front Neurol 2024; 15:1360161. [PMID: 38476194 PMCID: PMC10927952 DOI: 10.3389/fneur.2024.1360161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Objectives Restenosis is one of the important factors affecting the effectiveness of percutaneous transluminal angioplasty and stenting in the treatment of intracranial atherosclerotic stenosis. We aimed to clarify whether recruitable collateral flow could cause restenosis in patients treated with percutaneous transluminal angioplasty and stenting. Material and methods Our study retrospectively analyzed patients with symptomatic severe intracranial atherosclerotic stenosis (≥70%) who underwent percutaneous transluminal angioplasty and stenting. We enrolled 28 patients with restenosis and 71 patients without restenosis. We analyzed baseline data, perioperative events, and follow-up results of patients in the two groups. Binary logistic regression analysis was used to identify restenosis predictors. Results For preoperative stroke, the restenosis group had a greater likelihood of having a previous stroke (89.3%), which was less prevalent in the non-restenosis group (66.2%) (P = 0.020). The restenosis group had a higher rate of re-stroke (21.4 vs. 4.2%, P = 0.022). After binary logistic regression analysis, collateral circulation and residual stenosis were independent risk factors of restenosis, with overall risk (95% confidence intervals) of 5.034 (1.484-4.066, P < 0.001) and 1.064 (1.006-1.125, P = 0.030), respectively. Restenosis risk increased 1.456-fold for each collateral circulation grade increase. However, for each 1% increase in residual stenosis, restenosis risk increased by 5.9% (P = 0.03). The chance of restenosis is minimal when the residual stenosis rate after percutaneous transluminal angioplasty and stent implantation is 15.85%. Conclusions Good collateral circulation was significantly associated with restenosis in patients undergoing intracranial angioplasty, the residual stenosis rate tends to be 15.85% to reduce restenosis risk. Compared to patients with restenosis, those without restenosis have a low stroke risk during follow-up.
Collapse
Affiliation(s)
| | | | | | | | - Guangwen Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yong Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Wang X, Shen Y, Shang M, Liu X, Munn LL. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res 2023; 119:1656-1675. [PMID: 37163659 PMCID: PMC10325702 DOI: 10.1093/cvr/cvad076] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Duraivel S, Laurent D, Rajon DA, Scheutz GM, Shetty AM, Sumerlin BS, Banks SA, Bova FJ, Angelini TE. A silicone-based support material eliminates interfacial instabilities in 3D silicone printing. Science 2023; 379:1248-1252. [PMID: 36952407 DOI: 10.1126/science.ade4441] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Among the diverse areas of 3D printing, high-quality silicone printing is one of the least available and most restrictive. However, silicone-based components are integral to numerous advanced technologies and everyday consumer products. We developed a silicone 3D printing technique that produces precise, accurate, strong, and functional structures made from several commercially available silicone formulations. To achieve this level of performance, we developed a support material made from a silicone oil emulsion. This material exhibits negligible interfacial tension against silicone-based inks, eliminating the disruptive forces that often drive printed silicone features to deform and break apart. The versatility of this approach enables the use of established silicone formulations in fabricating complex structures and features as small as 8 micrometers in diameter.
Collapse
Affiliation(s)
- Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32603, USA
| | - Dimitri Laurent
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Didier A Rajon
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Georg M Scheutz
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Scott A Banks
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Frank J Bova
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Thomas E Angelini
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32603, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Dutzmann J, Bode LM, Kalies K, Korte L, Knöpp K, Kloss FJ, Sirisko M, Pilowski C, Koch S, Schenk H, Daniel JM, Bauersachs J, Sedding DG. Empagliflozin prevents neointima formation by impairing smooth muscle cell proliferation and accelerating endothelial regeneration. Front Cardiovasc Med 2022; 9:956041. [PMID: 36017090 PMCID: PMC9396257 DOI: 10.3389/fcvm.2022.956041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEmpagliflozin, an inhibitor of the sodium glucose co-transporter 2 (SGLT2) and developed as an anti-diabetic agent exerts additional beneficial effects on heart failure outcomes. However, the effect of empagliflozin on vascular cell function and vascular remodeling processes remains largely elusive.Methods/ResultsImmunocytochemistry and immunoblotting revealed SGLT2 to be expressed in human smooth muscle (SMC) and endothelial cells (EC) as well as in murine femoral arteries. In vitro, empagliflozin reduced serum-induced proliferation and migration of human diabetic and non-diabetic SMCs in a dose-dependent manner. In contrast, empagliflozin significantly increased the cell count and migration capacity of human diabetic ECs, but not of human non-diabetic ECs. In vivo, application of empagliflozin resulted in a reduced number of proliferating neointimal cells in response to femoral artery wire-injury in C57BL/6J mice and prevented neointima formation. Comparable effects were observed in a streptozocin-induced diabetic model of apolipoprotein E–/– mice. Conclusive to the in vitro-results, re-endothelialization was not significantly affected in C57BL/6 mice, but improved in diabetic mice after treatment with empagliflozin assessed by Evan’s Blue staining 3 days after electric denudation of the carotid artery. Ribonucleic acid (RNA) sequencing (RNA-seq) of human SMCs identified the vasoactive peptide apelin to be decisively regulated in response to empagliflozin treatment. Recombinant apelin mimicked the in vitro-effects of empagliflozin in ECs and SMCs.ConclusionEmpagliflozin significantly reduces serum-induced proliferation and migration of SMCs in vitro and prevents neointima formation in vivo, while augmenting EC proliferation in vitro and re-endothelialization in vivo after vascular injury. These data document the functional impact of empagliflozin on vascular human SMCs and ECs and vascular remodeling in mice for the first time.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- *Correspondence: Jochen Dutzmann,
| | - Lena Marie Bode
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Katrin Kalies
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Laura Korte
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Kai Knöpp
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Mirja Sirisko
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Claudia Pilowski
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Susanne Koch
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heiko Schenk
- Department of Nephrology and Hypertension, Hannover Medical School, Hanover, Germany
| | - Jan-Marcus Daniel
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Daniel G. Sedding
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Pan C, Gao Q, Kim BS, Han Y, Gao G. The Biofabrication of Diseased Artery In Vitro Models. MICROMACHINES 2022; 13:mi13020326. [PMID: 35208450 PMCID: PMC8874977 DOI: 10.3390/mi13020326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
As the leading causes of global death, cardiovascular diseases are generally initiated by artery-related disorders such as atherosclerosis, thrombosis, and aneurysm. Although clinical treatments have been developed to rescue patients suffering from artery-related disorders, the underlying pathologies of these arterial abnormalities are not fully understood. Biofabrication techniques pave the way to constructing diseased artery in vitro models using human vascular cells, biomaterials, and biomolecules, which are capable of recapitulating arterial pathophysiology with superior performance compared with conventional planar cell culture and experimental animal models. This review discusses the critical elements in the arterial microenvironment which are important considerations for recreating biomimetic human arteries with the desired disorders in vitro. Afterward, conventionally biofabricated platforms for the investigation of arterial diseases are summarized, along with their merits and shortcomings, followed by a comprehensive review of advanced biofabrication techniques and the progress of their applications in establishing diseased artery models.
