1
|
Liu X, Li Z. The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity. Basic Res Cardiol 2025; 120:11-24. [PMID: 38724618 DOI: 10.1007/s00395-024-01054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
2
|
Suthivanich P, Boonhoh W, Sumneang N, Punsawad C, Cheng Z, Phungphong S. Aerobic Exercise Attenuates Doxorubicin-Induced Cardiomyopathy by Suppressing NLRP3 Inflammasome Activation in a Rat Model. Int J Mol Sci 2024; 25:9692. [PMID: 39273638 PMCID: PMC11395441 DOI: 10.3390/ijms25179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent with well-documented dose-dependent cardiotoxicity. Regular exercise is recognized for its cardioprotective effects against DOX-induced cardiac inflammation, although the precise mechanisms remain incompletely understood. The activation of inflammasomes has been implicated in the pathogenesis and treatment of DOX-induced cardiotoxicity, with the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome emerging as a key mediator in cardiovascular inflammation. This study aimed to investigate the role of exercise in modulating the NLRP3 inflammasome to protect against DOX-induced cardiac inflammation. Male Sprague-Dawley rats were randomly assigned to receive a 10-day course of DOX or saline injections, with or without a preceding 10-week treadmill running regimen. Cardiovascular function and histological changes were subsequently evaluated. DOX-induced cardiotoxicity was characterized by cardiac atrophy, systolic dysfunction, and hypotension, alongside activation of the NLRP3 inflammasome. Our findings revealed that regular exercise preserved cardiac mass and hypertrophic indices and prevented DOX-induced cardiac dysfunction, although it did not fully preserve blood pressure. These results underscore the significant cardioprotective effects of exercise against DOX-induced cardiotoxicity. While regular exercise did not entirely prevent DOX-induced hypotension, our findings demonstrate that it confers protection against DOX-induced cardiotoxicity by suppressing NLRP3 inflammasome activation in the heart, underscoring its anti-inflammatory role. Further research should explore the temporal dynamics and interactions among exercise, pyroptosis, and other pathways in DOX-induced cardiotoxicity to enhance translational applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Phichaya Suthivanich
- Doctor of Philosophy Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Natticha Sumneang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sukanya Phungphong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Legault EP, Ribeiro PAB, Petrenyov DR, Drumeva GO, Leduc C, Khullar S, DaSilva JN, Comtois AS, Tournoux FB. Effect of acute high-intensity interval exercise on a mouse model of doxorubicin-induced cardiotoxicity: a pilot study. BMC Sports Sci Med Rehabil 2024; 16:95. [PMID: 38671464 PMCID: PMC11046902 DOI: 10.1186/s13102-024-00881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND It is unknown whether high-intensity interval exercise (HIIE) may potentiate or attenuate the cardiotoxic effect of chemotherapy agents such as doxorubicin (DOX) when performed shortly after treatment. The study aimed to investigate the effect of acute HIIE on cardiac function and structure performed either 1, 2 or 3 days after DOX injection in an animal model. METHODS Female C57bl/6 mice (n = 28), 70 days old, received a bolus 20 mg/kg intravenous tail vein DOX injection. Three exercise groups performed 1 HIIE session (16 sets of 1 min at 85-90% of peak running speed) at 1 (n = 7), 2 (n = 7), and 3 days (n = 8) following the DOX injection. A sedentary (SED) group of mice (n = 6) did not exercise. Animals underwent echocardiography under light anesthesia (isoflurane 0.5-1%) before and 7 days after the DOX injection. Animals were sacrificed on day 9 and hearts were collected for morphometric and histological analysis. RESULTS Animals exercising on day 3 had the smallest pre-post reduction in left ventricular fractional shortening (LVFS) (MΔ= -1.7 ± 3.3; p = 0.406) and the SED group had the largest reduction (MΔ=-6.8 ± 7.5; p = 0.009). After reclassification of animals according to their exercise compliance (performing > 8/16 of high-intensity bouts), LVFS in compliant mice was unchanged over time (LVFS MΔ= -1.3 ± 5.6; p = 0.396) while non-compliant animals had a LVFS reduction similar to sedentary animals. There were no significant differences in myocardial histology between groups. CONCLUSIONS In this pilot murine study, one single HIIE session did not exacerbate acute doxorubicin-induced cardiotoxicity. The timing of the HIIE session following DOX injection and the level of compliance to exercise could influence the negative impact of DOX on cardiac function.
Collapse
Affiliation(s)
- Elise P Legault
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada.
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.
| | - Paula A B Ribeiro
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Daniil R Petrenyov
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Gergana O Drumeva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Charles Leduc
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Sharmila Khullar
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Alain Steve Comtois
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François B Tournoux
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Service de Cardiologie du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Wang L, Qiao Y, Yu J, Wang Q, Wu X, Cao Q, Zhang Z, Feng Z, He H. Endurance exercise preconditioning alleviates ferroptosis induced by doxorubicin-induced cardiotoxicity through mitochondrial superoxide-dependent AMPKα2 activation. Redox Biol 2024; 70:103079. [PMID: 38359747 PMCID: PMC10878110 DOI: 10.1016/j.redox.2024.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Doxorubicin-induced cardiotoxicity (DIC) adversely impacts patients' long-term health and quality of life. Its underlying mechanism is complex, involving regulatory cell death mechanisms, such as ferroptosis and autophagy. Moreover, it is a challenge faced by patients undergoing cardiac rehabilitation. Endurance exercise (E-Exe) preconditioning effectively counters DIC injury, potentially through the adenosine monophosphate-activated protein kinase (AMPK) pathway. However, detailed studies on this process's mechanisms are scarce. Here, E-Exe preconditioning and DIC models were established using mice and primary cultured adult mouse cardiomyocytes (PAMCs). Akin to ferrostatin-1 (ferroptosis inhibitor), rapamycin (autophagic inducer), and MitoTEMPO (mitochondrial free-radical scavenger), E-Exe preconditioning effectively alleviated Fe2+ accumulation and oxidative stress and improved energy metabolism and mitochondrial dysfunction in DIC injury, as demonstrated by multifunctional, enzymatic, and morphological indices. However, erastin (ferroptosis inducer), 3-methyladenine (autophagic inhibitor), adenovirus-mediated AMPKα2 downregulation, and AMPKα2 inhibition by compound C significantly diminished these effects, both in vivo and in vitro. The results suggest a non-traditional mechanism where E-Exe preconditioning, under mild mitochondrial reactive oxygen species generation, upregulates and phosphorylates AMPKα2, thereby enhancing mitochondrial complex I activity, activating adaptive autophagy, and improving myocardial tolerance to DIC injury. Overall, this study highlighted the pivotal role of mitochondria in myocardial DIC-induced ferroptosis and shows how E-Exe preconditioning activated AMPKα2 against myocardial DIC injury. This suggests that E-Exe preconditioning could be a viable strategy for patients undergoing cardiac rehabilitation.
Collapse
Affiliation(s)
- Liang Wang
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang Qiao
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jingzhi Yu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Qihao Wang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Xinyu Wu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Qiqi Cao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Zeyu Zhang
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhen Feng
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China.
| |
Collapse
|
5
|
Tsuda T, Davidow K, D'Aloisio G, Quillen J. Surveillance cardiopulmonary exercise testing can risk-stratify childhood cancer survivors: underlying pathophysiology of poor exercise performance and possible room for improvement. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:42. [PMID: 37978571 PMCID: PMC10655267 DOI: 10.1186/s40959-023-00193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Asymptomatic childhood cancer survivors (CCS) frequently show decreased exercise performance. Poor exercise performance may indicate impaired future cardiovascular health. METHODS Cardiopulmonary exercise testing (CPET) was performed in asymptomatic off-treatment CCS (age ≥ 10 years). Patients were divided into Normal and Poor performance groups by %predicted maximum VO2 at 80%. Both peak and submaximal CPET values were analyzed. RESULTS Thirty-eight males (19 Normal, 19 Poor) and 40 females (18 Normal, 22 Poor) were studied. Total anthracycline dosage was comparable among 4 groups. The body mass index (BMI), although normal, and weight were significantly higher in Poor groups. Peak heart rate (HR) and peak respiratory exchange ratio (RER) were comparable in all four groups. Peak work rate (pWR)/kg, peak oxygen consumption (pVO2)/kg, peak oxygen pulse (pOP)/kg, and ventilatory anaerobic threshold (VAT)/kg were significantly lower, whereas heart rate (HR) increase by WR/kg (ΔHR/Δ[WR/kg] was significantly higher in Poor groups. Simultaneously plotting of weight & pVO2 and ΔHR/ΔWR & ΔVO2/ΔHR revealed a distinct difference between the Normal and Poor groups in both sexes, suggesting decreased skeletal muscle mass and decreased stroke volume reserve, respectively, in Poor CCS. The relationship between VAT and pVO2 was almost identical between the two groups in both sexes. Ventilatory efficiency was mildly diminished in the Poor groups. CONCLUSIONS Decreased skeletal muscle mass, decreased stroke volume reserve, and slightly decreased ventilatory efficiency characterize Poor CCS in both sexes. This unique combined CPET analysis provides useful clinical biomarkers to screen subclinical cardiovascular abnormality in CCS and identifies an area for improvement.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA.
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Kimberly Davidow
- Nemours Center for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, 19803, USA
| | - Gina D'Aloisio
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| | - Joanne Quillen
- Nemours Center for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, 19803, USA
| |
Collapse
|
6
|
Liang Z, Zhang M, Shi F, Wang C, Wang J, Yuan Y. Comparative efficacy of four exercise types on obesity-related outcomes in breast cancer survivors: A Bayesian network meta-analysis. Eur J Oncol Nurs 2023; 66:102423. [PMID: 37742423 DOI: 10.1016/j.ejon.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Exercise training is associated with improving the prognosis of breast cancer survivors, but no studies have evaluated the optimal exercise intervention. We aimed to investigate the most effective exercise intervention to improve obesity-related outcomes in breast cancer survivors. METHODS A comprehensive search strategy was conducted in Medline, Embase, Web of Science, Cochrane Library, and Chinese biomedical literature databases from the time of library construction to April 2, 2023. We included randomized controlled trials reporting the effects of four types of exercise interventions (aerobic exercise; aerobic combined with resitance exercise, resitstance exercise and mind-body exercise ) on obesity-related outcomes in breast cancer survivors. A Bayesian network meta-analysis was used to analyze and rank the effectiveness of four exercise types. RESULTS A total of 76 randomized controlled trials that contained 5610 breast cancer survivors were included. The treatment effect of combined aerobic and resistance exercise (mean difference = -0.59; 95% credible interval: 1.15, -0.08) was significantly better than that of the control groups in terms of body mass index. For percentage of body fat, combined aerobic and resistance exercise (mean difference = -1.74; 95% credible interval: 0.87, -0.90) and aerobic exercise (mean difference = -1.16; 95% credible interval: 2.15, -0.16) were significantly better than controls. Subgroup analysis suggested that combined aerobic and resistance exercise significantly affected body mass index at an intervention duration >12 weeks or weekly time on exercise >150 min. CONCLUSION Our network meta-analysis found combined aerobic and resistance exercise may be the most effective intervention to improve obesity-related outcomes in breast cancer survivors. In addition, intervention duration and participant adherence are important factors that influence the effectiveness of exercise interventions.
