1
|
Sigle M, Rohlfing AK, Cruz Santos M, Kopp T, Krutzke K, Gidlund V, Kollotzek F, Marzi J, von Ungern-Sternberg S, Poso A, Heikenwälder M, Schenke-Layland K, Seizer P, Möllmann J, Marx N, Feil R, Feil S, Lukowski R, Borst O, Schäffer TE, Müller KAL, Gawaz MP, Heinzmann D. Targeting Cyclophilin A in the Cardiac Microenvironment Preserves Heart Function and Structure in Failing Hearts. Circ Res 2024; 135:758-773. [PMID: 39140165 DOI: 10.1161/circresaha.124.324812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function. METHODS Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody. RESULTS We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice. CONCLUSIONS Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Manuel Sigle
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Melanie Cruz Santos
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Konstantin Krutzke
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Vincent Gidlund
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Ferdinand Kollotzek
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Saskia von Ungern-Sternberg
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Germany (S.U.-S.)
| | - Antti Poso
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland Kuopio (A.P.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Germany (A.P.)
- Tübingen Center for Academic Drug Discovery and Development (TüCAD2), Tübingen, Germany (A.P.)
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre Heidelberg (DKFZ), Germany (M.H.)
- University Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome (M.H.)
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine (J. Marzi, K.S.-L.), Eberhard Karls University Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," (J. Marzi, A.P., K.S.-L.), University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen Reutlingen, Germany (J. Marzi, K.S.-L.)
| | - Peter Seizer
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- Now with Aalen, Germany (P.S.)
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Germany (J. Möllmann, N.M.)
| | - Robert Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB) (T.K., R.F., S.F.), University of Tübingen, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy (M.C.S., R.L.), University of Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
- DFG Heisenberg Group Cardiovascular Thrombo-Inflammation and Translational Thrombocardiology (F.K., O.B.), University of Tübingen, Germany
| | - Tilman E Schäffer
- Institute for Applied Physics (K.K., V.G., T.E.S.), University of Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology (M.S., A.-K.R., F.K., S.U.-S., P.S., O.B., K.A.L.M., M.P.G., D.H.), Eberhard Karls University Tübingen, Germany
| |
Collapse
|
2
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
3
|
Reusswig F, Dille M, Krüger E, Ortscheid J, Feige T, Gorressen S, Fischer JW, Elvers M. Platelets modulate cardiac remodeling via the collagen receptor GPVI after acute myocardial infarction. Front Immunol 2024; 14:1275788. [PMID: 38274818 PMCID: PMC10808189 DOI: 10.3389/fimmu.2023.1275788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Platelets play an important role in cardiovascular diseases. After acute myocardial infarction, platelets display enhanced activation and migrate into the infarct zone. Furthermore, platelets trigger acute inflammation and cardiac remodeling leading to alterations in scar formation and cardiac function as observed in thrombocytopenic mice. GPVI is the major collagen receptor in platelets and important for platelet activation and thrombus formation and stability. Antibody induced deletion of GPVI at the platelet surface or treatment of mice with recombinant GPVI-Fc results in reduced inflammation and decreased infarct size in a mouse model of AMI. However, the role of GPVI has not been fully clarified to date. Methods/Results In this study, we found that GPVI is not involved in the inflammatory response in experimental AMI using GPVI deficient mice that were analyzed in a closed-chest model. However, reduced platelet activation in response to GPVI and PAR4 receptor stimulation resulted in reduced pro-coagulant activity leading to improved cardiac remodeling. In detail, GPVI deficiency in mice led to reduced TGF-β plasma levels and decreased expression of genes involved in cardiac remodeling such as Col1a1, Col3a1, periostin and Cthrc1 7 days post AMI. Consequently, collagen quality of the scar shifted to more tight and less fine collagen leading to improved scar formation and cardiac function in GPVI deficient mice at 21d post AMI. Conclusion Taken together, this study identifies GPVI as a major regulator of platelet-induced cardiac remodeling and supports the potential relevance of GPVI as therapeutic target to reduce ischemia reperfusion injury and to improve cardiac healing.