Collapse
Affiliation(s)
- Chen Pan
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Qiqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626841, Korea
- Correspondence: (B.-S.K.); (G.G.)
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (B.-S.K.); (G.G.)
| |
Collapse
|
8
|
Gold KA, Saha B, Rajeeva Pandian NK, Walther BK, Palma JA, Jo J, Cooke JP, Jain A, Gaharwar AK. 3D Bioprinted Multicellular Vascular Models. Adv Healthc Mater 2021; 10:e2101141. [PMID: 34310082 PMCID: PMC9295047 DOI: 10.1002/adhm.202101141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Indexed: 02/06/2023]
Abstract
3D bioprinting is an emerging additive manufacturing technique to fabricate constructs for human disease modeling. However, current cell-laden bioinks lack sufficient biocompatibility, printability, and structural stability needed to translate this technology to preclinical and clinical trials. Here, a new class of nanoengineered hydrogel-based cell-laden bioinks is introduced, that can be printed into 3D, anatomically accurate, multicellular blood vessels to recapitulate both the physical and chemical microenvironments of native human vasculature. A remarkably unique characteristic of this bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process. 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one-month post-fabrication. Leveraging these properties, the nanoengineered bioink is printed into 3D cylindrical blood vessels, consisting of living co-culture of endothelial cells and vascular smooth muscle cells, providing the opportunity to model vascular function and pathophysiology. Upon cytokine stimulation and blood perfusion, this 3D bioprinted vessel is able to recapitulate thromboinflammatory responses observed only in advanced in vitro preclinical models or in vivo. Therefore, this 3D bioprinted vessel provides a potential tool to understand vascular disease pathophysiology and assess therapeutics, toxins, or other chemicals.
Collapse
Affiliation(s)
- Karli A Gold
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Biswajit Saha
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Brandon K Walther
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jorge A Palma
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Javier Jo
- Electrical and Computer Engineering, College of Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Abhishek Jain
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.,Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, 77843, USA.,Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci 2021; 22:ijms22147284. [PMID: 34298897 PMCID: PMC8306829 DOI: 10.3390/ijms22147284] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Pathological vascular wall remodeling refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD). Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels. Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules, communication via direct contact (junctions) or information transfer via extracellular vesicles or extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs crosstalk may offer strategies to develop new insights for prevention and treatment of disease that curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies of the co-culture systems to identify cellular and molecular mechanisms involved in pathological vascular wall remodeling, opening questions about the future research directions.
Collapse
|
10
|
Estronca L, Francisco V, Pitrez P, Honório I, Carvalho L, Vazão H, Blersch J, Rai A, Nissan X, Simon U, Grãos M, Saúde L, Ferreira L. Induced pluripotent stem cell-derived vascular networks to screen nano-bio interactions. NANOSCALE HORIZONS 2021; 6:245-259. [PMID: 33576750 DOI: 10.1039/d0nh00550a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The vascular bioactivity/safety of nanomaterials is typically evaluated by animal testing, which is of low throughput and does not account for biological differences between animals and humans such as ageing, metabolism and disease profiles. The development of personalized human in vitro platforms to evaluate the interaction of nanomaterials with the vascular system would be important for both therapeutic and regenerative medicine. A library of 30 nanoparticle (NP) formulations, in use in imaging, antimicrobial and pharmaceutical applications, was evaluated in a reporter zebrafish model of vasculogenesis and then tested in personalized humanized models composed of human-induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) with "young" and "aged" phenotypes in 3 vascular network formats: 2D (in polystyrene dish), 3D (in Matrigel) and in a blood vessel on a chip. As a proof of concept, vascular toxicity was used as the main readout. The results show that the toxicity profile of NPs to hiPSC-ECs was dependent on the "age" of the endothelial cells and vascular network format. hiPSC-ECs were less susceptible to the cytotoxicity effect of NPs when cultured in flow than in static conditions, the protective effect being mediated, at least in part, by glycocalyx. Overall, the results presented here highlight the relevance of in vitro hiPSC-derived vascular systems to screen vascular nanomaterial interactions.
Collapse
Affiliation(s)
- Luís Estronca
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The Role and Regulation of Pulmonary Artery Smooth Muscle Cells in Pulmonary Hypertension. Int J Hypertens 2020; 2020:1478291. [PMID: 32850144 PMCID: PMC7441461 DOI: 10.1155/2020/1478291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is one of the most devastating cardiovascular diseases worldwide and it draws much attention from numerous scientists. As an indispensable part of pulmonary artery, smooth muscle cells are worthy of being carefully investigated. To elucidate the pathogenesis of PH, several theories focusing on pulmonary artery smooth muscle cells (PASMC), such as hyperproliferation, resistance to apoptosis, and cancer theory, have been proposed and widely studied. Here, we tried to summarize the studies, concentrating on the role of PASMC in the development of PH, feasible molecular basis to intervene, and potential treatment to PH.
Collapse
|
12
|
Song E, Wang R, Leopold JA, Loscalzo J. Network determinants of cardiovascular calcification and repositioned drug treatments. FASEB J 2020; 34:11087-11100. [PMID: 32638415 PMCID: PMC7497212 DOI: 10.1096/fj.202001062r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 01/31/2023]
Abstract
Ectopic cardiovascular calcification is a highly prevalent pathology for which there are no effective novel or repurposed pharmacotherapeutics to prevent disease progression. We created a human calcification endophenotype module (ie, the "calcificasome") by mapping vascular calcification genes (proteins) to the human vascular smooth muscle-specific protein-protein interactome (218 nodes and 632 edges, P < 10-5 ). Network proximity analysis was used to demonstrate that the calcificasome overlapped significantly with endophenotype modules governing inflammation, thrombosis, and fibrosis in the human interactome (P < 0.001). A network-based drug repurposing analysis further revealed that everolimus, temsirolimus, and pomalidomide are predicted to target the calcificasome. The efficacy of these agents in limiting calcification was confirmed experimentally by treating human coronary artery smooth muscle cells in an in vitro calcification assay. Each of the drugs affected expression or activity of their predicted target in the network, and decreased calcification significantly (P < 0.009). An integrated network analytical approach identified novel mediators of ectopic cardiovascular calcification and biologically plausible candidate drugs that could be repurposed to target calcification. This methodological framework for drug repurposing has broad applicability to other diseases.