Collapse
Affiliation(s)
- Zhide Liang
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, 266071, China.
| | - Meng Zhang
- Xi'an Physical Education University, Xi'an, 710068, China.
| | - Fang Shi
- School of Education and Physical Education, Yangtze University, Jingzhou, 434023, China.
| | - Chuanzhi Wang
- Department of Physical Education, College of Physical Education, Qingdao University, Qingdao, 266071, China.
| | - Jingtai Wang
- Department of Physical Education, College of Physical Education, Qingdao University, Qingdao, 266071, China.
| | - Yang Yuan
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, 266071, China.
| |
Collapse
|
7
|
Law D, Magrini MA, Siedlik JA, Eckerson J, Drescher KM, Bredahl EC. Creatine and Resistance Training: A Combined Approach to Attenuate Doxorubicin-Induced Cardiotoxicity. Nutrients 2023; 15:4048. [PMID: 37764831 PMCID: PMC10536171 DOI: 10.3390/nu15184048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Doxorubicin (DOX), a potent chemotherapy agent, useful in the treatment of solid tumors, lymphomas, and leukemias, is limited by its potentially lethal cardiotoxicity. However, exercise has been consistently shown to mitigate the side effects of DOX, including cardiotoxicity. To date, most studies examining the relationship between exercise and DOX-induced cardiotoxicity have focused on aerobic exercise, with very few examining the role of anerobic activity. Therefore, this investigation explored the potential of creatine (CR) and resistance training (RT) in preserving cardiac health during DOX therapy. Male Sprague-Dawley rats were grouped into RT, RT + CR, sedentary (SED), and SED + CR, with each division further branching into saline (SAL) or DOX-treated subsets post-10 weeks of RT or SED activity. RT comprised progressive training utilizing specialized cages for bipedal stance feeding. CR-treated groups ingested water mixed with 1% CR monohydrate and 5% dextrose, while control animals received 5% dextrose. At week 10, DOX was administered (2 mg/kg/week) over 4-weeks to an 8 mg/kg cumulative dose. Cardiac function post-DOX treatment was assessed via transthoracic echocardiography. Left ventricular diameter during diastole was lower in DOX + CR, RT + DOX, and RT + CR + DOX compared to SED + DOX (p < 0.05). Additionally, cardiac mass was significantly greater in RT + CR + DOX SED + DOX animals (p < 0.05). These results suggest RT and CR supplementation, separately and in combination, could attenuate some measures of DOX-induced cardiotoxicity and may offer a cost-effective way to complement cancer treatments and enhance patient outcomes. More investigations are essential to better understand CR's prolonged effects during DOX therapy and its clinical implications.
Collapse
Affiliation(s)
- David Law
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Mitchel A Magrini
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jacob A Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Joan Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Eric C Bredahl
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| |
Collapse
|
8
|
Chen R, Niu M, Hu X, He Y. Targeting mitochondrial dynamics proteins for the treatment of doxorubicin-induced cardiotoxicity. Front Mol Biosci 2023; 10:1241225. [PMID: 37602332 PMCID: PMC10437218 DOI: 10.3389/fmolb.2023.1241225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Doxorubicin (DOX) is an extensively used chemotherapeutic agent that can cause severe and frequent cardiotoxicity, which limits its clinical application. Although there have been extensive researches on the cardiotoxicity caused by DOX, there is still a lack of effective treatment. It is necessary to understand the molecular mechanism of DOX-induced cardiotoxicity and search for new therapeutic targets which do not sacrifice their anticancer effects. Mitochondria are considered to be the main target of cardiotoxicity caused by DOX. The imbalance of mitochondrial dynamics characterized by increased mitochondrial fission and inhibited mitochondrial fusion is often reported in DOX-induced cardiotoxicity, which can result in excessive ROS production, energy metabolism disorders, cell apoptosis, and various other problems. Also, mitochondrial dynamics disorder is related to tumorigenesis. Surprisingly, recent studies show that targeting mitochondrial dynamics proteins such as DRP1 and MFN2 can not only defend against DOX-induced cardiotoxicity but also enhance or not impair the anticancer effect. Herein, we summarize mitochondrial dynamics disorder in DOX-induced cardiac injury. Furthermore, we provide an overview of current pharmacological and non-pharmacological interventions targeting proteins involved in mitochondrial dynamics to alleviate cardiac damage caused by DOX.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Hu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
10
|
Zoth N, Böhlke L, Theurich S, Baumann FT. [Physical activity and exercise therapy in oncology]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:19-24. [PMID: 36594967 DOI: 10.1007/s00108-022-01450-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
Optimized and individualized treatment options in oncology significantly improve the prognosis of patients. Accordingly, the management of side effects and the avoidance of long-term consequences is becoming increasingly more important. Numerous studies have shown a positive impact of physical activity and targeted exercise therapy on certain patient-related outcomes. Ideally, patients are introduced to exercise therapy directly after the diagnosis is made in order to enable adequate supportive monitoring and to sustainably reduce therapy-associated side effects. Meanwhile, scientific findings have resulted in concrete recommendations for action to effectively improve the main patient-related outcomes, such as fatigue or depression. A moderate endurance training in combination with individualized strength training seems to be of particular importance. In principle, oncological training and exercise therapy can be recommended to every cancer patient regardless of the form of cancer and the timing of therapy but taking the contraindications into account. Therefore, the aim of communal as well as national efforts should be to implement a comprehensive offer of professional exercise therapy to facilitate access of cancer patients to these services as well as to ensure adequate care during and after treatment.
Collapse
Affiliation(s)
- Nora Zoth
- Centrum für integrierte Onkologie (CIO) Aachen, Bonn, Köln, Düsseldorf, Klinik für Innere Medizin, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| | - Lena Böhlke
- Centrum für integrierte Onkologie (CIO) Aachen, Bonn, Köln, Düsseldorf, Klinik für Innere Medizin, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Sebastian Theurich
- Medizinische Klinik und Poliklinik III, Comprehensive Cancer Center München (CCCM), LMU München, München, Deutschland
| | - Freerk T Baumann
- Centrum für integrierte Onkologie (CIO) Aachen, Bonn, Köln, Düsseldorf, Klinik für Innere Medizin, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
11
|
Clayton ZS, Ade CJ, Dieli-Conwright CM, Mathelier HM. A bench to bedside perspective on anthracycline chemotherapy-mediated cardiovascular dysfunction: challenges and opportunities. A symposium review. J Appl Physiol (1985) 2022; 133:1415-1429. [PMID: 36302155 PMCID: PMC9762976 DOI: 10.1152/japplphysiol.00471.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and the risk of developing CVD is markedly increased following anthracycline chemotherapy treatment. Anthracyclines are an essential component of the cancer treatment regimen used for common forms of cancer in male and female children, adolescents, young adults, and older adults. Increased CVD risk with anthracyclines occurs, in part, due to vascular dysfunction-impaired endothelial function and arterial stiffening. These features of vascular dysfunction also play a major role in other common disorders observed following anthracycline treatment, including chronic kidney disease, dementia, and exercise intolerance. However, the mechanisms by which anthracycline chemotherapy induces and sustains vascular dysfunction are incompletely understood. This budding area of biomedical research is termed cardio-oncology, which presents the unique opportunity for collaboration between physicians and basic scientists. This symposium, presented at Experimental Biology 2022, provided a timely update on this important biomedical research topic. The speakers presented observations made at levels from cells to mice to humans treated with anthracycline chemotherapeutic agents using an array of translational research approaches. The speaker panel included a diverse mix of female and male investigators and unique insight from a cardio-oncology physician-scientist. Particular emphasis was placed on challenges and opportunities in this field as well as mechanisms that could be viewed as therapeutic targets leading to novel treatment strategies.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Christina M Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hansie M Mathelier
- Penn Medicine, University of Pennsylvania Health System, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Gasdermin D mediates endoplasmic reticulum stress via FAM134B to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Cell Death Dis 2022; 13:901. [PMID: 36289195 PMCID: PMC9606128 DOI: 10.1038/s41419-022-05333-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 01/23/2023]
Abstract
Cardiomyocyte pyroptosis and apoptosis play a vital role in the pathophysiology of several cardiovascular diseases. Our recent study revealed that gasdermin D (GSDMD) can promote myocardial I/R injury via the caspase-11/GSDMD pathway. We also found that GSDMD deletion attenuated myocardial I/R and MI injury by reducing cardiomyocyte apoptosis and pyroptosis. However, how GSDMD mediates cardiomyocyte apoptosis and protects myocardial function remains unclear. Here, we found that doxorubicin (DOX) treatment resulted in increased apoptosis and pyroptosis in cardiomyocytes and that caspase-11/GSDMD could mediate DOX-induced cardiotoxicity (DIC) injury. Interestingly, GSDMD overexpression promoted cardiomyocyte apoptosis, which was attenuated by GSDMD knockdown. Notably, GSDMD overexpression exacerbated DIC injury, impaired cardiac function in vitro and in vivo, and enhanced DOX-induced cardiomyocyte autophagy. Mechanistically, GSDMD regulated the activity of FAM134B, an endoplasmic reticulum autophagy receptor, by pore formation on the endoplasmic reticulum membrane via its N-terminus, thus activating endoplasmic reticulum stress. In turn, FAM134B interacted with autophagic protein LC3, thus inducing cardiac autophagy, promoting cardiomyocyte apoptosis, and aggravating DIC. These results suggest that GSDMD promotes autophagy and induces cardiomyocyte apoptosis by modulating the reaction of FAM134B and LC3, thereby promoting DIC injury. Targeted regulation of GSDMD may be a new target for the prevention and treatment of DIC.
Collapse
|
13
|
Tranchita E, Murri A, Grazioli E, Cerulli C, Emerenziani GP, Ceci R, Caporossi D, Dimauro I, Parisi A. The Beneficial Role of Physical Exercise on Anthracyclines Induced Cardiotoxicity in Breast Cancer Patients. Cancers (Basel) 2022; 14:cancers14092288. [PMID: 35565417 PMCID: PMC9104319 DOI: 10.3390/cancers14092288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in breast cancer (BC) survival has determined a growing survivor population that seems to develop several comorbidities and, specifically, treatment-induced cardiovascular disease (CVD), especially those patients treated with anthracyclines. Indeed, it is known that these compounds act through the induction of supraphysiological production of reactive oxygen species (ROS), which appear to be central mediators of numerous direct and indirect cardiac adverse consequences. Evidence suggests that physical exercise (PE) practised before, during or after BC treatments could represent a viable non-pharmacological strategy as it increases heart tolerance against many cardiotoxic agents, and therefore improves several functional, subclinical, and clinical parameters. At molecular level, the cardioprotective effects are mainly associated with an exercise-induced increase of stress response proteins (HSP60 and HSP70) and antioxidant (SOD activity, GSH), as well as a decrease in lipid peroxidation, and pro-apoptotic proteins such as Bax, Bax-to-Bcl-2 ratio. Moreover, this protection can potentially be explained by a preservation of myosin heavy chain (MHC) isoform distribution. Despite this knowledge, it is not clear which type of exercise should be suggested in BC patient undergoing anthracycline treatment. This highlights the lack of special guidelines on how affected patients should be managed more efficiently. This review offers a general framework for the role of anthracyclines in the physio-pathological mechanisms of cardiotoxicity and the potential protective role of PE. Finally, potential exercise-based strategies are discussed on the basis of scientific findings.