Collapse
Affiliation(s)
- Friedrich Reusswig
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Matthias Dille
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - E. Krüger
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - J. Ortscheid
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Tobias Feige
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - S. Gorressen
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - J.-W. Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Liu D, Shen H, Zhang K, Shen Y, Wen R, He X, Long G, Li X. Functional Hydrogel Co-Remolding Migration and Differentiation Microenvironment for Severe Spinal Cord Injury Repair. Adv Healthc Mater 2024; 13:e2301662. [PMID: 37937326 DOI: 10.1002/adhm.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Spinal cord injury (SCI) activates nestin+ neural stem cells (NSCs), which can be regarded as potential seed cells for neuronal regeneration. However, the lesion microenvironment seriously hinders the migration of the nestin+ cells to the lesion epicenter and their differentiation into neurons to rebuild neural circuits. In this study, a photosensitive hydrogel scaffold is prepared as drug delivery carrier. Genetically engineered SDF1α and NT3 are designed and the scaffold is binary modified to reshape the lesion microenvironment. The binary modified scaffold can effectively induce the migration and neuronal differentiation of nestin+ NSCs in vitro. When implanted into a rat complete SCI model, many of the SCI-activated nestin+ cells migrate into the lesion site and give rise to neurons in short-term. Meanwhile, long-term repair results also show that implantation of the binary modified scaffold can effectively promote the maturation, functionalization and synaptic network reconstruction of neurons in the lesion site. In addition, animals treated with binary scaffold also showed better improvement in motor functions. The therapeutic strategy based on remolding the migration and neuronal differentiation lesion microenvironment provides a new insight into SCI repair by targeting activated nestin+ cells, which exhibits excellent clinical transformation prospects.
Collapse
Affiliation(s)
- Dingyang Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Yeyu Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Runlin Wen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Xinghui He
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Ge Long
- Department of Anesthesia, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410078, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
5
|
ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nat Commun 2022; 13:1823. [PMID: 35383158 PMCID: PMC8983782 DOI: 10.1038/s41467-022-29341-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion. ACKR3 is a critical regulator of platelet-mediated thrombosis and organ injury following ischemia/reperfusion. Platelet ACKR3 surface expression is independently associated with all-cause mortality in patients with cardiovascular diseases.
Collapse
|
6
|
Platelet ACKR3/CXCR7 Favors Anti-Platelet Lipids over an Atherothrombotic Lipidome and Regulates Thrombo-inflammation. Blood 2021; 139:1722-1742. [PMID: 34905596 DOI: 10.1182/blood.2021013097] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease-(CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thrombo-inflammatory response, through its impact on the platelet lipidome. CAD patients-(n=230) with enhanced platelet-ACKR3/CXCR7 expression exhibited reduced aggregation. Pharmacological CXCR7-agonist-(VUF11207) significantly reduced pro-thrombotic platelet response in blood from ACS patients-(n=11) ex vivo. CXCR7-agonist administration reduced thrombotic functions and thrombo-inflammatory platelet-leukocyte interactions post myocardial infarction-(MI) and arterial injury in vivo. ACKR3/CXCR7-ligation did not affect surface availability of GPIbα, GPV, GPVI, GPIX, αv-integrin, β3-integrin, coagulation profile-(APTT, PT), bleeding time, plasma-dependent thrombin generation-(thrombinoscopy) or clot formation-(thromboelastography), but counteracted activation-induced phosphatidylserine exposure and procoagulant platelet-assisted thrombin generation. Targeted-(micro-UHPLC-ESI-QTrap-MS/MS) and untargeted-(UHPLC-ESI-QTOF-MS/MS) lipidomics analysis revealed that ACKR3/CXCR7-ligation favored generation of anti-thrombotic lipids-(dihomo-γ-linolenic acid-DGLA, 12-hydroxyeicosatrienoic acid-12-HETrE) over cyclooxygenase-COX-1-(thromboxane-TxA2), or 12-lipoxygenase-LOX-(12-HETE) metabolized pro-thrombotic, and phospholipase derived atherogenic-(lysophosphatidylcholine-LPC) lipids, in healthy subjects and CAD patients, contrary to anti-platelet therapy. Through 12-HETrE, ACKR3/CXCR7-ligation coordinated with Gαs-coupled prostacyclin receptor-(IP) to trigger cAMP-PKA mediated platelet inhibition. ACKR3/CXCR7-ligation reduced generation of lipid agonists-(arachidonic acid-AA,TxA2), lipid signaling intermediates-(lyophosphatidylinositol-LPI, diacylglycerol-DG), which affected calcium mobilization, intracellular signaling, consequently platelet interaction with physiological matrices and thrombo-inflammatory secretion-(IL1β,IFN-γ,TGF-β,IL-8), emphasizing its functional dichotomy from pro-thrombotic CXCR4. Moreover, CXCR7-agonist regulated heparin-induced thrombocytopenia-(HIT)-sera/IgG-induced platelet and neutrophil activation, heparin induced platelet aggregation-(HIPA), generation of COX-1-(TxA2), 12-LOX-(12-HETE) derived thrombo-inflammatory lipids, platelet-neutrophil aggregate formation, and thrombo-inflammatory secretion (sCD40L, IL-1β, IFN-γ, TNF-α, sP-selectin, IL-8, tissue factor-TF) ex vivo. Therefore, ACKR3/CXCR7 may offer a novel therapeutic strategy in acute/chronic thrombo-inflammation exaggerated cardiovascular pathologies, and CAD.