Collapse
Affiliation(s)
- Euijun Song
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Rui‐Sheng Wang
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Joseph Loscalzo
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
13
|
Aerobic Exercise Training Inhibits Neointimal Formation via Reduction of PCSK9 and LOX-1 in Atherosclerosis. Biomedicines 2020; 8:biomedicines8040092. [PMID: 32325897 PMCID: PMC7235716 DOI: 10.3390/biomedicines8040092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/21/2023] Open
Abstract
The purpose of this study was to investigate whether aerobic exercise training inhibits atherosclerosis via the reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9) expression in balloon-induced common carotid arteries of a high-fat-diet rats. Male SD (Sprague Dawley) rats fed an eight-weeks high-fat diet were randomly divided into three groups; these were the sham-operated control (SC), the balloon-induced control (BIC) and the balloon-induced exercise (BIE). The aerobic exercise training groups were performed on a treadmill. The major findings were as follows: first, body weight gain was significantly decreased by aerobic exercise training compared to the BIC without change of energy intake. Second, neointimal formation was significantly inhibited by aerobic exercise training in the balloon-induced common carotid arteries of high-fat-diet rats compared to the BIC. Third, low-density lipoprotein (LDL) receptor (LDLr) expression was significantly increased by aerobic exercise training in the livers of the high-fat diet group compared to the BIC, but not the proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. Fourth, aerobic exercise training significantly decreased the expression of PCSK9, the lectin-like oxidized LDL receptor-1 (LOX-1), and vascular cell adhesion molecule-1 (VCAM-1) in balloon-induced common carotid arteries of high-fat-diet rats compared to the BIC. In conclusion, our results suggest that aerobic exercise training increases LDLr in the liver and inhibits neointimal formation via the reduction of PCSK9 and LOX-1 in balloon-induced common carotid arteries of high-fat-diet-induced rats.
Collapse
|
14
|
Han S, Xu S, Zhou J, Qiao A, Boriboun C, Ma W, Li H, Biyashev D, Yang L, Zhang E, Liu Q, Jiang S, Zhao TC, Krishnamurthy P, Zhang C, Richard S, Qiu H, Zhang J, Qin G. Sam68 impedes the recovery of arterial injury by augmenting inflammatory response. J Mol Cell Cardiol 2019; 137:82-92. [PMID: 31639388 DOI: 10.1016/j.yjmcc.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The role of Src-associated-in-mitosis-68-kDa (Sam68) in cardiovascular biology has not been studied. A recent report suggests that Sam68 promotes TNF-α-induced NF-κB activation in fibroblasts. Here we sought to dissect the molecular mechanism by which Sam68 regulates NF-κB signaling and its functional significance in vascular injury. APPROACH AND RESULTS The endothelial denudation injury was induced in the carotid artery of Sam68-null (Sam68-/-) and WT mice. Sam68-/- mice displayed an accelerated re-endothelialization and attenuated neointima hyperplasia, which was associated with a reduced macrophage infiltration and lowered expression of pro-inflammatory cytokines in the injured vessels. Remarkably, the ameliorated vascular remodeling was recapitulated in WT mice after receiving transplantation of bone marrow (BM) from Sam68-/- mice, suggesting the effect was attributable to BM-derived inflammatory cells. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-α-induced expression of TNF-α, IL-1β, and IL-6 and in the level of nuclear phospho-p65, indicating attenuated NF-κB activation; and these results were confirmed in peritoneal and BM-derived macrophages of Sam68-/- vs. WT mice. Furthermore, co-immunoprecipitation and mass-spectrometry identified Filamin A (FLNA) as a novel Sam68-interacting protein upon TNF-α treatment. Loss- and gain-of-function experiments suggest that Sam68 and FLNA are mutually dependent for NF-κB activation and pro-inflammatory cytokine expression, and that the N-terminus of Sam68 is required for TRAF2-FLNA interaction. CONCLUSIONS Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery by interacting with FLNA to stabilize TRAF2 on the cytoskeleton and consequently potentiate NF-κB signaling.
Collapse
Affiliation(s)
- Shuling Han
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiyue Xu
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aijun Qiao
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chan Boriboun
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wenxia Ma
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huadong Li
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dauren Biyashev
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liu Yang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qinghua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Shayi Jiang
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 20062, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | - Prasanna Krishnamurthy
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chunxiang Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stéphane Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Hongyu Qiu
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA
| | - Jianyi Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Zhang Y, Chao FL, Zhang L, Jiang L, Zhou CN, Chen LM, Lu W, Jiang R, Tang Y. Quantitative study of the capillaries within the white matter of the Tg2576 mouse model of Alzheimer's disease. Brain Behav 2019; 9:e01268. [PMID: 30900389 PMCID: PMC6456816 DOI: 10.1002/brb3.1268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION To quantitatively investigate the capillaries within the white matter of Tg2576 Alzheimer's disease (AD) transgenic mice during the early stage. METHODS In the current study, 10-month-old male Tg2576 AD mice were used as the early-stage AD group and age-matched nontransgenic littermate mice were used as the wild-type group. Then, the Morris water maze was used to examine the spatial learning and memory abilities of the mice in both groups, and unbiased stereological methods were used to accurately quantify the volume of white matter and the parameters of the capillaries within the white matter, such as the total length, total volume, and total surface area of capillaries. RESULTS The Morris water maze performance of the Tg2576 group was worse than that of the wild-type group, while the white matter volume did not significantly differ between the wild-type group and the Tg2576 group. The total length, total volume, and total surface area of the capillaries within the white matter of the Tg2576 group were significantly decreased compared to those of the wild-type group. CONCLUSIONS The current study provide structural basis for understanding the pathological changes of the early stage of AD and cognitive decline in AD might be associated with changes in the white matter capillaries. Capillaries within the white matter might, thus, serve as a valid target for the prevention and treatment of early-stage AD.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin-Mu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Wei Lu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Wang B, Chen G, Urabe G, Xie R, Wang Y, Shi X, Guo LW, Gong S, Kent KC. A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials 2018; 178:293-301. [PMID: 29958152 DOI: 10.1016/j.biomaterials.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023]
Abstract