Collapse
Affiliation(s)
- Eliana Tranchita
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Arianna Murri
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Elisa Grazioli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-06-3673-3532
| | - Claudia Cerulli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Gian Pietro Emerenziani
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Attilio Parisi
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| |
Collapse
|
14
|
Kang DW, Wilson RL, Christopher CN, Normann AJ, Barnes O, Lesansee JD, Choi G, Dieli-Conwright CM. Exercise Cardio-Oncology: Exercise as a Potential Therapeutic Modality in the Management of Anthracycline-Induced Cardiotoxicity. Front Cardiovasc Med 2022; 8:805735. [PMID: 35097024 PMCID: PMC8796963 DOI: 10.3389/fcvm.2021.805735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
Anthracyclines are one of the most effective chemotherapy agents and have revolutionized cancer therapy. However, anthracyclines can induce cardiac injuries through ‘multiple-hits', a series of cardiovascular insults coupled with lifestyle risk factors, which increase the risk of developing short- and long-term cardiac dysfunction and cardiovascular disease that potentially lead to premature mortality following cancer remission. Therefore, the management of anthracycline-induced cardiotoxicity is a serious unmet clinical need. Exercise therapy, as a non-pharmacological intervention, stimulates numerous biochemical and physiologic adaptations, including cardioprotective effects, through the cardiovascular system and cardiac muscles, where exercise has been proposed to be an effective clinical approach that can protect or reverse the cardiotoxicity from anthracyclines. Many preclinical and clinical trials demonstrate the potential impacts of exercise on cardiotoxicity; however, the underlying mechanisms as well as how to implement exercise in clinical settings to improve or protect against long-term cardiovascular disease outcomes are not clearly defined. In this review, we summarize the current evidence in the field of “exercise cardio-oncology” and emphasize the utilization of exercise to prevent and manage anthracycline-induced cardiotoxicities across high-risk and vulnerable populations diagnosed with cancer.
Collapse
Affiliation(s)
- Dong-Woo Kang
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Rebekah L. Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Cami N. Christopher
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States
| | - Amber J. Normann
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Health Sciences, Boston University, Boston, MA, United States
| | - Oscar Barnes
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Jordan D. Lesansee
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Christina M. Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Christina M. Dieli-Conwright
| |
Collapse
|
15
|
Xu N, Lu Y, Yao X, Zhao R, Li Z, Li J, Zhang Y, Li B, Zhou Y, Shen H, Wang L, Chen K, Yang L, Lu S. NMCP-2 polysaccharide purified from Morchella conica effectively prevents doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Food Sci Nutr 2021; 9:6262-6273. [PMID: 34760256 PMCID: PMC8565241 DOI: 10.1002/fsn3.2586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used in the clinical treatment of cancer, but its use is limited due to its cardiotoxic effects. Therefore, it is necessary to explore natural compounds that are effective in protecting against the cardiotoxicity caused by DOX. Neutral Morchella conica polysaccharides-2 (NMCP-2) is a natural polysaccharide with antioxidant activity that was isolated and purified from Morchella conica in our laboratory's previous study. This study aimed to investigate the possible protective effect of NMCP-2 on DOX-induced cardiotoxicity and the potential underlying mechanisms. The model of DOX-induced H9C2 cells and the model of DOX-induced mice were used in this study. In in vitro studies of H9C2 myocardial cells, NMCP-2 effectively increased the activity of H9C2 cells, reducing the levels of lactate dehydrogenase (LDH). In the mouse model of DOX-induced chronic cardiotoxicity, NMCP-2 significantly reduced the cardiac index, reduced the release of serum cardiac enzymes, and improved the pathology of murine myocardial tissues, thereby alleviating DOX-induced cardiotoxicity. Further mechanism studies showed that pretreatment with NMCP-2 counteracted the oxidative stress induced by DOX, as indicated by increasing superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) production decreased. In addition, we observed NMCP-2 inhibited the activation of the mitochondrial apoptosis pathway and regulated the disordered expression of Bcl-2 and Bax in the myocardial tissues of DOX-treated mice. These findings indicated that NMCP-2, a natural bioactive compound, could potentially be used as a food supplement to reduce the cardiotoxicity caused by DOX.
Collapse
Affiliation(s)
- Na Xu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yi Lu
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Xinmiao Yao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Rui Zhao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Zhebin Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Jialei Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yinglei Zhang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Bo Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Ye Zhou
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Huifang Shen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Liqun Wang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Kaixin Chen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Li Yang
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Shuwen Lu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
16
|
Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF, Wang CQ, Gu J. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol 2021; 46:102120. [PMID: 34479089 PMCID: PMC8413906 DOI: 10.1016/j.redox.2021.102120] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The dose-dependent toxicity to cardiomyocytes has been well recognized as a central characteristic of doxorubicin (DOX)-induced cardiotoxicity (DIC), however, the pathogenesis of DIC in the cardiac microenvironment remains elusive. Irisin is a new hormone-like myokine released into the circulation in response to exercise with distinct functions in regulating apoptosis, inflammation, and oxidative stress. Recent advances revealed the role of irisin as a novel therapeutic method and an important mediator of the beneficial effects of exercise in cardioprotection. Here, by using a low-dose long-term mouse DIC model, we found that the perivascular fibrosis was involved in its myocardial toxicity with the underlying mechanism of endothelial-to-mesenchymal transition (EndMT). Irisin treatment could partially reverse DOX-induced perivascular fibrosis and cardiotoxicity compared to endurance exercise. Mechanistically, DOX stimulation led to excessive accumulation of ROS, which activated the NF-κB-Snail pathway and resulted in EndMT. Besides, dysregulation of autophagy was also found in DOX-treated endothelial cells. Restoring autophagy flux could ameliorate EndMT and eliminate ROS. Irisin treatment significantly alleviated ROS accumulation, autophagy disorder, NF-κB-Snail pathway activation as well as the phenotype of EndMT by targeting uncoupling protein 2 (UCP2). Our results also initially found that irisin was mainly secreted by cardiomyocytes in the cardiac microenvironment, which was significantly reduced by DOX intervention, and had a protective effect on endothelial cells in a paracrine manner. In summary, our study indicated that DOX-induced ROS accumulation and autophagy disorders caused an EndMT in CMECs, which played a role in the perivascular fibrosis of DIC. Irisin treatment could partially reverse this phenomenon by regulating UCP2. Cardiomyocytes were the main source of irisin in the cardiac microenvironment. The current study provides a novel perspective elucidating the pathogenesis and the potential treatment of DIC.
Collapse
Affiliation(s)
- Jian-An Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui-Li Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jun-Feng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Chang-Qian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Gabani M, Castañeda D, Nguyen QM, Choi SK, Chen C, Mapara A, Kassan A, Gonzalez AA, Khataei T, Ait-Aissa K, Kassan M. Association of Cardiotoxicity With Doxorubicin and Trastuzumab: A Double-Edged Sword in Chemotherapy. Cureus 2021; 13:e18194. [PMID: 34589374 PMCID: PMC8459919 DOI: 10.7759/cureus.18194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/05/2022] Open
Abstract
Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.
Collapse
Affiliation(s)
- Mohanad Gabani
- Internal Medicine, Harlem Hospital Center, New York, USA
| | - Diana Castañeda
- Basic Sciences, California State University, Los Angeles, USA
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, USA
| | | | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai, CHN
| | - Ayesha Mapara
- Biological Sciences, Northeastern Illinois University, Chicago, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, CHL
| | | | | | - Modar Kassan
- Physiology, The University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
18
|
Wakefield ZR, Tanaka M, Pampo C, Lepler S, Rice L, Guingab-Cagmat J, Garrett TJ, Siemann DW. Normal tissue and tumor microenvironment adaptations to aerobic exercise enhance doxorubicin anti-tumor efficacy and ameliorate its cardiotoxicity in retired breeder mice. Oncotarget 2021; 12:1737-1748. [PMID: 34504647 PMCID: PMC8416558 DOI: 10.18632/oncotarget.28057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Aerobic exercise is receiving increased recognition in oncology for its multiple purported benefits. Exercise is known to induce physiologic adaptations that improve patient quality-of-life parameters as well as all-cause mortality. There also is a growing body of evidence that exercise may directly alter the tumor microenvironment to influence tumor growth, metastasis, and response to anticancer therapies. Furthermore, the physiologic adaptations to exercise in normal tissues may protect against treatment-associated toxicity and allow for greater treatment tolerance. However, the exercise prescription required to induce these beneficial tumor-related outcomes remains unclear. This study characterized the aerobic adaptations to voluntary wheel running in normal tissues and the tumor microenvironment. Female, retired breeder BALB/c mice and syngeneic breast adenocarcinoma cells were utilized in primary tumor and metastasis models. Aerobic exercise was found to induce numerous adaptations across various tissues in these mice, although primary tumor growth and metastasis were largely unaffected. However, intratumoral hypoxia and global metabolism were altered in the tumors of exercising hosts relative to non-wheel running controls. Doxorubicin chemotherapy also was found to be more efficacious at delaying tumor growth with adjuvant aerobic exercise. Additionally, doxorubicin-induced cardiac toxicity was ameliorated in exercising hosts relative to non-wheel running controls. Taken together, these data suggest that the normal tissue and tumor microenvironment adaptations to aerobic exercise can improve doxorubicin efficacy while simultaneously limiting its toxicity.
Collapse
Affiliation(s)
- Zachary R Wakefield
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mai Tanaka
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christine Pampo
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sharon Lepler
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lori Rice
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Bikiewicz A, Banach M, von Haehling S, Maciejewski M, Bielecka‐Dabrowa A. Adjuvant breast cancer treatments cardiotoxicity and modern methods of detection and prevention of cardiac complications. ESC Heart Fail 2021; 8:2397-2418. [PMID: 33955207 PMCID: PMC8318493 DOI: 10.1002/ehf2.13365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
The most common cancer diagnosis in female population is breast cancer, which affects every year about 2.0 million women worldwide. In recent years, significant progress has been made in oncological therapy, in systemic treatment, and in radiotherapy of breast cancer. Unfortunately, the improvement in the effectiveness of oncological treatment and prolonging patients' life span is associated with more frequent occurrence of organ complications, which are side effects of this treatment. Current recommendations suggest a periodic monitoring of the cardiovascular system in course of oncological treatment. The monitoring includes the assessment of occurrence of risk factors for cardiovascular diseases in combination with the evaluation of the left ventricular systolic function using echocardiography and electrocardiography as well as with the analysis of the concentration of cardiac biomarkers. The aim of this review was critical assessment of the breast cancer therapy cardiotoxicity and the analysis of methods its detections. The new cardio-specific biomarkers in serum, the development of modern imaging techniques (Global Longitudinal Strain and Three-Dimensional Left Ventricular Ejection Fraction) and genotyping, and especially their combined use, may become a useful tool for identifying patients at risk of developing cardiotoxicity, who require further cardiovascular monitoring or cardioprotective therapy.