Collapse
|
7
|
Ji H, Wang Y, Liu H, Liu Y, Zhang X, Xu J, Li Z, Luo E. Programmed core-shell electrospun nanofibers to sequentially regulate osteogenesis-osteoclastogenesis balance for promoting immediate implant osseointegration. Acta Biomater 2021; 135:274-288. [PMID: 34492371 DOI: 10.1016/j.actbio.2021.08.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
The biology of immediate post-extraction implant osseointegration is mediated by a coordinated cascade of osteoblast-osteoclast interactions. The aim of this study was to develop a dual-delivery system that allowed sequential release of substance P (SP) to promote bone regeneration and alendronate (ALN) to reduce bone resorption, which will improve the implant osseointegration. We used coaxial electrospinning to fabricate the core-shell poly lactic-co-glycolic acid (PLGA)/gelatin nanofibers, which consists of SP in the shell and ALN in the core. This programmed delivery system was shown to release SP and ALN sequentially to match the spatio-temporal specificity of bone healing. The migration assay demonstrated that the SP-ALN dual-delivery system increased bone marrow mesenchymal stem cells (BMSCs) transmigration. Besides, the expression of osteogenic/osteoclastic markers, Alizarin Red staining, tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and bone resorption experiment showed that the dual-delivery system can render a microenvironment favorable for osteogenic differentiation and adverse to osteoclastogenesis. Using a rat immediate implant model, we validated the promoted osteogenic property and osseointegration around the implants of SP-ALN dual-delivery system by micro-computed tomography (micro-CT) and histological analysis. These findings suggest that the dual-delivery system with time-controlled release of SP and ALN by core-shell nanofibers provides a promising strategy to facilitate immediate implant osseointegration through favorable osteogenesis. STATEMENT OF SIGNIFICANCE: Immediate implant placement is potentially challenged by the difficulties in achieving primary implant stability and early osteogenesis. Initial period of osteointegration is regulated by osteoblastic/osteoclastic cells resulting in a coordinated healing process. To have an efficient bone regeneration, the coaxial electrospinning was used to fabricate a programmed dual-delivery system. The SP released rapidly and favored for BMSCs migration and osteogenic differentiation, while the sustained release of ALN can reduce the bone resorption. The rat immediate implant model indicated that the SP-ALN dual-delivery system could present the promoted peri‑implant osteogenic property and osseointegration through modulating the osteogenesis-osteoclastogenesis balance. This work highlights the sequential dual delivery of SP and ALN has a promising potential of achieving enhanced osseointegration for immediate implant placement.
Collapse
Affiliation(s)
- Huanzhong Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yiyao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, Sichuan 610041, PR China; Department of Oral and Maxillofacial Surgery, Sichuan Hospital of Stomatology, Chengdu 610031, PR China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Xiaohui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Jiazhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhongming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation. Gen Thorac Cardiovasc Surg 2021; 70:1-10. [PMID: 34510332 PMCID: PMC8732940 DOI: 10.1007/s11748-021-01696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation is regarded as a promising candidate for the treatment of ischaemic heart disease. The major hurdles for successful clinical translation of MSC therapy are poor survival, retention, and engraftment in the infarcted heart. Stromal cell-derived factor-1/chemokine receptor 4 (SDF-1/CXCR4) constitutes one of the most efficient chemokine/chemokine receptor pairs regarding cell homing. In this review, we mainly focused on previous studies on how to regulate the SDF-1/CXCR4 interaction through various priming strategies to maximize the efficacy of mesenchymal stem cell transplantation on ischaemic hearts or to facilitate the required effects. The strengthened measures for enhancing the therapeutic efficacy of the SDF-1/CXCR4 interaction for mesenchymal stem cell transplantation included the combination of chemokines and cytokines, hormones and drugs, biomaterials, gene engineering, and hypoxia. The priming strategies on recipients for stem cell transplantation included ischaemic conditioning and device techniques.