Drug-eluting stents are the most commonly employed method to control post-angioplasty restenosis. Unfortunately, they exacerbate life-threatening stent thrombosis because of endothelium damage caused by both drug and stenting. To solve this major medical problem, an endothelium-protective and stent-free anti-restenotic method is highly desirable. Here we have generated a biomimetic intravenous delivery system using dendritic polymer-based nanoclusters, which were coated with platelet membranes for targeting to the injured arterial wall where restenosis occurs. These nanoclusters were loaded with an endothelium-protective epigenetic inhibitor (JQ1) or an endothelium-toxic status quo drug (rapamycin), and compared for their ability to mitigate restenosis without hindering the process of re-endothelialization. Fluorescence imaging of Cy5-tagged biomimetic nanoclusters indicated their robust homing to injured, but not uninjured arteries. Two weeks after angioplasty, compared to no-drug control, both rapamycin- and JQ1-loaded biomimetic nanoclusters substantially reduced (by >60%) neointimal hyperplasia, the primary cause of restenosis. However, whereas the rapamycin formulation impaired the endothelial re-coverage of the denuded inner arterial wall, the JQ1 formulation preserved endothelial recovery. In summary, we have created an endothelium-protective anti-restenotic system with biomimetic nanoclusters containing an epigenetic inhibitor. This system warrants further development for a non-thrombogenic and stent-free method for clinical applications.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guojun Chen
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Go Urabe
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xudong Shi
- Department of Surgery, 5151 Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - K Craig Kent
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
17
|
van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. LAB ON A CHIP 2018; 18:1607-1620. [PMID: 29756630 PMCID: PMC5972738 DOI: 10.1039/c8lc00286j] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 05/24/2023]
Abstract
Cell signalling and mechanics influence vascular pathophysiology and there is an increasing demand for in vitro model systems that enable examination of signalling between vascular cells under hemodynamic conditions. Current 3D vessel wall constructs do not recapitulate the mechanical conditions of the native tissue nor do they allow examination of cell-cell interactions under relevant hemodynamic conditions. Here, we describe a 3D microfluidic chip model of arterial endothelial and smooth muscle cells where cellular organization, composition and interactions, as well as the mechanical environment of the arterial wall are mimicked. The hemodynamic EC-VSMC-signalling-on-a-chip consists of two parallel polydimethylsiloxane (PDMS) cell culture channels, separated by a flexible, porous PDMS membrane, mimicking the porosity of the internal elastic lamina. The hemodynamic EC-VSMC-signalling-on-a-chip allows co-culturing of human aortic endothelial cells (ECs) and human aortic vascular smooth muscle cells (VSMCs), separated by a porous membrane, which enables EC-VSMC interaction and signalling, crucial for the development and homeostasis of the vessel wall. The device allows real time cell imaging and control of hemodynamic conditions. The culture channels are surrounded on either side by vacuum channels to induce cyclic strain by applying cyclic suction, resulting in mechanical stretching and relaxation of the membrane in the cell culture channels. The blood flow is mimicked by creating a flow of medium at the EC side. Vascular cells remain viable during prolonged culturing, exhibit physiological morphology and organization and make cell-cell contact. During dynamic culturing of the device with a shear stress of 1-1.5 Pa and strain of 5-8%, VSMCs align perpendicular to the given strain in the direction of the flow and EC adopt a cobblestone morphology. To our knowledge, this is the first report on the development of a microfluidic device, which enables a co-culture of interacting ECs and VSMCs under hemodynamic conditions and presents a novel approach to systematically study the biological and mechanical components of the intimal-medial vascular unit.
Collapse
Affiliation(s)
- Nicole C. A. van Engeland
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
| | - Andreas M. A. O. Pollet
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Jaap M. J. den Toonder
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| | - Oscar M. J. A. Stassen
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
| | - Cecilia M. Sahlgren
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| |
Collapse
|
18
|
Wang J, Jin X, Huang Y, Ran X, Luo D, Yang D, Jia D, Zhang K, Tong J, Deng X, Wang G. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen Biomater 2018; 5:177-187. [PMID: 29942650 PMCID: PMC6007795 DOI: 10.1093/rb/rby006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xuepu Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Desha Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongchuan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Kang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Jianhua Tong
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Javadzadegan A, Moshfegh A, Behnia M. Effect of magnetic field on haemodynamic perturbations in atherosclerotic coronary arteries. J Med Eng Technol 2018; 42:148-156. [DOI: 10.1080/03091902.2018.1447034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ashkan Javadzadegan
- Macquarie University, Sydney, Australia
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Abouzar Moshfegh
- Macquarie University, Sydney, Australia
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Masud Behnia
- School of Management, Macquarie University, Sydney, Australia
| |
Collapse
|
20
|
Antoine EE, Cornat FP, Barakat AI. The stentable in vitro artery: an instrumented platform for endovascular device development and optimization. J R Soc Interface 2017; 13:rsif.2016.0834. [PMID: 28003530 DOI: 10.1098/rsif.2016.0834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 11/12/2022] Open
Abstract
Although vascular disease is a leading cause of mortality, in vitro tools for controlled, quantitative studies of vascular biological processes in an environment that reflects physiological complexity remain limited. We developed a novel in vitro artery that exhibits a number of unique features distinguishing it from tissue-engineered or organ-on-a-chip constructs, most notably that it allows deployment of endovascular devices including stents, quantitative real-time tracking of cellular responses and detailed measurement of flow velocity and lumenal shear stress using particle image velocimetry. The wall of the stentable in vitro artery consists of an annular collagen hydrogel containing smooth muscle cells (SMCs) and whose lumenal surface is lined with a monolayer of endothelial cells (ECs). The system has in vivo dimensions and physiological flow conditions and allows automated high-resolution live imaging of both SMCs and ECs. To demonstrate proof-of-concept, we imaged and quantified EC wound healing, SMC motility and altered shear stresses on the endothelium after deployment of a coronary stent. The stentable in vitro artery provides a unique platform suited for a broad array of research applications. Wide-scale adoption of this system promises to enhance our understanding of important biological events affecting endovascular device performance and to reduce dependence on animal studies.
Collapse
Affiliation(s)
- Elizabeth E Antoine
- Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - François P Cornat
- Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - Abdul I Barakat
- Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
21
|
Meloche J, Lampron MC, Nadeau V, Maltais M, Potus F, Lambert C, Tremblay E, Vitry G, Breuils-Bonnet S, Boucherat O, Charbonneau E, Provencher S, Paulin R, Bonnet S. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1513-1523. [DOI: 10.1161/atvbaha.117.309156] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Objective—
Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases. Both PAH and CAD are associated with sustained inflammation and smooth muscle cell proliferation/apoptosis imbalance and we demonstrated in PAH that this phenotype is, in part, because of the miR-223/DNA damage/Poly[ADP-ribose] polymerase 1/miR-204 axis activation and subsequent bromodomain protein 4 (BRD4) overexpression. Interestingly, BRD4 is also a trigger for calcification and remodeling processes, both of which are important in CAD. Thus, we hypothesize that BRD4 activation in PAH influences the development of CAD.