Collapse
Affiliation(s)
- Agata Bikiewicz
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Maciej Banach
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology and German Center for Cardiovascular Research (DZHK), partner site GöttingenUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Marek Maciejewski
- Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)LodzPoland
| | - Agata Bielecka‐Dabrowa
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| |
Collapse
|
20
|
Attanasio U, Pirozzi F, Poto R, Cuomo A, Carannante A, Russo M, Ghigo A, Hirsch E, Tocchetti CG, Varricchi G, Mercurio V. Oxidative stress in anticancer therapies-related cardiac dysfunction. Free Radic Biol Med 2021; 169:410-415. [PMID: 33930514 DOI: 10.1016/j.freeradbiomed.2021.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Redox abnormalities are at the crossroad of cardiovascular diseases, cancer and cardiotoxicity from anticancer treatments. Indeed, disturbances of the redox equilibrium are common drivers of these conditions. Not only is an increase in oxidative stress a fundamental mechanism of action of anthracyclines (which have historically been the most studied anticancer treatments) but also this is at the basis of the toxic cardiovascular effects of antineoplastic targeted drugs and radiotherapy. Here we examine the oxidative mechanisms involved in the different cardiotoxicities induced by the main redox-based antineoplastic treatments, and discuss novel approaches for the treatment of such toxicities.
Collapse
Affiliation(s)
- Umberto Attanasio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Flora Pirozzi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Antonio Carannante
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy; Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy; Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
21
|
Narezkina A, Narayan HK, Zemljic-Harpf AE. Molecular mechanisms of anthracycline cardiovascular toxicity. Clin Sci (Lond) 2021; 135:1311-1332. [PMID: 34047339 PMCID: PMC10866014 DOI: 10.1042/cs20200301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Anthracyclines are effective chemotherapeutic agents, commonly used in the treatment of a variety of hematologic malignancies and solid tumors. However, their use is associated with a significant risk of cardiovascular toxicities and may result in cardiomyopathy and heart failure. Cardiomyocyte toxicity occurs via multiple molecular mechanisms, including topoisomerase II-mediated DNA double-strand breaks and reactive oxygen species (ROS) formation via effects on the mitochondrial electron transport chain, NADPH oxidases (NOXs), and nitric oxide synthases (NOSs). Excess ROS may cause mitochondrial dysfunction, endoplasmic reticulum stress, calcium release, and DNA damage, which may result in cardiomyocyte dysfunction or cell death. These pathophysiologic mechanisms cause tissue-level manifestations, including characteristic histopathologic changes (myocyte vacuolization, myofibrillar loss, and cell death), atrophy and fibrosis, and organ-level manifestations including cardiac contractile dysfunction and vascular dysfunction. In addition, these mechanisms are relevant to current and emerging strategies to diagnose, prevent, and treat anthracycline-induced cardiomyopathy. This review details the established and emerging data regarding the molecular mechanisms of anthracycline-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Anna Narezkina
- Department of Medicine, Division of Cardiovascular Medicine, UCSD Cardiovascular Institute, University of California, San Diego
| | - Hari K. Narayan
- Department of Pediatrics, Division of Cardiology, University of California, San Diego
| | - Alice E. Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Sorriento D, Di Vaia E, Iaccarino G. Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Front Physiol 2021; 12:660068. [PMID: 33986694 PMCID: PMC8110831 DOI: 10.3389/fphys.2021.660068] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a crucial contributor to heart diseases. Alterations in energetic metabolism affect crucial homeostatic processes, such asATP production, the generation of reactive oxygen species, and the release of pro-apoptotic factors, associated with metabolic abnormalities. In response to energetic deficiency, the cardiomyocytes activate the Mitochondrial Quality Control (MQC), a critical process in maintaining mitochondrial health. This process is compromised in cardiovascular diseases depending on the pathology's severity and represents, therefore, a potential therapeutic target. Several potential targeting molecules within this process have been identified in the last years, and therapeutic strategies have been proposed to ameliorate mitochondria monitoring and function. In this context, physical exercise is considered a non-pharmacological strategy to protect mitochondrial health. Physical exercise regulates MQC allowing the repair/elimination of damaged mitochondria and synthesizing new ones, thus recovering the metabolic state. In this review, we will deal with the effect of physical exercise on cardiac mitochondrial function tracing its ability to modulate specific steps in MQC both in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| |
Collapse
|
23
|
Gomes-Santos IL, Jordão CP, Passos CS, Brum PC, Oliveira EM, Chammas R, Camargo AA, Negrão CE. Exercise Training Preserves Myocardial Strain and Improves Exercise Tolerance in Doxorubicin-Induced Cardiotoxicity. Front Cardiovasc Med 2021; 8:605993. [PMID: 33869297 PMCID: PMC8047409 DOI: 10.3389/fcvm.2021.605993] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin causes cardiotoxicity and exercise intolerance. Pre-conditioning exercise training seems to prevent doxorubicin-induced cardiac damage. However, the effectiveness of the cardioprotective effects of exercise training concomitantly with doxorubicin treatment remains largely unknown. To determine whether low-to-moderate intensity aerobic exercise training during doxorubicin treatment would prevent cardiotoxicity and exercise intolerance, we performed exercise training concomitantly with chronic doxorubicin treatment in mice. Ventricular structure and function were accessed by echocardiography, exercise tolerance by maximal exercise test, and cardiac biology by histological and molecular techniques. Doxorubicin-induced cardiotoxicity, evidenced by impaired ventricular function, cardiac atrophy, and fibrosis. Exercise training did not preserve left ventricular ejection fraction or reduced fibrosis. However, exercise training preserved myocardial circumferential strain alleviated cardiac atrophy and restored cardiomyocyte cross-sectional area. On the other hand, exercise training exacerbated doxorubicin-induced body wasting without affecting survival. Finally, exercise training blunted doxorubicin-induced exercise intolerance. Exercise training performed during doxorubicin-based chemotherapy can be a valuable approach to attenuate cardiotoxicity.
Collapse
Affiliation(s)
- Igor L Gomes-Santos
- Faculdade de Medicina, Heart Institute (InCor), Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Camila P Jordão
- Faculdade de Medicina, Heart Institute (InCor), Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Clevia S Passos
- Faculdade de Medicina, Heart Institute (InCor), Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, Universidade de São Paulo, São Paulo, Brazil
| | - Edilamar M Oliveira
- School of Physical Education and Sport, Universidade de São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Faculdade de Medicina, Cancer Institute of the State of São Paulo (ICESP), Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anamaria A Camargo
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Carlos E Negrão
- Faculdade de Medicina, Heart Institute (InCor), Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil.,School of Physical Education and Sport, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Ghignatti PVDC, Nogueira LJ, Lehnen AM, Leguisamo NM. Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis of preclinical studies. Sci Rep 2021; 11:6330. [PMID: 33737561 PMCID: PMC7973566 DOI: 10.1038/s41598-021-83877-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity in chemotherapy is a major treatment drawback. Clinical trials on the cardioprotective effects of exercise in cancer patients have not yet been published. Thus, we conducted a systematic review and meta-analysis of preclinical studies for to assess the efficacy of exercise training on DOX-induced cardiomyopathy. We included studies with animal models of DOX-induced cardiomyopathy and exercise training from PubMed, Web of Sciences and Scopus databases. The outcome was the mean difference (MD) in fractional shortening (FS, %) assessed by echocardiography between sedentary and trained DOX-treated animals. Trained DOX-treated animals improved 7.40% (95% CI 5.75-9.05, p < 0.001) in FS vs. sedentary animals. Subgroup analyses revealed a superior effect of exercise training execution prior to DOX exposure (MD = 8.20, 95% CI 6.27-10.13, p = 0.010). The assessment of cardiac function up to 10 days after DOX exposure and completion of exercise protocol was also associated with superior effect size in FS (MD = 7.89, 95% CI 6.11-9.67, p = 0.020) vs. an echocardiography after over 4 weeks. Modality and duration of exercise, gender and cumulative DOX dose did were not individually associated with changes on FS. Exercise training is a cardioprotective approach in rodent models of DOX-induced cardiomyopathy. Exercise prior to DOX exposure exerts greater effect sizes on FS preservation.
Collapse
Affiliation(s)
- Paola Victória da Costa Ghignatti
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Laura Jesuíno Nogueira
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Alexandre Machado Lehnen
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil
| | - Natalia Motta Leguisamo
- Post-Graduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Av. Princesa Isabel, 370, Porto Alegre, Rio Grande do Sul, CEP 90620-001, Brazil.
| |
Collapse
|
25
|
Ansund J, Mijwel S, Bolam KA, Altena R, Wengström Y, Rullman E, Rundqvist H. High intensity exercise during breast cancer chemotherapy - effects on long-term myocardial damage and physical capacity - data from the OptiTrain RCT. CARDIO-ONCOLOGY 2021; 7:7. [PMID: 33588948 PMCID: PMC7883413 DOI: 10.1186/s40959-021-00091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Adjuvant systemic breast cancer treatment improves disease specific outcomes, but also presents with cardiac toxicity. In this post-hoc exploratory analysis of the OptiTrain trial, the effects of exercise on cardiotoxicity were monitored by assessing fitness and biomarkers over the intervention and into survivorship. Methods; Women starting chemotherapy were randomized to 16-weeks of resistance and high-intensity interval training (RT-HIIT), moderate-intensity aerobic and high-intensity interval training (AT-HIIT), or usual care (UC). Outcome measures included plasma troponin-T (cTnT), Nt-pro-BNP and peak oxygen uptake (VO2peak), assessed at baseline, post-intervention, and at 1- and 2-years. RESULTS For this per-protocol analysis, 88 women met criteria for inclusion. Plasma cTnT increased in all groups post-intervention. At the 1-year follow-up, Nt-pro-BNP was lower in the exercise groups compared to UC. At 2-years there was a drop in VO2peak for patients with high cTnT and Nt-pro-BNP. Fewer patients in the RT-HIIT group fulfilled biomarker risk criteria compared to UC (OR 0.200; 95% CI = 0.055-0.734). CONCLUSIONS In this cohort, high-intensity exercise was associated with lower levels of NT-proBNP 1-year post-baseline, but not with cTnT directly after treatment completion. This may, together with the preserved VO2peak in patients with low levels of biomarkers, indicate a long-term cardioprotective effect of exercise. TRIAL REGISTRATION Clinicaltrials. govNCT02522260 , Registered 13th of august 2015 - Retrospectively Registered.