Collapse
|
9
|
Witte A, Rohlfing AK, Dannenmann B, Dicenta V, Nasri M, Kolb K, Sudmann J, Castor T, Rath D, Borst O, Skokowa J, Gawaz M. The chemokine CXCL14 mediates platelet function and migration via direct interaction with CXCR4. Cardiovasc Res 2021; 117:903-917. [PMID: 32239134 DOI: 10.1093/cvr/cvaa080] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS Beyond classical roles in thrombosis and haemostasis, it becomes increasingly clear that platelets contribute as key players to inflammatory processes. The involvement of platelets in these processes is often mediated through a variety of platelet-derived chemokines which are released upon activation and act as paracrine and autocrine factors. In this study, we investigate CXCL14, a newly described platelet chemokine and its role in thrombus formation as well as monocyte and platelet migration. In addition, we examine the chemokine receptor CXCR4 as a possible receptor for CXCL14 on platelets. Furthermore, with the use of artificially generated platelets derived from induced pluripotent stem cells (iPSC), we investigate the importance of CXCR4 for CXCL14-mediated platelet functions. METHODS AND RESULTS In this study, we showed that CXCL14 deficient platelets reveal reduced thrombus formation under flow compared with wild-type platelets using a standardized flow chamber. Addition of recombinant CXCL14 normalized platelet-dependent thrombus formation on collagen. Furthermore, we found that CXCL14 is a chemoattractant for platelets and mediates migration via CXCR4. CXCL14 promotes platelet migration of platelets through the receptor CXCR4 as evidenced by murine CXCR4-deficient platelets and human iPSC-derived cultured platelets deficient in CXCR4. We found that CXCL14 directly interacts with the CXCR4 as verified by immunoprecipitation and confocal microscopy. CONCLUSIONS Our results reveal CXCL14 as a novel platelet-derived chemokine that is involved in thrombus formation and platelet migration. Furthermore, we identified CXCR4 as principal receptor for CXCL14, an interaction promoting platelet migration.
Collapse
Affiliation(s)
- Alexander Witte
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Valerie Dicenta
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Masoud Nasri
- Department of Oncology, Hematology, Immunology, Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Kyra Kolb
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Jessica Sudmann
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Borst O, Gawaz M. Glycoprotein VI - novel target in antiplatelet medication. Pharmacol Ther 2021; 217:107630. [DOI: 10.1016/j.pharmthera.2020.107630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
|
11
|
Zhang H, Wang P, Zhang X, Zhao W, Ren H, Hu Z. SDF1/CXCR4 axis facilitates the angiogenesis via activating the PI3K/AKT pathway in degenerated discs. Mol Med Rep 2020; 22:4163-4172. [PMID: 32901877 PMCID: PMC7533460 DOI: 10.3892/mmr.2020.11498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Symptomatic degenerative disc disease (DDD) is considered the leading cause of chronic lower back pain (LBP). As one of the main features of intervertebral disc degeneration (IDD), vascular ingrowth plays a crucial role in the progression of LBP. Stromal cell‑derived factor 1 (SDF1) and its receptor C‑X‑C receptor 4 (CXCR4) were reported to be overexpressed in the degenerated intervertebral discs, suggesting that they may be involved in the pathogenesis of IDD. Moreover, SDF1 has been identified to induce neovascularization in rheumatoid arthritis disease. However, the roles of the SDF1/CXCR4 axis in the neovascularization of IDD remain unclear. Therefore, the objective of the present study was to elucidate whether the SDF1/CXCR4 axis takes part in neovascularization in degenerated intervertebral discs and its underlying mechanisms. Adenovirus infection was used to upregulate SDF1 expression in primary nucleus pulposus cells (NPCs). The effects of SDF1 on the proliferation and angiogenesis of vascular endothelial cells (VECs) were assessed by Cell Counting Kit‑8 and tube formation assays after VECs were treated with the supernatants derived from SDF1 overexpressed or not treated NPCs. Transwell chambers using the supernatants from NPCs as chemokines were applied to assess VEC migration and invasion. AMD3100, MK‑2206 and SF1670 were used to antagonize CXCR4, AKT serine/threonine kinase 1 (AKT) and phosphatase and tensin homolog (PTEN) in VECs. The results revealed that SDF1 overexpression significantly increased the ratio of phosphorylated AKT to AKT and decreased PTEN expression in NPCs, as well as enhanced the proliferation, migration, invasion and angiogenesis abilities of VECs. However, these effects induced by SDF1 overexpression in NPCs were all reversed when VECs were pretreated with AMD3100 or MK‑2206, whereas enhanced by SF1670 treatment. Collectively, the present study indicated that enhancement of the SDF1/CXCR4 axis in NPCs can significantly accelerate angiogenesis by regulating the PTEN/phosphatidylinositol‑3‑kinase/AKT pathway.