Approach and Results—
PAH was associated with significant remodeling of the coronary arteries in both human and experimental models of the disease. As observed in PAH distal pulmonary arteries, coronary arteries of patients with PAH also exhibited increased DNA damage, inflammation, and BRD4 overexpression. In vitro, using human coronary artery smooth muscle cells from PAH, CAD and non-PAH–non-CAD patients, we showed that both PAH and CAD smooth muscle cells exhibited increased proliferation and suppressed apoptosis in a BRD4-dependent manner. In vivo, improvement of PAH by BRD4 inhibitor was associated with a reduction in coronary remodeling and interleukin-6 expression.
Conclusions—
Overall, this study demonstrates that increased BRD4 expression in coronary arteries of patient with PAH contributes to vascular remodeling and comorbidity development.
Collapse
Affiliation(s)
- Jolyane Meloche
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Marie-Claude Lampron
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Valérie Nadeau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Mélanie Maltais
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - François Potus
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Caroline Lambert
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eve Tremblay
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Géraldine Vitry
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sandra Breuils-Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Olivier Boucherat
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Eric Charbonneau
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Steeve Provencher
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Roxane Paulin
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| | - Sébastien Bonnet
- From the Pulmonary Hypertension and Vascular Biology Research Group of the Quebec Heart and Lung Institute (J.M., M.-C.L., V.N., M.M., F.P., C.L., E.T., G.V., S.B.-B., O.B., S.P., R.P., S.B.) and the Division of Cardiac Surgery of the Quebec Heart and Lung Institute (E.C.), Laval University, Department of Medicine, Quebec, Canada
| |
Collapse
|
22
|
Plotnikov EY, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Zorov SD, Jankauskas SS, Babenko VA, Sukhikh GT, Zorov DB. Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung Circ 2017; 26:648-659. [DOI: 10.1016/j.hlc.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
|
23
|
Gong T, Zhao K, Liu X, Lu L, Liu D, Zhou S. A Dynamically Tunable, Bioinspired Micropatterned Surface Regulates Vascular Endothelial and Smooth Muscle Cells Growth at Vascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5769-5778. [PMID: 27595865 DOI: 10.1002/smll.201601503] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Regulation of the growth of vascular endothelial cells (ECs) and smooth muscle cells (SMCs) with artificial vascular grafts at vascularization is well-known to regenerate functional blood vessels for treating cardiovascular disease; however, little research has been published on this subject. Here, a novel polymer vascular graft is presented, whose inner surface contains an assembled circular microgroove pattern decorated with a combination of concentric circular microgrooves and radial, straight microgrooves inspired by the orientation of SMCs and ECs in natural tissues. The surface micropatterns can produce dynamically tunable variations via the thermally switched shape memory. The results from the in vitro EC/SMC co-cultures reveal that the surface micropatterns have a great capacity to regulate the specific distribution of ECs/SMCs because the ECs grow along the radial, straight microgrooves and the SMCs grow along concentric circular microgrooves. The in vivo vascularization is further analyzed by implanting the vascular graft in the rabbit carotid artery. Both histological analysis and immunofluorescence staining demonstrate that it is capable of highly effectively capturing ECs and SMCs in the blood and subsequent regeneration of new blood vessels. Therefore, this study opens a new possibility for regenerating neovessels to replace and repair damaged vessels for cardiovascular diseases treatment.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Liuxuan Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, P. R. China.
| |
Collapse
|
24
|
Gao Y, Chen T, Raj JU. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. Am J Respir Cell Mol Biol 2016; 54:451-60. [PMID: 26744837 DOI: 10.1165/rcmb.2015-0323tr] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the pulmonary vasculature, the endothelial and smooth muscle cells are two key cell types that play a major role in the pathobiology of pulmonary vascular disease and pulmonary hypertension. The normal interactions between these two cell types are important for the homeostasis of the pulmonary circulation, and any aberrant interaction between them may lead to various disease states including pulmonary vascular remodeling and pulmonary hypertension. It is well recognized that the endothelial cell can regulate the function of the underlying smooth muscle cell by releasing various bioactive agents such as nitric oxide and endothelin-1. In addition to such paracrine regulation, other mechanisms exist by which there is cross-talk between these two cell types, including communication via the myoendothelial injunctions and information transfer via extracellular vesicles. Emerging evidence suggests that these nonparacrine mechanisms play an important role in the regulation of pulmonary vascular tone and the determination of cell phenotype and that they are critically involved in the pathobiology of pulmonary hypertension.
Collapse
Affiliation(s)
- Yuansheng Gao
- 1 Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China; and
| | - Tianji Chen
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - J Usha Raj
- 2 Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Ren X, Qiao A, Song H, Song G, Jiao L. Influence of Bifurcation Angle on In-Stent Restenosis at the Vertebral Artery Origin: A Simulation Study of Hemodynamics. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0155-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Wolf F, Vogt F, Schmitz-Rode T, Jockenhoevel S, Mela P. Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discov Today 2016; 21:1446-1455. [PMID: 27126777 DOI: 10.1016/j.drudis.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing.
Collapse
Affiliation(s)
- Frederic Wolf
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Felix Vogt
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Petra Mela
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
27
|
Shamout FE, Pouliopoulos AN, Lee P, Bonaccorsi S, Towhidi L, Krams R, Choi JJ. Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2435-48. [PMID: 26067786 DOI: 10.1016/j.ultrasmedbio.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 05/12/2023]
Abstract
Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure sonication produced stable and non-inertial cavitation throughout the pulse sequence. To our knowledge, this is the first study to demonstrate a high drug delivery rate coupled with high cell viability in a physiologically relevant in vitro flow system.