Collapse
Affiliation(s)
- Josefin Ansund
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Mijwel
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kate A Bolam
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Renske Altena
- Cancer Theme, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Wengström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Cancer Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Rundqvist
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. .,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
26
|
Ahmed LA, Abdou FY, El Fiky AA, Shaaban EA, Ain-Shoka AA. Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity: Favorable Modulation of Oxidative Stress and Inflammatory, Fibrogenic and Apoptotic Pathways. Cardiovasc Toxicol 2021; 21:127-141. [PMID: 32860604 DOI: 10.1007/s12012-020-09602-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Although doxorubicin (Dox) is a backbone of chemotherapy, the search for an effective and safe therapy to revoke Dox-induced acute cardiotoxicity remains a critical matter in cardiology and oncology. The current study was the first to explore the probable protective effects of native and gamma-irradiated fractions with bradykinin-potentiating activity (BPA) isolated from scorpion (Leiurus quinquestriatus) venom against Dox-induced acute cardiotoxicity in rats. Native or irradiated fractions (1 μg/g) were administered intraperitoneally (i.p.) twice per week for 3 weeks, and Dox (15 mg/kg, i.p.) was administered on day 21 at 1 h after the last native or irradiated fraction treatment. Electrocardiographic (ECG) aberrations were ameliorated in the Dox-treated rats pretreated with the native fraction, and the irradiated fraction provided greater amelioration of ECG changes than that of the native fraction. The group pretreated with native protein with BPA also exhibited significant improvements in the levels of oxidative stress-related, inflammatory, angiogenic, fibrogenic, and apoptotic markers compared with those of the Dox group. Notably, the irradiated fraction restored these biomarkers to their normal levels. Additionally, the irradiated fraction ameliorated Dox-induced histological changes and alleviated the severity of cardiac injury to a greater extent than that of the native fraction. In conclusion, the gamma-irradiated detoxified fraction of scorpion venom elicited a better cardioprotective effect than that of the native fraction against Dox-induced acute cardiotoxicity in rats.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Fatma Y Abdou
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr, Cairo, Egypt
| | - Abir A El Fiky
- ANDI Center of Excellence in Antivenom Research, Vacsera, Egypt
| | - Esmat A Shaaban
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr, Cairo, Egypt
| | - Afaf A Ain-Shoka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
27
|
Sequeira CM, Martins MA, Alves R, Nascimento ALR, Botti GCRM, Rocha VN, Matsuura C. Aerobic exercise training attenuates doxorubicin-induced ultrastructural changes in rat ventricular myocytes. Life Sci 2021; 264:118698. [PMID: 33137370 DOI: 10.1016/j.lfs.2020.118698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the effects of aerobic exercise training on cardiomyocyte ultrastructure, oxidative stress, and activation of protein synthesis pathways in a model of cardiomyopathy induced by doxorubicin (Dox). MAIN METHODS Male Sprague Dawley rats were randomly assigned to Control (saline, sedentary), Dox/sedentary (DoxSed), or Dox/exercise (DoxEx) groups. Saline or Dox were injected i.p. for 10 days (1 mg/kg/d). Aerobic exercise training was performed for 9 wks (starting with drug administration) on a treadmill, 5 d/wk, 30 min/d at 60% of maximum velocity. After euthanasia, the left ventricle (LV) was dissected, and processed for microscopy or frozen for Western blot and kinetic measurement of antioxidant enzymes activity. KEY FINDINGS Dox resulted in a mortality of 31.2% of sedentary animals, whilst all animals from both Control and DoxEx groups survived. DoxSed animals presented increased LV connective tissue deposition alongside with massive sarcomeric disorganization with dissolution of myofibrils and wavy Z-lines. There was an increase in oxidative damage and a reduction in the activation of both Akt and ERK pathways in LV from DoxSed compared to Control group. Aerobic training caused notable changes in myocardial structure with reduced fibrosis and preservation of myofibrils integrity and sarcomere organization. This was associated with reduced LV oxidative damage and increased activity of antioxidant enzymes, and an increase in the activation of PI3K-Akt pathway. SIGNIFICANCE Aerobic exercise training was effective in preventing mortality caused by Dox and in preserving LV ultrastructure, partially via activation of the physiological protein synthesis pathway, PI3K-Akt, and reducing oxidative stress.
Collapse
Affiliation(s)
- Claudia Morais Sequeira
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Anjos Martins
- Department of Physiological Sciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Alves
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia Rosa Nascimento
- Department of Histology and Embryology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giuly Cristina Rodrigues Mello Botti
- Laboratory of Pathology and Veterinary Histology, Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Vinicius Novaes Rocha
- Laboratory of Pathology and Veterinary Histology, Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Cristiane Matsuura
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Matos MI, Rubini EDC, Meirelles FDO, Silva EBD. Aerobic Exercise and Cardiac Function of Murines Exposed to Doxorubicin: a Meta-Analysis. Arq Bras Cardiol 2020; 115:885-893. [PMID: 33295451 PMCID: PMC8452221 DOI: 10.36660/abc.20190260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Fundamento: A cardiotoxicidade pode ser uma consequência do tratamento com doxorrubicina (DOX). Objetivos: Verificar o efeito do exercício aeróbio na prevenção da disfunção cardíaca de murinos expostos à DOX. Método: Uma busca abrangente foi realizada em nove bases de dados, em dezembro de 2017. Estudos que avaliaram a função cardíaca de murinos expostos à DOX foram incluídos. O nível de significância adotado foi de 5%. Resultados: Na comparação entre 230 murinos submetidos a exercício aeróbio mais DOX e 222 controles (tratados somente com DOX), a fração de encurtamento mostrou uma melhora de 5,33% a favor do grupo experimental (p = 0,0001). A pressão desenvolvida no ventrículo esquerdo também mostrou um aumento de 24,84 mmHg a favor do grupo de 153 murinos que realizaram exercício em comparação com o grupo controle de 166 murinos (p = 0,00001). Conclusão: Estudos pré-clínicos incluídos nesta metanálise indicaram que o exercício é uma boa estratégia não farmacológica para preservar a função cardíaca pós-DOX.
Collapse
Affiliation(s)
- Mariana Inocêncio Matos
- Universidade do Estado do Rio de Janeiro - Programa de Pós-Graduação em Ciências do Exercício e do Esporte, Rio de Janeiro, RJ - Brasil.,Universidade do Estado do Rio de Janeiro - Grupo de Pesquisa em Ciências do Exercício e da Saúde, Rio de Janeiro, RJ - Brasil
| | - Ercole da Cruz Rubini
- Universidade do Estado do Rio de Janeiro - Programa de Pós-Graduação em Ciências do Exercício e do Esporte, Rio de Janeiro, RJ - Brasil.,Universidade do Estado do Rio de Janeiro - Grupo de Pesquisa em Ciências do Exercício e da Saúde, Rio de Janeiro, RJ - Brasil.,Universidade Estácio de Sá, Rio de Janeiro, RJ - Brasil
| | - Frederico de Oliveira Meirelles
- Universidade do Estado do Rio de Janeiro - Programa de Pós-Graduação em Ciências do Exercício e do Esporte, Rio de Janeiro, RJ - Brasil.,Universidade do Estado do Rio de Janeiro - Grupo de Pesquisa em Ciências do Exercício e da Saúde, Rio de Janeiro, RJ - Brasil.,Universidade Estácio de Sá, Rio de Janeiro, RJ - Brasil
| | - Elirez Bezerra da Silva
- Universidade do Estado do Rio de Janeiro - Programa de Pós-Graduação em Ciências do Exercício e do Esporte, Rio de Janeiro, RJ - Brasil.,Universidade do Estado do Rio de Janeiro - Grupo de Pesquisa em Ciências do Exercício e da Saúde, Rio de Janeiro, RJ - Brasil
| |
Collapse
|
29
|
Hu C, Zhang X, Song P, Yuan YP, Kong CY, Wu HM, Xu SC, Ma ZG, Tang QZ. Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biol 2020; 37:101747. [PMID: 33045622 PMCID: PMC7558217 DOI: 10.1016/j.redox.2020.101747] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Meteorin-like (METRNL) protein is a newly identified myokine that functions to modulate energy expenditure and inflammation in adipose tissue. Herein, we aim to investigate the potential role and molecular basis of METRNL in doxorubicin (DOX)-induced cardiotoxicity. METRNL was found to be abundantly expressed in cardiac muscle under physiological conditions that was decreased upon DOX exposure. Cardiac-specific overexpression of METRNL by adeno-associated virus serotype 9 markedly improved oxidative stress, apoptosis, cardiac dysfunction and survival status in DOX-treated mice. Conversely, knocking down endogenous METRNL by an intramyocardial injection of adenovirus exacerbated DOX-induced cardiotoxicity and death. Meanwhile, METRNL overexpression attenuated, while METRNL silence promoted oxidative damage and apoptosis in DOX-treated H9C2 cells. Systemic METRNL depletion by a neutralizing antibody aggravated DOX-related cardiac injury and dysfunction in vivo, which were notably alleviated by METRNL overexpression within the cardiomyocytes. Besides, we detected robust METRNL secretion from isolated rodent hearts and cardiomyocytes, but to a less extent in those with DOX treatment. And the beneficial effects of METRNL in H9C2 cells disappeared after the incubation with a METRNL neutralizing antibody. Mechanistically, METRNL activated SIRT1 via the cAMP/PKA pathway, and its antioxidant and antiapoptotic capacities were blocked by SIRT1 deficiency. More importantly, METRNL did not affect the tumor-killing action of DOX in 4T1 breast cancer cells and tumor-bearing mice. Collectively, cardiac-derived METRNL activates SIRT1 via cAMP/PKA signaling axis in an autocrine manner, which ultimately improves DOX-elicited oxidative stress, apoptosis and cardiac dysfunction. Targeting METRNL may provide a novel therapeutic strategy for the prevention of DOX-associated cardiotoxicity. METRNL is abundant in the heart, yet decreased upon DOX treatment. METRNL overexpression improves, while METRNL deficiency exacerbates DOX-induced cardiotoxicity in vivo and in vitro. METRNL activates SIRT1 via cAMP/PKA signaling axis in an autocrine manner. METRNL does not affect the tumor-killing action of DOX in cancer cells.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| |
Collapse
|
30
|
Sadeghi F, Afkhami A, Madrakian T, Ghavami R. Computational study to select the capable anthracycline derivatives through an overview of drug structure-specificity and cancer cell line-specificity. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01321-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Maginador G, Lixandrão ME, Bortolozo HI, Vechin FC, Sarian LO, Derchain S, Telles GD, Zopf E, Ugrinowitsch C, Conceição MS. Aerobic Exercise-Induced Changes in Cardiorespiratory Fitness in Breast Cancer Patients Receiving Chemotherapy: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 12:cancers12082240. [PMID: 32796499 PMCID: PMC7463807 DOI: 10.3390/cancers12082240] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
While performing aerobic exercise during chemotherapy has been proven feasible and safe, the efficacy of aerobic training on cardiorespiratory fitness (CRF) in women with breast cancer undergoing chemotherapy has not yet been systematically assessed. Therefore, the objective of this work was to determine (a) the efficacy of aerobic training to improve CRF; (b) the role of aerobic training intensity (moderate or vigorous) on CRF response; (c) the effect of the aerobic training mode (continuous or interval) on changes in CRF in women with breast cancer (BC) receiving chemotherapy. A systematic review and meta-analysis were conducted as per PRISMA guidelines, and randomized controlled trials comparing usual care (UC) and aerobic training in women with BC undergoing chemotherapy were eligible. The results suggest that increases in CRF are favored by (a) aerobic training when compared to usual care; (b) vigorous-intensity aerobic exercise (64–90% of maximal oxygen uptake, VO2max) when compared to moderate-intensity aerobic exercise (46–63% of VO2max); and (c) both continuous and interval aerobic training are effective at increasing the VO2max. Aerobic training improves CRF in women with BC undergoing chemotherapy. Notably, training intensity significantly impacts the VO2max response. Where appropriate, vigorous intensity aerobic training should be considered for women with BC receiving chemotherapy.