Collapse
Affiliation(s)
- Hanxiang Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Huichuan, Zunyi 563000, P.R. China
| | - Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenrui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Honglei Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
12
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
13
|
Kim KY, Lee HK, Kim H, Kim Y, Kim Y, Choi HH, Kim SW, Kim HK, Chae HS. Stromal cell-derived factor-1 as a serologic biomarker for the diagnosis of colon ischemia with chronic cardiovascular disease. Medicine (Baltimore) 2020; 99:e20539. [PMID: 32502013 PMCID: PMC7306348 DOI: 10.1097/md.0000000000020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Colon ischemia (CI) is the most common ischemic disorder of the gastrointestinal tract. Although some markers of CI, such as procalcitonin and alkaline phosphatase, have been reported, few specific serum markers have been identified. We investigated whether serum stromal cell-derived factor-1 (SDF-1) is a specific marker of CI and clarified the relationship between serum SDF-1 level and CI according to a history of combined chronic cardiovascular disease (CVD).We measured SDF-1 level and other serological markers in 84 patients (control, n = 20; CI without chronic CVD, n = 21; chronic CVD without CI, n = 20; CI with chronic CVD, n = 23).Patients with CI were older than those without CI. There were more women in the CI groups than those without CI. At admission, SDF-1 level was significantly higher in patients having CI with chronic CVD (P < .001) than in other groups. SDF-1 level was significantly higher at admission than at discharge in patients having CI with chronic CVD (P < .001) but not in patients having CI without chronic CVD. SDF-1 level did not differ according to symptoms, involved sites, or duration of hospitalization. At a cutoff value of 0.5 pg/mL for the SDF-1 level in patients having CI with chronic CVD, the sensitivity and specificity for SDF-1 were 91.3% and 95%, respectively. The area-under-the-curve (AUC) value was 0.95. In the logistic regression analysis, an elevation of the SDF-1 level to >0.5 pg/mL was a significant indicator of CI with chronic CVD [odds ratio (OR), 114.914; 95% confidence interval, 10.51 to >999.999; P < .001].SDF-1 could be a useful early biomarker for the diagnosis of CI in patients with chronic CVD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjung Kim
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeongsic Kim
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Ho Choi
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Woo Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Keun Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Klose AM, Klier M, Gorressen S, Elvers M. Enhanced Integrin Activation of PLD2-Deficient Platelets Accelerates Inflammation after Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21093210. [PMID: 32370031 PMCID: PMC7247352 DOI: 10.3390/ijms21093210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Phospholipase (PL)D1 is crucial for integrin αIIbβ3 activation of platelets in arterial thrombosis and TNF-α-mediated inflammation and TGF-β-mediated collagen scar formation after myocardial infarction (MI) in mice. Enzymatic activity of PLD is not responsible for PLD-mediated TNF-α signaling and myocardial healing. The impact of PLD2 in ischemia reperfusion injury is unknown. Methods: PLD2-deficient mice underwent myocardial ischemia and reperfusion (I/R). Results: Enhanced integrin αIIbβ3 activation of platelets resulted in elevated interleukin (IL)-6 release from endothelial cells in vitro and enhanced IL-6 plasma levels after MI in PLD2-deficient mice. This was accompanied by enhanced migration of inflammatory cells into the infarct border zone and reduced TGF-β plasma levels after 72 h that might account for enhanced inflammation in PLD2-deficient mice. In contrast to PLD1, TNF-α signaling, infarct size and cardiac function 24 h after I/R were not altered when PLD2 was deleted. Furthermore, TGF-β plasma levels, scar formation and heart function were comparable between PLD2-deficient and control mice 21 days post MI. Conclusions: The present study contributes to our understanding about the role of PLD isoforms and altered platelet signaling in the process of myocardial I/R injury.