Collapse
Affiliation(s)
- Farah E Shamout
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Patrizia Lee
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Leila Towhidi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| | - James J Choi
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
28
|
Fernández-Parra R, Laborda A, Lahuerta C, Lostalé F, Aramayona J, de Blas I, de Gregorio MA. Pharmacokinetic Study of Paclitaxel Concentration after Drug-Eluting Balloon Angioplasty in the Iliac Artery of Healthy and Atherosclerotic Rabbit Models. J Vasc Interv Radiol 2015; 26:1380-7.e1. [PMID: 26190185 DOI: 10.1016/j.jvir.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess whether the presence of an atherosclerotic lesion may alter the deposition kinetics of paclitaxel on the arterial wall after drug-eluting balloon (DEB) angioplasty, as well as paclitaxel concentrations in serum and in the recovered balloons. MATERIALS AND METHODS Three New Zealand White rabbit models were created: an atheroma group (arterial mechanical injury and hyperlipidic diet; group A), a prelesional group (fat arterial infiltration, hyperlipidic diet; group B), and a control healthy group (group C). Forty-five animals underwent DEB angioplasty in the iliac artery. Arteries and serum samples were analyzed by liquid chromatography/tandem mass spectrometry at 1, 24, 48, 72, and 96 hours (arteries) and at 1, 6, 12, and 24 hours (serum). Recovered balloons were analyzed by UV chromatography. Histologic and statistical analyses were also performed. RESULTS Group A showed significantly higher arterial paclitaxel concentrations in the first hour after DEB angioplasty (632.05 ng/mg ± 125.75 in group A vs 179.55 ng/mg ± 45.64 and 168.54 ng/mg ± 83.48 in groups B and C, respectively; P < .05). Paclitaxel was undetectable in serum at 24 hours in all groups, but the amount was significantly higher (P < .05) in group B at 1, 6, and 12 hours. The paclitaxel amount in navigated balloons from group A was significantly lower than in other groups (P < .05). CONCLUSIONS Paclitaxel concentration in an atherosclerotic lesion model immediately after DEB angioplasty is nearly fourfold higher than in a healthy artery. Paclitaxel remains in the bloodstream longer when a universal state of fat arterial infiltration is achieved. These findings could have clinical implications, as studies testing commercial drug-eluting devices on healthy animals may be underestimating paclitaxel arterial uptake.
Collapse
Affiliation(s)
- Rocío Fernández-Parra
- Department of Animal Pathology, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain.
| | - Alicia Laborda
- Department of Animal Pathology, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain
| | - Celia Lahuerta
- Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain
| | - Fernando Lostalé
- Faculty of Veterinary Sciences, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain
| | - Jose Aramayona
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio de Blas
- Department of Animal Pathology, Universidad de Zaragoza, Zaragoza, Spain
| | - Miguel A de Gregorio
- Faculty of Veterinary Sciences, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain; CIBER-BBN I3A, Zaragoza, Spain
| |
Collapse
|
29
|
Mittal SR. Etiopathogenesis of microvascular angina: caveats in our knowledge. Indian Heart J 2015; 66:678-81. [PMID: 25634404 DOI: 10.1016/j.ihj.2014.10.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/14/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022] Open
Abstract
Nearly 50% of subjects of coronary artery disease suffer from coronary microvascular dysfunction. Various etiopathogenetic factors have been proposed by different workers but no hypothesis can explain the genesis of microvascular angina in all patients. We have made an attempt to review the literature to find caveats in our knowledge so that future studies can be better designed.
Collapse
Affiliation(s)
- S R Mittal
- Department of Cardiology, Mittal Hospital & Research Centre, Pushkar Road, Ajmer, Rajasthan 305001, India.
| |
Collapse
|
30
|
Martorell J, Santomá P, Kolandaivelu K, Kolachalama VB, Melgar-Lesmes P, Molins JJ, Garcia L, Edelman ER, Balcells M. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovasc Res 2014; 103:37-46. [PMID: 24841070 PMCID: PMC4670884 DOI: 10.1093/cvr/cvu124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/10/2014] [Accepted: 05/01/2014] [Indexed: 11/12/2022] Open
Abstract
AIMS Atherogenesis, evolution of plaque, and outcomes following endovascular intervention depend heavily on the unique vascular architecture of each individual. Patient-specific, multiscale models able to correlate changes in microscopic cellular responses with relevant macroscopic flow, and structural conditions may help understand the progression of occlusive arterial disease, providing insights into how to mitigate adverse responses in specific settings and individuals. METHODS AND RESULTS Vascular architectures mimicking coronary and carotid bifurcations were derived from clinical imaging and used to generate conjoint computational meshes for in silico analysis and biocompatible scaffolds for in vitro models. In parallel with three-dimensional flow simulations, geometrically realistic scaffolds were seeded with human smooth muscle cells (SMC) or endothelial cells and exposed to relevant, physiological flows. In vitro surrogates of endothelial health, atherosclerotic progression, and thrombosis were locally quantified and correlated best with an quantified extent of flow recirculation occurring within the bifurcation models. Oxidized low-density lipoprotein uptake, monocyte adhesion, and tissue factor expression locally rose up to three-fold, and phosphorylated endothelial nitric oxide synthase and Krüppel-like factor 2 decreased up to two-fold in recirculation areas. Isolated testing in straight-tube idealized constructs subject to static, oscillatory, and pulsatile conditions, indicative of different recirculant conditions corroborated these flow-mediated dependencies. CONCLUSIONS Flow drives variations in vascular reactivity and vascular beds. Endothelial health was preserved by arterial flow but jeopardized in regions of flow recirculation in a quasi-linear manner. Similarly, SMC exposed to flow were more thrombogenic in large recirculating regions. Health, thrombosis, and atherosclerosis biomarkers correlate with the extent of recirculation in vascular cells lining certain vascular geometries.
Collapse
Affiliation(s)
- Jordi Martorell
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, IQS School of Engineering, URL, Via Augusta 390, 08017 Barcelona, Spain
| | - Pablo Santomá
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, IQS School of Engineering, URL, Via Augusta 390, 08017 Barcelona, Spain
| | - Kumaran Kolandaivelu
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vijaya B Kolachalama
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - José J Molins
- Department of Chemical Engineering, IQS School of Engineering, URL, Via Augusta 390, 08017 Barcelona, Spain
| | - Lawrence Garcia
- Department of Interventional Cardiology and Vascular Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Biological Engineering, IQS School of Engineering, URL, Barcelona, Spain
| |
Collapse
|
31
|
Niccoli G, Dato I, Imaeva AE, Antonazzo Panico R, Roberto M, Burzotta F, Aurigemma C, Trani C, Gramegna M, Leone AM, Porto I, Crea F. Association between inflammatory biomarkers and in-stent restenosis tissue features: an Optical Coherence Tomography Study. Eur Heart J Cardiovasc Imaging 2014; 15:917-25. [PMID: 24618655 DOI: 10.1093/ehjci/jeu035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Inflammatory reaction after stent implantation is associated with in-stent restenosis (ISR). We assessed the association of optical coherence tomography (OCT) features of neointima with systemic levels of high-sensitivity C-reactive protein (hs-CRP) and eosinophil cationic protein (ECP) measured at the time of ISR detection. METHODS AND RESULTS Patients presenting with symptomatic angiographically documented ISR (diameter stenosis ≥ 50% by visual estimation) were included. Quantitative OCT analysis included the measurement of minimal lumen diameter, minimal luminal area, stent and neointimal area, stent and restenosis length, restenotic tissue burden, and symmetry ratio. Qualitative OCT analysis included the assessment of ISR plaque type, neointimal tissue structure, lumen shape, presence of microvessels and calcific nodules. At the time of ISR detection hs-CRP and ECP levels were measured, and statistical analysis was performed using as cut-off 3 mg/L and 4.5 µg/L, respectively. Our population included 40 patients, 24 bare metal stents and 16 drug-eluting stents. Patients with high hs-CRP levels had a higher restenostic tissue symmetry ratio (0.56 ± 0.17 vs. 0.42 ± 0.13, P = 0.01) when compared with patients with low hs-CRP levels. Patients with high ECP levels had a higher neointimal burden (70 ± 14 vs. 64 ± 11, P = 0.05) in comparison with patients with low ECP levels. CONCLUSIONS Inflammatory biomarkers assessed at the time of ISR detection are associated with different aspects of neointimal tissue. While hs-CRP seems to have a role in neointimal tissue shape, ECP is related to a neointimal burden.