Collapse
Affiliation(s)
- Guilherme Maginador
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-881, Brazil; (G.M.); (H.I.B.); (L.O.S.); (S.D.)
| | - Manoel E. Lixandrão
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil; (M.E.L.); (F.C.V.); (G.D.T.); (C.U.)
| | - Henrique I. Bortolozo
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-881, Brazil; (G.M.); (H.I.B.); (L.O.S.); (S.D.)
| | - Felipe C. Vechin
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil; (M.E.L.); (F.C.V.); (G.D.T.); (C.U.)
| | - Luís O. Sarian
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-881, Brazil; (G.M.); (H.I.B.); (L.O.S.); (S.D.)
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-881, Brazil; (G.M.); (H.I.B.); (L.O.S.); (S.D.)
| | - Guilherme D. Telles
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil; (M.E.L.); (F.C.V.); (G.D.T.); (C.U.)
| | - Eva Zopf
- Department of Exercise Oncology, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil; (M.E.L.); (F.C.V.); (G.D.T.); (C.U.)
| | - Miguel S. Conceição
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-881, Brazil; (G.M.); (H.I.B.); (L.O.S.); (S.D.)
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil; (M.E.L.); (F.C.V.); (G.D.T.); (C.U.)
- Faculty of Physical Education, University of Campinas, Campinas 13083-851, Brazil
- Correspondence: ; Tel.: +55-11-3091-8733
| |
Collapse
|
32
|
Hu C, Zhang X, Zhang N, Wei WY, Li LL, Ma ZG, Tang QZ. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clin Transl Med 2020; 10:e124. [PMID: 32618439 PMCID: PMC7418805 DOI: 10.1002/ctm2.124] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Inflammation, oxidative stress, and apoptosis contribute to the evolution of doxorubicin (DOX)‐induced cardiotoxicity. Osteocrin (OSTN) is a novel secretory peptide mainly derived from the bone and skeletal muscle, and plays critical roles in regulating bone growth and physical endurance. Inspiringly, OSTN was also reported to be abundant in the myocardium that functioned as a therapeutic agent against cardiac rupture and congestive heart failure in mice after myocardial infarction. Herein, we investigated the role and potential mechanism of OSTN in DOX‐induced cardiotoxicity. Methods Cardiac‐restrict OSTN overexpression was performed by the intravenous injection of a cardiotropic AAV9 vector, and subsequently the mice received 15 mg/kg DOX injection (i.p., once) to induce acute cardiac injury. Besides, H9C2 cell lines were used to assess the possible role of OSTN in vitro by incubating with recombinant human OSTN or small interfering RNA against Ostn (siOstn). To clarify the involvement of protein kinase G (PKG), KT5823 and siPkg were used in vivo and in vitro. Mice were also administrated intraperitoneally with 5 mg/kg DOX weekly for consecutive 3 weeks at a cumulative dose of 15 mg/kg to mimic the cardiotoxic effects upon chronic DOX exposure. Results OSTN treatment notably attenuated, whereas OSTN silence exacerbated inflammation, oxidative stress, and cardiomyocyte apoptosis in DOX‐treated H9C2 cells. Besides, cardiac‐restrict OSTN‐overexpressed mice showed an alleviated cardiac injury and malfunction upon DOX injection. Mechanistically, we found that OSTN activated PKG, while PKG inhibition abrogated the beneficial effect of OSTN in vivo and in vitro. As expected, OSTN overexpression also improved cardiac function and survival rate in mice after chronic DOX treatment. Conclusions OSTN protects against DOX‐elicited inflammation, oxidative stress, apoptosis, and cardiac dysfunction via activating PKG, and cardiac gene therapy with OSTN provides a novel therapeutic strategy against DOX‐induced cardiotoxicity.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P. R. China
| |
Collapse
|
33
|
Venturini E, Iannuzzo G, D’Andrea A, Pacileo M, Tarantini L, Canale M, Gentile M, Vitale G, Sarullo F, Vastarella R, Di Lorenzo A, Testa C, Parlato A, Vigorito C, Giallauria F. Oncology and Cardiac Rehabilitation: An Underrated Relationship. J Clin Med 2020; 9:E1810. [PMID: 32532011 PMCID: PMC7356735 DOI: 10.3390/jcm9061810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer and cardiovascular diseases are globally the leading causes of mortality and morbidity. These conditions are closely related, beyond that of sharing many risk factors. The term bidirectional relationship indicates that cardiovascular diseases increase the likelihood of getting cancer and vice versa. The biological and biochemical pathways underlying this close relationship will be analyzed. In this new overlapping scenario, physical activity and exercise are proven protective behaviors against both cardiovascular diseases and cancer. Many observational studies link an increase in physical activity to a reduction in either the development or progression of cancer, as well as to a reduction in risk in cardiovascular diseases, a non-negligible cause of death for long-term cancer survivors. Exercise is an effective tool for improving cardio-respiratory fitness, quality of life, psychological wellbeing, reducing fatigue, anxiety and depression. Finally, it can counteract the toxic effects of cancer therapy. The protection obtained from physical activity and exercise will be discussed in the various stages of the cancer continuum, from diagnosis, to adjuvant therapy, and from the metastatic phase to long-term effects. Particular attention will be paid to the shelter against chemotherapy, radiotherapy, cardiovascular risk factors or new onset cardiovascular diseases. Cardio-Oncology Rehabilitation is an exercise-based multi-component intervention, starting from the model of Cardiac Rehabilitation, with few modifications, to improve care and the prognosis of a patient's cancer. The network of professionals dedicated to Cardiac Rehabilitation is a ready-to-use resource, for implementing Cardio-Oncology Rehabilitation.
Collapse
Affiliation(s)
- E. Venturini
- Cardiac Rehabilitation Unit, Azienda USL Toscana Nord-Ovest, Cecina Civil Hospital, 57023 LI Cecina, Italy
| | - G. Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (G.I.); (M.G.)
| | - A. D’Andrea
- Unit of Cardiology and Intensive Care, “Umberto I” Hospital, Viale San Francesco, Nocera Inferiore, 84014 SA, Italy; (A.D.); (M.P.)
| | - M. Pacileo
- Unit of Cardiology and Intensive Care, “Umberto I” Hospital, Viale San Francesco, Nocera Inferiore, 84014 SA, Italy; (A.D.); (M.P.)
| | - L. Tarantini
- Division of Cardiology, Ospedale San Martino ULSS1 Dolomiti, 32100 Belluno, Italy;
| | - M.L. Canale
- Department of Cardiology, Azienda USL Toscana Nord-Ovest, Ospedale Versilia, Lido di Camaiore, 55041 LU, Italy;
| | - M. Gentile
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (G.I.); (M.G.)
| | - G. Vitale
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli Hospital, 90123 Palermo, Italy; (G.V.); (F.M.S.)
| | - F.M. Sarullo
- Cardiovascular Rehabilitation Unit, Buccheri La Ferla Fatebenefratelli Hospital, 90123 Palermo, Italy; (G.V.); (F.M.S.)
| | - R. Vastarella
- UOSD Scompenso Cardiaco e Cardiologia Riabilitativa, AORN Ospedale dei Colli-Monaldi, 80131 Naples, Italy;
| | - A. Di Lorenzo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.D.L.); (C.T.); (A.P.); (C.V.); (F.G.)
| | - C. Testa
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.D.L.); (C.T.); (A.P.); (C.V.); (F.G.)
| | - A. Parlato
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.D.L.); (C.T.); (A.P.); (C.V.); (F.G.)
| | - C. Vigorito
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.D.L.); (C.T.); (A.P.); (C.V.); (F.G.)
| | - F. Giallauria
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (A.D.L.); (C.T.); (A.P.); (C.V.); (F.G.)
| |
Collapse
|
34
|
MicroRNAs in Cancer Treatment-Induced Cardiotoxicity. Cancers (Basel) 2020; 12:cancers12030704. [PMID: 32192047 PMCID: PMC7140035 DOI: 10.3390/cancers12030704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer treatment has made significant progress in the cure of different types of tumors. Nevertheless, its clinical use is limited by unwanted cardiotoxicity. Aside from the conventional chemotherapy approaches, even the most newly developed, i.e., molecularly targeted therapy and immunotherapy, exhibit a similar frequency and severity of toxicities that range from subclinical ventricular dysfunction to severe cardiomyopathy and, ultimately, congestive heart failure. Specific mechanisms leading to cardiotoxicity still remain to be elucidated. For instance, oxidative stress and DNA damage are considered key players in mediating cardiotoxicity in different treatments. microRNAs (miRNAs) act as key regulators in cell proliferation, cell death, apoptosis, and cell differentiation. Their dysregulation has been associated with adverse cardiac remodeling and toxicity. This review provides an overview of the cardiotoxicity induced by different oncologic treatments and potential miRNAs involved in this effect that could be used as possible therapeutic targets.