Collapse
Affiliation(s)
- Aglaia Maria Klose
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (A.M.K.); (M.K.)
| | - Meike Klier
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (A.M.K.); (M.K.)
| | - Simone Gorressen
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany; (A.M.K.); (M.K.)
- Correspondence:
| |
Collapse
|
15
|
Ziegler M, Hohmann JD, Searle AK, Abraham MK, Nandurkar HH, Wang X, Peter K. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J 2019; 39:111-116. [PMID: 28472483 DOI: 10.1093/eurheartj/ehx218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/11/2017] [Indexed: 01/21/2023] Open
Abstract
Aims CD39 is a cell membrane NTPase with anti-inflammatory and anti-platelet effects. However, its clinical use is limited by its bleeding side effect. With the goal of harnessing its therapeutic potential while avoiding haemostatic problems, we designed a fusion protein consisting of the extracellular domain of CD39 and a single-chain antibody (Targ-CD39) that specifically binds to activated glycoprotein (GP)IIb/IIIa and thus to activated platelets. Through this enrichment at activated platelets, the required systemic dose is below the dose impairing haemostasis. Methods and results Using an ischaemia/reperfusion mouse model (left anterior descending artery ligated for 1 h) we achieved remarkable protection of the reperfused tissue with Targ-CD39 compared with Non-targ-CD39 (mutated, non-binding version of Targ-CD39) and PBS control. Targ-CD39 restored ejection fraction and fractional shortening to a level indistinguishable from pre-injury status, while controls showed functional deterioration. Employing advanced clinically relevant methods of ultrasound analysis, we observed that both radial and longitudinal strain and strain rate showed infarct-typical changes of myocardial deformation in controls, but not in Targ-CD39 treated mice. Histological assessment confirmed strong reduction of infarct size and increase in neovascularization. Furthermore, attenuation of post-ischaemic inflammation was seen in cytokine profiling. Conclusion Overall, we demonstrate that Targ-CD39 holds promise for treatment of myocardial infarction.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Jan David Hohmann
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Amy Kate Searle
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Meike-Kristin Abraham
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Harshal H Nandurkar
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia.,Australian Centre for Blood Diseases, Central Clinical School, Alfred Hospital, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
16
|
Peiró ÓM, Farré N, Cediel G, Bonet G, Rojas S, Quintern V, Bardají A. Stromal cell derived factor-1 and long-term prognosis in acute coronary syndrome. Biomark Med 2019; 13:1187-1198. [PMID: 31559838 DOI: 10.2217/bmm-2019-0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore long-term prognostic value of SDF-1 in acute coronary syndrome (ACS). Materials & methods: We included 254 patients with ACS. Plasma SDF-1 was measured and patients were classified into tertiles of SDF-1. Results: Multivariate analysis showed third tertile of SDF-1 as an independent predictor of all-cause death (HR: 2.5; 95% CI: 1.2-5.2; p = 0.011) and the composite of major adverse cardiovascular and cerebrovascular events (HR: 1.8; 95% CI: 1.1-3.1; p = 0.031). SDF-1 added to a clinical model can improve all-cause death prediction (net reclassification improvement 0.362; 95% CI: 0.423-0.681; p = 0.027). Conclusion: SDF-1 is an independent predictor of all-cause mortality and major adverse cardiovascular and cerebrovascular events in long-term follow-up of patients with ACS and adds prognostic information beyond traditional cardiovascular risks factors.