Collapse
Affiliation(s)
- Giampaolo Niccoli
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | - Ilaria Dato
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | | | | | - Marco Roberto
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | - Francesco Burzotta
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | - Cristina Aurigemma
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | - Carlo Trani
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | - Mario Gramegna
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | - Antonio Maria Leone
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| | - Italo Porto
- Cardiovascular Department, San Donato Hospital, Arezzo, Italy
| | - Filippo Crea
- Cardiovascular Science Department, Sacred Heart University, L.go Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
32
|
Kolandaivelu K, Leiden BB, Edelman ER. Predicting response to endovascular therapies: Dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. J Biomech 2014; 47:908-21. [DOI: 10.1016/j.jbiomech.2014.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/25/2022]
|
33
|
Park KE, Pepine CJ. Microvascular dysfunction: what have we learned from WISE? Expert Rev Cardiovasc Ther 2014; 9:1491-4. [DOI: 10.1586/erc.11.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Mathew R. Pathogenesis of pulmonary hypertension: a case for caveolin-1 and cell membrane integrity. Am J Physiol Heart Circ Physiol 2013; 306:H15-25. [PMID: 24163076 DOI: 10.1152/ajpheart.00266.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension (PH) is a progressive disease with a high morbidity and mortality rate. Despite important advances in the field, the precise mechanisms leading to PH are not yet understood. Main features of PH are loss of vasodilatory response, the activation of proliferative and antiapoptotic pathways leading to pulmonary vascular remodeling and obstruction, elevated pressure and right ventricular hypertrophy, resulting in right ventricular failure and death. Experimental studies suggest that endothelial dysfunction may be the key underlying feature in PH. Caveolin-1, a major protein constituent of caveolae, interacts with several signaling molecules including the ones implicated in PH and modulates them. Disruption and progressive loss of endothelial caveolin-1 with reciprocal activation of proliferative pathways occur before the onset of PH, and the rescue of caveolin-1 inhibits proliferative pathways and attenuates PH. Extensive endothelial damage/loss occurs during the progression of the disease with subsequent enhanced expression of caveolin-1 in smooth muscle cells. This caveolin-1 in smooth muscle cells switches from being an antiproliferative factor to a proproliferative one and participates in cell proliferation and cell migration, possibly leading to irreversible PH. In contrast, the disruption of endothelial caveolin-1 is not observed in the hypoxia-induced PH, a reversible form of PH. However, proliferative pathways are activated in this model, indicating caveolin-1 dysfunction. Thus disruption or dysfunction of endothelial caveolin-1 leads to PH, and the status of caveolin-1 may determine the reversibility versus irreversibility of PH. This article reviews the role of caveolin-1 and cell membrane integrity in the pathogenesis and progression of PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Section of Pediatric Cardiology and Department of Physiology, Maria Fareri Children's Hospital/New York Medical College, Valhalla, New York
| |
Collapse
|
35
|
Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, Fan Y, Wang G. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 2013; 11:20130852. [PMID: 24152813 DOI: 10.1098/rsif.2013.0852] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Juhui Qiu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, College of Bioengineering, Chongqing University, , Chongqing 400044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang J, Qi YX, Zhang P, Gu WT, Yan ZQ, Shen BR, Yao QP, Kong H, Chien S, Jiang ZL. Involvement of Rab28 in NF-κB nuclear transport in endothelial cells. PLoS One 2013; 8:e56076. [PMID: 23457503 PMCID: PMC3573041 DOI: 10.1371/journal.pone.0056076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/04/2013] [Indexed: 11/29/2022] Open
Abstract
Our previous proteomic analysis revealed the expression of Rab28 in arteries of rats. However, the function of Rab28 in mammalian cells, and its role in vessels are still unknown. Coarctation of abdominal aorta above left kidney artery in rat was used as hypertensive animal model. FX-4000 cyclic strain loading system was used to mimic the mechanical condition on vascular cells during hypertension in vitro. Immunofluorescence and co-immunoprecipitation (Co-IP) were used to identify distribution and interaction of Rab28 and nuclear factor kappa B (NF-κB). Rab28 expression was significantly increased in carotid arteries of hypertensive rats. High cyclic strain induced Rab28 expression of endothelial cells (ECs) through a paracrine control of vascular smooth muscles cells (VSMCs), which at least partly via angiotensin II (Ang II). Rab28 knockdown decreased proliferation of ECs, while increased apoptosis and migration. Immunofluorescence revealed that Ang II stimulated the co-translocation of Rab28 and NF-κB from cytoplasm into nucleus. Knockdown of Rab28 attenuated NF-κB activation. Co-IP of NF-κB p65 and Rab28 indicated their interaction. Our results revealed that Rab28, as a novel regulator of NF-κB nuclear transport, might participate in the disturbance of EC homeostasis.
Collapse
Affiliation(s)
- Jun Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chitalia VC, Shivanna S, Martorell J, Balcells M, Bosch I, Kolandaivelu K, Edelman ER. Uremic serum and solutes increase post-vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor. Circulation 2012; 127:365-76. [PMID: 23269489 DOI: 10.1161/circulationaha.112.118174] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stent thrombosis (ST), a postinterventional complication with a mortality rate of 50%, has an incidence that rises precipitously in patients at risk. Chronic renal failure and end-stage renal disease have emerged as particularly strong ST risk factors, yet the mechanism remains elusive. Tissue factor (TF) is a crucial mediator of injury-related thrombosis and has been implicated for ST. We posit that uremia modulates TF in the local vessel wall to induce postinterventional thrombosis in patients with end-stage renal disease. METHODS AND RESULTS As a model of the de-endothelialized, postinterventional state, we exposed primary human vascular smooth muscle cells (vSMCs) pretreated with uremic serum (obtained from ESRD patients on hemodialysis) to coronary-like blood flow. vSMC TF expression, activity, stability, and posttranslational modification were examined after vSMCs were treated with uremic serum or solutes. We found significantly greater clot formation after uremic serum exposure, which was substantially reduced with the prior treatment with anti-TF neutralizing antibody. Uremic sera induced 2- to 3-fold higher TF expression and activity in vSMCs independent of diabetes mellitus. Relevant concentrations of isolated uremic solutes such as indole-3-acetic acid (3.5 μg/mL), indoxyl sulfate (25 μg/mL), and uric acid (80 μg/mL) recapitulated these effects in cell culture and the flow loop model. We show further that TF undergoes ubiquitination at baseline and that uremic serum, indole-3-acetic acid, and indoxyl sulfate significantly prolong TF half-life by inhibiting its ubiquitination. CONCLUSIONS The uremic milieu is profoundly thrombogenic and upregulates vSMC TF levels by increasing TF stability and decreasing its ubiquitination. Together, these data demonstrate for the first time that the posttranslational regulation of TF in uremia may have a causative role in the increased ST risk observed in uremic patients. These data suggest that interventions that reduce vSMC TF may help to prevent ST and that uremic solutes should be considered as novel risk factors for ST in patients with chronic renal failure.