Collapse
|
35
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
36
|
Caru M, Lalonde F, Legault E, Curnier D, St-Pierre DH, Comtois AS, Tournoux F. Ethical consideration and feasibility demonstration of high-intensity interval training without the use of electrical shocks in mice with and without doxorubicin exposition. Am J Cancer Res 2019; 9:2813-2820. [PMID: 31911864 PMCID: PMC6943355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Most protocols intended to stimulate cardiovascular training in mice use electrical shocks that cause psychological stress and interfere with running performance. The aim of this study was to: 1) demonstrate the feasibility of a two-week high-intensity interval training (HIIT) program without the use of electric shocks in mice and 2) show that HIIT without electric shocks is feasible in the specific context of mice exposed to chemotherapy (i.e., doxorubicin). METHODS Ten C57bl/6 6-week-old female mice underwent a maximal exercise capacity test before and after two weeks of HIIT (five sessions per week) to measure their maximum running speed. The electrical stimulus was substituted by gently lifting the hind legs of the training mice using a tongue depressor. A second sample of ten C57bl/6 10-week-old female mice receiving a single intravenous injection of 20 mg/kg of doxorubicin underwent a single session of HIIT post-DOX using the same gentle stimulation method. RESULTS After two weeks of HIIT without the use of electric shocks, non-treated mice had a significant increase in their maximal speed (4.4 m•min-1; P = 0.019). In DOX-treated mice, the compliance rate to run went from 100% during the acclimation period prior to doxorubicin treatment to 100% when HIIT was performed after the DOX treatment. Doxorubicin treatment seemed to affect exercise compliance in DOX-treated mice. Our study demonstrated that a two-week HIIT program in non-treated mice and a single HIIT session in DOX-treated mice are feasible. CONCLUSION The use of electric shocks was not required to obtain acceptable exercise compliance and a significant change in mice physical capacity. Our technique to perform a treadmill maximal exercise capacity test was shown to be feasible, even in specific pathological conditions like chemotherapy infusion, and could become a reference for future research protocols aimed at reducing the impact of psychological stress caused by electric shocks in mice. This model of exercise training in mice introduces an alternative to ethical conduct standards in animal research.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of MontrealMontreal, Quebec, Canada
- Laboratoire EA 4430 - Clinique Psychanalyse Developpement (CliPsyD), Department of Psychology, University of Paris NanterreNanterre, Ile-de-France, France
- Sainte-Justine University Health Center, Research CenterMontreal, Canada
| | - François Lalonde
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of MontrealMontreal, Quebec, Canada
- University Hospital of Montreal, Research CenterMontreal, Canada
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | - Elise Legault
- University Hospital of Montreal, Research CenterMontreal, Canada
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | - Daniel Curnier
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of MontrealMontreal, Quebec, Canada
- Sainte-Justine University Health Center, Research CenterMontreal, Canada
- University Hospital of Montreal, Research CenterMontreal, Canada
| | - David H St-Pierre
- Sainte-Justine University Health Center, Research CenterMontreal, Canada
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | - Alain Steve Comtois
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | | |
Collapse
|
37
|
Denlinger CS, Sanft T, Baker KS, Broderick G, Demark-Wahnefried W, Friedman DL, Goldman M, Hudson M, Khakpour N, King A, Koura D, Lally RM, Langbaum TS, McDonough AL, Melisko M, Montoya JG, Mooney K, Moslehi JJ, O'Connor T, Overholser L, Paskett ED, Peppercorn J, Pirl W, Rodriguez MA, Ruddy KJ, Silverman P, Smith S, Syrjala KL, Tevaarwerk A, Urba SG, Wakabayashi MT, Zee P, McMillian NR, Freedman-Cass DA. Survivorship, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019; 16:1216-1247. [PMID: 30323092 DOI: 10.6004/jnccn.2018.0078] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The NCCN Guidelines for Survivorship provide screening, evaluation, and treatment recommendations for common physical and psychosocial consequences of cancer and cancer treatment to help healthcare professionals who work with survivors of adult-onset cancer in the posttreatment period. This portion of the guidelines describes recommendations regarding the management of anthracycline-induced cardiotoxicity and lymphedema. In addition, recommendations regarding immunizations and the prevention of infections in cancer survivors are included.
Collapse
|
38
|
Antunes P, Esteves D, Nunes C, Amarelo A, Fonseca-Moutinho J, Afreixo V, Costa H, Alves A, Joaquim A. Effects of physical exercise on outcomes of cardiac (dys)function in women with breast cancer undergoing anthracycline or trastuzumab treatment: study protocol for a systematic review. Syst Rev 2019; 8:239. [PMID: 31651372 PMCID: PMC6813963 DOI: 10.1186/s13643-019-1154-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cardiotoxicity is a known complication and one of the most adverse effects from the use of conventional treatments such as anthracyclines and trastuzumab in breast cancer (BC) care. This phenomenon has been associated with the restriction of therapeutic options and the increase of cardiovascular complications, which may compromise the survival of patients. Implementation of preventive strategies is an important approach for the management of this issue. Physical exercise has been proposed as a non-pharmacological strategy to counteracting cardiotoxicity. The aim of this protocol is to describe the rationale and methods for a systematic review of published randomized controlled trials (RCTs) that have analysed the effects of physical exercise on outcomes of cardiac (dys)function in women with BC undergoing neoadjuvant or adjuvant treatment containing anthracyclines and/or trastuzumab. METHODS AND ANALYSIS This is a protocol for a systematic review reported according to the PRISMA-P 2015 checklist. Randomized controlled trials (RCTs) will be included. The literature will be screened on MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, ISI Web of Science and Scopus. The risk of bias of the included RCTs will be assessed using the Cochrane Collaboration's tool. The primary outcomes will be systolic function (left ventricular ejection fraction), diastolic function (E/A' ratio, deceleration time of early left ventricular filling, isovolumetric relaxation time, E/E' septal and lateral ratio) and myocardial deformation imaging outcomes (strain and strain rate [measured in longitudinal, radial, or circumferential directions]). Secondary outcomes will be cardiac biomarkers (troponin I or T, high-sensitivity troponin I or T, brain natriuretic peptide, amino terminal of B-type natriuretic peptide). Data will be descriptively reported, and quantitative synthesis will also be considered if the included studies are sufficiently homogenous. DISCUSSION This systematic review will help to understand the effectiveness of physical exercise on counteracting cardiotoxicity related to anticancer therapies in women with BC. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42018096060.
Collapse
Affiliation(s)
- Pedro Antunes
- Research Center in Sport Sciences, Health and Human Development (CIDESD) & Sport Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
- Associação de Cuidados de Suporte em Oncologia, Sanfins, Portugal
| | - Dulce Esteves
- Research Center in Sport Sciences, Health and Human Development (CIDESD) & Sport Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Célia Nunes
- Mathematics Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Anabela Amarelo
- Associação de Cuidados de Suporte em Oncologia, Sanfins, Portugal
- Oncology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova Gaia, Portugal
| | | | - Vera Afreixo
- CIDMA - Center for Research and Development in Mathematics and Applications, iBiMED - Institute for Biomedicine, Department of Mathematics, Universidade de Aveiro, Aveiro, Portugal
| | - Henrique Costa
- Psychiatry and Mental Health Department, Centro Hospitalar de Setúbal, Setúbal, Portugal
| | - Alberto Alves
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD) & Instituto Universitário da Maia, Maia, Portugal
| | - Ana Joaquim
- Associação de Cuidados de Suporte em Oncologia, Sanfins, Portugal
- Oncology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova Gaia, Portugal
| |
Collapse
|
39
|
Affiliation(s)
- Christine E. Simmons
- Address for correspondence: Dr. Christine Simmons, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada. @DrCESimmons
| |
Collapse
|
40
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
41
|
Cuomo A, Rodolico A, Galdieri A, Russo M, Campi G, Franco R, Bruno D, Aran L, Carannante A, Attanasio U, Tocchetti CG, Varricchi G, Mercurio V. Heart Failure and Cancer: Mechanisms of Old and New Cardiotoxic Drugs in Cancer Patients. Card Fail Rev 2019; 5:112-118. [PMID: 31179022 PMCID: PMC6545979 DOI: 10.15420/cfr.2018.32.2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Although there have been many improvements in prognosis for patients with cancer, anticancer therapies are burdened by the risk of cardiovascular toxicity. Heart failure is one of the most dramatic clinical expressions of cardiotoxicity, and it may occur acutely or appear years after treatment. This article reviews the main mechanisms and clinical presentations of left ventricular dysfunction induced by some old and new cardiotoxic drugs in cancer patients, referring to the most recent advances in the field. The authors describe the mechanisms of cardiotoxicity induced by anthracyclines, which can lead to cardiovascular problems in up to 48% of patients who take them. The authors also describe mechanisms of cardiotoxicity induced by biological drugs that produce left ventricular dysfunction through secondary mechanisms. They outline the recent advances in immunotherapies, which have revolutionised anticancer therapies.
Collapse
Affiliation(s)
- Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Alessio Rodolico
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Amalia Galdieri
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Giacomo Campi
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Riccardo Franco
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Dalila Bruno
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Luisa Aran
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Antonio Carannante
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Umberto Attanasio
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University Naples, Italy
| |
Collapse
|
42
|
Cardinale D, Stivala F, Cipolla CM. Oncologic therapies associated with cardiac toxicities: how to minimize the risks. Expert Rev Anticancer Ther 2019; 19:359-374. [DOI: 10.1080/14737140.2019.1596804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniela Cardinale
- Cardioncology Unit, Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Federica Stivala
- Cardioncology Unit, Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Carlo M. Cipolla
- Cardioncology Unit, Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
43
|
van Andel MM, Groenink M, Zwinderman AH, Mulder BJM, de Waard V. The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients⁻Insights from Rodent-Based Animal Studies. Int J Mol Sci 2019; 20:E1122. [PMID: 30841577 PMCID: PMC6429290 DOI: 10.3390/ijms20051122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Marfan syndrome (MFS) patients are at risk for cardiovascular disease. In particular, for aortic aneurysm formation, which ultimately can result in a life-threatening aortic dissection or rupture. Over the years, research into a sufficient pharmacological treatment option against aortopathy has expanded, mostly due to the development of rodent disease models for aneurysm formation and dissections. Unfortunately, no optimal treatment strategy has yet been identified for MFS. The biologically-potent polyphenol resveratrol (RES), that occurs in nuts, plants, and the skin of grapes, was shown to have a positive effect on aortic repair in various rodent aneurysm models. RES demonstrated to affect aortic integrity and aortic dilatation. The beneficial processes relevant for MFS included the improvement of endothelial dysfunction, extracellular matrix degradation, and smooth muscle cell death. For the wide range of beneficial effects on these mechanisms, evidence was found for the following involved pathways; alleviating oxidative stress (change in eNOS/iNOS balance and decrease in NOX4), reducing protease activity to preserve the extracellular matrix (decrease in MMP2), and improving smooth muscle cell survival affecting aortic aging (changing the miR21/miR29 balance). Besides aortic features, MFS patients may also suffer from manifestations concerning the heart, such as mitral valve prolapse and left ventricular impairment, where evidence from rodent models shows that RES may aid in promoting cardiomyocyte survival directly (SIRT1 activation) or by reducing oxidative stress (increasing superoxide dismutase) and increasing autophagy (AMPK activation). This overview discusses recent RES studies in animal models of aortic aneurysm formation and heart failure, where different advantageous effects have been reported that may collectively improve the aortic and cardiac pathology in patients with MFS. Therefore, a clinical study with RES in MFS patients seems justified, to validate RES effectiveness, and to judge its suitability as potential new treatment strategy.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Radiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Hart NH, Galvão DA, Saunders C, Taaffe DR, Feeney KT, Spry NA, Tsoi D, Martin H, Chee R, Clay T, Redfern AD, Newton RU. Mechanical suppression of osteolytic bone metastases in advanced breast cancer patients: a randomised controlled study protocol evaluating safety, feasibility and preliminary efficacy of exercise as a targeted medicine. Trials 2018; 19:695. [PMID: 30572928 PMCID: PMC6302473 DOI: 10.1186/s13063-018-3091-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Skeletal metastases present a major challenge for clinicians, representing an advanced and typically incurable stage of cancer. Bone is also the most common location for metastatic breast carcinoma, with skeletal lesions identified in over 80% of patients with advanced breast cancer. Preclinical models have demonstrated the ability of mechanical stimulation to suppress tumour formation and promote skeletal preservation at bone sites with osteolytic lesions, generating modulatory interference of tumour-driven bone remodelling. Preclinical studies have also demonstrated anti-cancer effects through exercise by minimising tumour hypoxia, normalising tumour vasculature and increasing tumoural blood perfusion. This study proposes to explore the promising role of targeted exercise to suppress tumour growth while concomitantly delivering broader health benefits in patients with advanced breast cancer with osteolytic bone metastases. METHODS This single-blinded, two-armed, randomised and controlled pilot study aims to establish the safety, feasibility and efficacy of an individually tailored, modular multi-modal exercise programme incorporating spinal isometric training (targeted muscle contraction) in 40 women with advanced breast cancer and stable osteolytic spinal metastases. Participants will be randomly assigned to exercise or usual medical care. The intervention arm will receive a 3-month clinically supervised exercise programme, which if proven to be safe and efficacious will be offered to the control-arm patients following study completion. Primary endpoints (programme feasibility, safety, tolerance and adherence) and secondary endpoints (tumour morphology, serum tumour biomarkers, bone metabolism, inflammation, anthropometry, body composition, bone pain, physical function and patient-reported outcomes) will be measured at baseline and following the intervention. DISCUSSION Exercise medicine may positively alter tumour biology through numerous mechanical and non-mechanical mechanisms. This randomised controlled pilot trial will explore the preliminary effects of targeted exercise on tumour morphology and circulating metastatic tumour biomarkers using an osteolytic skeletal metastases model in patients with breast cancer. The study is principally aimed at establishing feasibility and safety. If proven to be safe and feasible, results from this study could have important implications for the delivery of this exercise programme to patients with advanced cancer and sclerotic skeletal metastases or with skeletal lesions present in haematological cancers (such as osteolytic lesions in multiple myeloma), for which future research is recommended. TRIAL REGISTRATION anzctr.org.au , ACTRN-12616001368426 . Registered on 4 October 2016.