Collapse
Affiliation(s)
- Óscar M Peiró
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain.,Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
| | - Nuria Farré
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain.,Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - German Cediel
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Gil Bonet
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain.,Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
| | - Sergio Rojas
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain.,Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
| | - Verónica Quintern
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain.,Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
| | - Alfredo Bardají
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain.,Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
| |
Collapse
|
17
|
Gawaz M, Borst O. Targeted antiplatelet therapy: novel treatment options for ischaemic heart disease. Eur Heart J 2019; 39:117-118. [PMID: 29029141 DOI: 10.1093/eurheartj/ehx559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076 Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Otfried-Mueller-Strasse 10, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Huang FY, Xia TL, Li JL, Li CM, Zhao ZG, Lei WH, Chen L, Liao YB, Xiao D, Peng Y, Wang YB, Liu XJ, Chen M. The bifunctional SDF-1-AnxA5 fusion protein protects cardiac function after myocardial infarction. J Cell Mol Med 2019; 23:7673-7684. [PMID: 31468674 PMCID: PMC6815779 DOI: 10.1111/jcmm.14640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/25/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023] Open
Abstract
Stromal cell‐derived factor‐1 (SDF‐1) is a well‐characterized cytokine that protects heart from ischaemic injury. However, the beneficial effects of native SDF‐1, in terms of promoting myocardial repair, are limited by its low concentration in the ischaemic myocardium. Annexin V (AnxA5) can precisely detect dead cells in vivo. As massive cardiomyocytes die after MI, we hypothesize that AnxA5 can be used as an anchor to carry SDF‐1 to the ischaemic myocardium. In this study, we constructed a fusion protein consisting of SDF‐1 and AnxA5 domains. The receptor competition assay revealed that SDF‐1‐AnxA5 had high binding affinity to SDF‐1 receptor CXCR4. The treatment of SDF‐1‐AnxA5 could significantly promote phosphorylation of AKT and ERK and induce chemotactic response, angiogenesis and cell survival in vitro. The binding membrane assay and immunofluorescence revealed that AnxA5 domain had the ability to specifically recognize and bind to cells injured by hypoxia. Furthermore, SDF‐1‐AnxA5 administered via peripheral vein could accumulate at the infarcted myocardium in vivo. The treatment with SDF‐1‐AnxA5 attenuated cell apoptosis, enhanced angiogenesis, reduced infarcted size and improved cardiac function after mouse myocardial infarction. Our results suggest that the bifunctional SDF‐1‐AnxA5 can specifically bind to dead cells. The systemic administration of bifunctional SDF‐1‐AnxA5 effectively provides cardioprotection after myocardial infarction.
Collapse
Affiliation(s)
- Fang-Yang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tian-Li Xia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Li Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Ming Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Gang Zhao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Hua Lei
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Biao Liao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xiao
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Bing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiao-Jing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Ziff OJ, Bromage DI, Yellon DM, Davidson SM. Therapeutic strategies utilizing SDF-1α in ischaemic cardiomyopathy. Cardiovasc Res 2019; 114:358-367. [PMID: 29040423 PMCID: PMC6005112 DOI: 10.1093/cvr/cvx203] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
Abstract
Heart failure is rapidly increasing in prevalence and will redraw the global landscape for cardiovascular health. Alleviating and repairing cardiac injury associated with myocardial infarction (MI) is key to improving this burden. Homing signals mobilize and recruit stem cells to the ischaemic myocardium where they exert beneficial paracrine effects. The chemoattractant cytokine SDF-1α and its associated receptor CXCR4 are upregulated after MI and appear to be important in this context. Activation of CXCR4 promotes both cardiomyocyte survival and stem cell migration towards the infarcted myocardium. These effects have beneficial effects on infarct size, and left ventricular remodelling and function. However, the timing of endogenous SDF-1α release and CXCR4 upregulation may not be optimal. Furthermore, current ELISA-based assays cannot distinguish between active SDF-1α, and SDF-1α inactivated by dipeptidyl peptidase 4 (DPP4). Current therapeutic approaches aim to recruit the SDF-1α-CXCR4 pathway or prolong SDF-1α life-time by preventing its cleavage by DPP4. This review assesses the evidence supporting these approaches and proposes SDF-1α as an important confounder in recent studies of DPP4 inhibitors.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Daniel I Bromage
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