Collapse
Affiliation(s)
- Vipul C Chitalia
- Harvard-MIT Division of Science and Technology, Bldg E25-449, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Cyclic strain amplitude dictates the growth response of vascular smooth muscle cells in vitro: role in in-stent restenosis and inhibition with a sirolimus drug-eluting stent. Biomech Model Mechanobiol 2012; 12:671-83. [DOI: 10.1007/s10237-012-0433-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/16/2012] [Indexed: 01/28/2023]
|
39
|
|
40
|
Martorell J, Santomá P, Molins JJ, García-Granada AA, Bea JA, Edelman ER, Balcells M. Engineered arterial models to correlate blood flow to tissue biological response. Ann N Y Acad Sci 2012; 1254:51-56. [PMID: 22548569 DOI: 10.1111/j.1749-6632.2012.06518.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reviews how biomedical engineers, in collaboration with physicians, biologists, chemists, physicists, and mathematicians, have developed models to explain how the impact of vascular interventions on blood flow predicts subsequent vascular repair. These models have become increasingly sophisticated and precise, propelling us toward optimization of cardiovascular therapeutics in general and personalizing treatments for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Martorell
- Department of Chemical Engineering, IQS, Universitat Ramon Llull, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol 2012; 59:1337-49. [PMID: 22480478 DOI: 10.1016/j.jacc.2011.10.903] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/13/2011] [Accepted: 10/27/2011] [Indexed: 10/28/2022]
Abstract
Restenosis and thrombosis are potentially fatal complications of coronary stenting with a recognized multifactorial etiology. The effect of documented risk factors, however, cannot explain the preponderance of certain lesion types, stent designs, and implantation configurations for the development of these complications. Local hemodynamic factors, low endothelial shear stress (ESS) in particular, are long known to critically affect the natural history of atherosclerosis. Increasing evidence now suggests that ESS may also contribute to the development of restenosis and thrombosis upon stenting of atherosclerotic plaques, in conjunction with well-appreciated risk factors. In this review, we present in vivo and mechanistic evidence associating ESS with the localization and progression of neointimal hyperplasia and in-stent clotting. Clinical studies have associated stent design features with the risk of restenosis. Importantly, computational simulations extend these observations by directly linking specific stent geometry and positioning characteristics with the post-stenting hemodynamic milieu and with the stent's thrombogenicity and pro-restenotic potential, thereby indicating ways to clinical translation. An enhanced understanding of the pathophysiologic role of ESS in restenosis and thrombosis might dictate hemodynamically favorable stent designs and deployment configurations to reduce the potential for late lumen loss and thrombotic obstruction. Recent methodologies for in vivo ESS profiling at a clinical level might allow for early identification of patients at high risk for the development of restenosis or thrombosis and might thereby guide individualized, risk-tailored treatment strategies to prevent devastating complications of endovascular interventions.
Collapse
Affiliation(s)
- Konstantinos C Koskinas
- 1st Cardiology Department, AHEPA University Hospital, Aristole University Medical School, Thessaloniki, Greece
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Joseph A. Vita
- From the Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| |
Collapse
|
43
|
Affiliation(s)
- C Noel Bairey Merz
- Women's Heart Center, 444 S San Vicente Blvd, Suite 600, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
44
|
Balcells M, Edelman ER. Models of Human Vascular Disease: Is There an Animal of La Mancha?: Modelos de la enfermedad vascular humana: ¿hay un animal de La Mancha? REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2011; 64:739-742. [PMID: 26779293 PMCID: PMC4711991 DOI: 10.1016/j.rec.2011.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Mercedes Balcells
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Elazer R. Edelman
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States
| |
Collapse
|
45
|
[Models of human vascular disease: is there an animal of la mancha?]. Rev Esp Cardiol 2011; 64:739-42. [PMID: 21752515 DOI: 10.1016/j.recesp.2011.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 05/28/2011] [Indexed: 11/24/2022]
|
46
|
Cao L, Wu A, Truskey GA. Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells. J Biomech 2011; 44:2150-7. [PMID: 21683362 DOI: 10.1016/j.jbiomech.2011.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/12/2011] [Accepted: 05/23/2011] [Indexed: 02/05/2023]
Abstract
Human endothelial cells derived from umbilical cord blood (hCB-ECs) represent a promising cell source for endothelialization of tissue engineered blood vessels. hCB-ECs cultured directly above human aortic smooth muscle cells (SMCs), which model native and tissue engineered blood vessels, produce a confluent endothelium that responds to flow like normal human aortic endothelial cells (HAECs). The objective of this study was to quantify the elastic modulus of hCB-ECs cocultured with SMCs under static and flow conditions using atomic force microscopy (AFM). Cytoskeleton structures were assessed by AFM cell surface imaging and immunofluorescence of F-actin. The elastic moduli of hCB-ECs and HAECs were similar and significantly smaller than the value for SMCs in monoculture under static conditions (p<0.05). In coculture, hCB-ECs and HAECs became significantly stiffer with moduli 160-180% larger than their corresponding values in monoculture. While the moduli of hCB-ECs and HAECs almost doubled in monoculture and flow condition, their corresponding values in coculture declined after exposure to flow. Both the number and diameter of cortical stress fiber per cell width increased in coculture and/or flow conditions, whereas the subcortical stress fiber density throughout the cell interior increased by a smaller amount. These findings indicate that changes to biomechanical properties in coculture and/or exposure to flow are correlated with changes in the cortical stress fiber density. For ECs, fluid shear stress appeared to have greater effect on the elastic modulus than the presence of SMCs and changes to the elastic modulus in coculture may be due to EC-SMC communication.
Collapse
Affiliation(s)
- Li Cao
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708, USA
| | | | | |
Collapse
|