Collapse
Affiliation(s)
- Nicolas H. Hart
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Daniel A. Galvão
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Christobel Saunders
- St John of God Hospital, Perth, WA Australia
- Royal Perth Hospital, Perth, WA Australia
- School of Medicine, University of Western Australia, Perth, WA Australia
| | - Dennis R. Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD Australia
| | - Kynan T. Feeney
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
- St John of God Hospital, Perth, WA Australia
- School of Medicine, University of Notre Dame Australia, Perth, WA Australia
| | - Nigel A. Spry
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
- School of Medicine, University of Western Australia, Perth, WA Australia
- Genesis CancerCare, Perth, WA Australia
| | - Daphne Tsoi
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
- St John of God Hospital, Perth, WA Australia
- School of Medicine, University of Notre Dame Australia, Perth, WA Australia
| | | | - Raphael Chee
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
- School of Medicine, University of Western Australia, Perth, WA Australia
- Genesis CancerCare, Perth, WA Australia
| | - Tim Clay
- St John of God Hospital, Perth, WA Australia
- Genesis CancerCare, Perth, WA Australia
| | - Andrew D. Redfern
- School of Medicine, University of Western Australia, Perth, WA Australia
- Fiona Stanley Hospital, Perth, WA Australia
| | - Robert U. Newton
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027 Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
45
|
Prehabilitation Prior to Major Cancer Surgery: Training for Surgery to Optimize Physiologic Reserve to Reduce Postoperative Complications. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0300-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Howden EJ, Bigaran A, Beaudry R, Fraser S, Selig S, Foulkes S, Antill Y, Nightingale S, Loi S, Haykowsky MJ, La Gerche A. Exercise as a diagnostic and therapeutic tool for the prevention of cardiovascular dysfunction in breast cancer patients. Eur J Prev Cardiol 2018; 26:305-315. [PMID: 30376366 DOI: 10.1177/2047487318811181] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Anthracycline chemotherapy may be associated with decreased cardiac function and functional capacity measured as the peak oxygen uptake during exercise ( V·O2 peak). We sought to determine (a) whether a structured exercise training program would attenuate reductions in V·O2 peak and (b) whether exercise cardiac imaging is a more sensitive marker of cardiac injury than the current standard of care resting left ventricular ejection fraction (LVEF). METHODS Twenty-eight patients with early stage breast cancer undergoing anthracycline chemotherapy were able to choose between exercise training (mean ± SD age 47 ± 9 years, n = 14) or usual care (mean ± SD age 53 ± 9 years, n = 14). Measurements performed before and after anthracycline chemotherapy included cardiopulmonary exercise testing to determine V·O2 peak and functional disability ( V·O2 peak < 18 ml/min/kg), resting echocardiography (LVEF and global longitudinal strain), cardiac biomarkers (troponin and B-type natriuretic peptide) and exercise cardiac magnetic resonance imaging to determine stroke volume and peak cardiac output. The exercise training group completed 2 × 60 minute supervised exercise sessions per week. RESULTS Decreases in V·O2 peak during chemotherapy were attenuated with exercise training (15 vs. 4% reduction, P = 0.010) and fewer participants in the exercise training group met the functional disability criteria after anthracycline chemotherapy compared with those in the usual care group (7 vs. 50%, P = 0.01). Compared with the baseline, the peak exercise heart rate was higher and the stroke volume was lower after chemotherapy ( P = 0.003 and P = 0.06, respectively). There was a reduction in resting LVEF (from 63 ± 5 to 60 ± 5%, P = 0.002) and an increase in troponin (from 2.9 ± 1.3 to 28.5 ± 22.4 ng/mL, P < 0.0001), but no difference was observed between the usual care and exercise training group. The baseline peak cardiac output was the strongest predictor of functional capacity after anthracycline chemotherapy in a model containing age and resting cardiac function (LVEF and global longitudinal strain). CONCLUSIONS The peak exercise cardiac output can identify patients at risk of chemotherapy-induced functional disability, whereas current clinical standards are unhelpful. Functional disability can be prevented with exercise training.
Collapse
Affiliation(s)
- Erin J Howden
- 1 Department of Sports Cardiology, Baker Heart and Diabetes Institute, Australia
| | - Ashley Bigaran
- 1 Department of Sports Cardiology, Baker Heart and Diabetes Institute, Australia.,2 Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Australia
| | - Rhys Beaudry
- 3 Integrated Cardiovascular Exercise Physiology and Rehabilitation Laboratory, College of Nursing & Health Innovation, University of Texas Arlington, USA
| | - Steve Fraser
- 4 Institute for Physical Activity and Nutrition, Deakin University, Australia.,5 School of Exercise and Nutrition Sciences, Deakin University, Australia
| | - Steve Selig
- 5 School of Exercise and Nutrition Sciences, Deakin University, Australia
| | - Steve Foulkes
- 1 Department of Sports Cardiology, Baker Heart and Diabetes Institute, Australia.,4 Institute for Physical Activity and Nutrition, Deakin University, Australia.,5 School of Exercise and Nutrition Sciences, Deakin University, Australia
| | | | - Sophie Nightingale
- 7 Surgical Oncology Department, Peter MacCallum Cancer Centre, Australia
| | - Sherene Loi
- 8 Translational Breast Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Australia
| | - Mark J Haykowsky
- 1 Department of Sports Cardiology, Baker Heart and Diabetes Institute, Australia.,3 Integrated Cardiovascular Exercise Physiology and Rehabilitation Laboratory, College of Nursing & Health Innovation, University of Texas Arlington, USA
| | - André La Gerche
- 1 Department of Sports Cardiology, Baker Heart and Diabetes Institute, Australia.,9 Cardiology Department, St Vincent's Hospital Melbourne, Melbourne VIC, Australia
| |
Collapse
|
47
|
Wheatley CM, Kannan T, Bornschlegl S, Kim CH, Gastineau DA, Dietz AB, Johnson BD, Gustafson MP. Conducting Maximal and Submaximal Endurance Exercise Testing to Measure Physiological and Biological Responses to Acute Exercise in Humans. J Vis Exp 2018:58417. [PMID: 30394385 PMCID: PMC6235552 DOI: 10.3791/58417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Regular physical activity has a positive effect on human health, but the mechanisms controlling these effects remain unclear. The physiologic and biologic responses to acute exercise are predominantly influenced by the duration and intensity of the exercise regimen. As exercise is increasingly thought of as a therapeutic treatment and/or diagnostic tool, it is important that standardizable methodologies be utilized to understand the variability and to increase the reproducibility of exercise outputs and measurements of responses to such regimens. To that end, we describe two different cycling exercise regimens that yield different physiologic outputs. In a maximal exercise test, exercise intensity is continually increased with a greater workload resulting in an increasing cardiopulmonary and metabolic response (heart rate, stroke volume, ventilation, oxygen consumption and carbon dioxide production). In contrast, during endurance exercise tests, the demand is increased from that at rest, but is raised to a fixed submaximal exercise intensity resulting in a cardiopulmonary and metabolic response that typically plateaus. Along with the protocols, we provide suggestions on measuring physiologic outputs that include, but are not limited to, heart rate, slow and forced vital capacity, gas exchange metrics, and blood pressure to enable the comparison of exercise outputs between studies. Biospecimens can then be sampled to assess cellular, protein, and/or gene expression responses. Overall, this approach can be easily adapted into both short- and long-term effects of two distinct exercise regimens.
Collapse
Affiliation(s)
| | | | | | - Chul-Ho Kim
- Department of Cardiovascular Diseases, Mayo Clinic
| | | | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | | | | |
Collapse
|
48
|
Cadeddu Dessalvi C, Deidda M, Mele D, Bassareo PP, Esposito R, Santoro C, Lembo M, Galderisi M, Mercuro G. Chemotherapy-induced cardiotoxicity. J Cardiovasc Med (Hagerstown) 2018; 19:315-323. [DOI: 10.2459/jcm.0000000000000667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Ahmadian M, Dabidi Roshan V, Leicht AS. Age-related effect of aerobic exercise training on antioxidant and oxidative markers in the liver challenged by doxorubicin in rats. Free Radic Res 2018; 52:775-782. [DOI: 10.1080/10715762.2018.1470328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehdi Ahmadian
- Department of Physical Education and Sport Sciences, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
| | - Valiollah Dabidi Roshan
- Department of Sport Physiology, College of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Anthony S. Leicht
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
50
|
Yang X, Liu N, Li X, Yang Y, Wang X, Li L, Jiang L, Gao Y, Tang H, Tang Y, Xing Y, Shang H. A Review on the Effect of Traditional Chinese Medicine Against Anthracycline-Induced Cardiac Toxicity. Front Pharmacol 2018; 9:444. [PMID: 29867456 PMCID: PMC5963334 DOI: 10.3389/fphar.2018.00444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023] Open
Abstract
Anthracyclines are effective agents generally used to treat solid-tumor and hematologic malignancies. The use of anthracyclines for over 40 years has improved cancer survival statistics. Nevertheless, the clinical utility of anthracyclines is limited by its dose-dependent cardiotoxicity that adversely affects 10-30% of patients. Anthracycline-induced cardiotoxicity may be classified as acute/subacute or chronic/late toxicity and leads to devastating adverse effects resulting in poor quality of life, morbidity, and premature mortality. Traditional Chinese medicine has a history of over 2,000 years, involving both unique theories and substantial experience. Several studies have investigated the potential of natural products to decrease the cardiotoxic effects of chemotherapeutic agents on healthy cells, without negatively affecting their antineoplastic activity. This article discusses the mechanism of anthracycline-induced cardiotoxicity, and summarizes traditional Chinese medicine treatment for anthracycline-induced heart failure (HF), cardiac arrhythmia, cardiomyopathy, and myocardial ischemia in recent years, in order to provide a reference for the clinical prevention and treatment of cardiac toxicity.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Linling Li
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Le Jiang
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hebin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong Tang
- Department of Pancreatic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|