20
|
Zhang H, Wang P, Zhang X, Zhao W, Ren H, Hu Z. SDF1/CXCR7 Signaling Axis Participates in Angiogenesis in Degenerated Discs via the PI3K/AKT Pathway. DNA Cell Biol 2019; 38:457-467. [PMID: 30864829 DOI: 10.1089/dna.2018.4531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Degenerative disc disease (DDD) is the main cause of low back pain, and the ingrowth of new blood vessels is one of its pathological features. The stromal cell-derived factor 1 (SDF1)/CXCR7 signaling axis plays a role in these physiological and pathological activities. The aims of this study were to explore whether this signaling axis participates in the angiogenesis of degenerated intervertebral discs (IVDs) and to define its underlying mechanism. In this study, we cocultured human nucleus pulposus cells (NPCs) and vascular endothelial cells (VECs) and regulated the expression of SDF1/CXCR7 to investigate the effect of VEC angiogenesis by NPCs. The results revealed that angiogenesis was enhanced with increased SDF1 and that angiogenesis was weakened with the inhibition of CXCR7. We found that PI3K/AKT was involved in the downstream pathway in the coculture. VEC angiogenesis induction by NPCs was enhanced with an increase in pAKT or a decrease in PTEN. We conclude that the SDF1/CXCR7 signaling axis plays a role in the angiogenesis of degenerated IVD through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hanxiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wenrui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Honglei Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
21
|
Gawaz M, Borst O. The Role of Platelets in Atherothrombosis. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Ziegler M, Haigh K, Nguyen T, Wang X, Lim B, Yap ML, Eddy EM, Haigh JJ, Peter K. The pulmonary microvasculature entraps induced vascular progenitor cells (iVPCs) systemically delivered after cardiac ischemia-reperfusion injury: Indication for preservation of heart function via paracrine effects beyond engraftment. Microcirculation 2018; 26:e12493. [PMID: 30030876 DOI: 10.1111/micc.12493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Stem cell-based regenerative therapies have been intensively studied with the aim to define an ideal cell type for the treatment of myocardial infarction. We tested systemically delivered, platelet-targeted induced vascular progenitor cells (iVPCs) to study their potential to salvage damaged myocardium after ischemia-reperfusion injury. METHODS Using a mouse model of ischemia-reperfusion injury, we tested the potential of platelet-targeted iVPCs (1 × 106 targ-iVPCs) compared to non-targ-iVPCs and a saline control. Bioluminescence imaging, echocardiography, and histological analyses were performed. RESULTS Four weeks after ischemia-reperfusion injury, systemic delivery of targ-iVPCs led to reduced fibrosis and infarct size (PBS: 25.7 ± 3.9 vs targ-iVPC: 18.4 ± 6.6 vs non-targ-iVPC: 25.1 ± 3.7%I/LV, P < 0.05), increased neovascularization, and restored cardiac function (PBS: 44.0 ± 4.2 vs targ-iVPC: 54.3 ± 4.5 vs non-targ-iVPC: 46.4 ± 3.8%EF, P < 0.01). Cell tracking experiments revealed entrapment of intravenously injected iVPCs in the pulmonary microvasculature in both cell-treated groups. CONCLUSIONS Systemic delivery of iVPCs after cardiac ischemia-reperfusion injury is limited by pulmonary entrapment of the cells. Nevertheless, targ-iVPCs reduced infarct size, fibrosis, increased neovascularization, and most importantly retained cardiac function. These findings contribute to the mechanistic discussion of cell-based therapy and ultimately identify activated platelet-targeted iVPCs as candidates for cell therapy and also describe cell therapy benefits without the necessity of engrafting.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Katharina Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Thao Nguyen
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Vic., Australia.,Department of Medicine, Monash University, Melbourne, Vic., Australia
| | - Bock Lim
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - May Lin Yap
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Eleanor M Eddy
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Jody J Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Vic., Australia.,Department of Medicine, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
23
|
Shafiq M, Zhang Q, Zhi D, Wang K, Kong D, Kim DH, Kim SH. In Situ Blood Vessel Regeneration Using SP (Substance P) and SDF (Stromal Cell-Derived Factor)-1α Peptide Eluting Vascular Grafts. Arterioscler Thromb Vasc Biol 2018; 38:e117-e134. [PMID: 29853570 PMCID: PMC6039427 DOI: 10.1161/atvbaha.118.310934] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/16/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The objective of this study was to develop small-diameter vascular grafts capable of eluting SDF (stromal cell-derived factor)-1α-derived peptide and SP (substance P) for in situ vascular regeneration. APPROACH AND RESULTS Polycaprolactone (PCL)/collagen grafts containing SP or SDF-1α-derived peptide were fabricated by electrospinning. SP and SDF-1α peptide-loaded grafts recruited significantly higher numbers of mesenchymal stem cells than that of the control group. The in vivo potential of PCL/collagen, SDF-1, and SP grafts was assessed by implanting them in a rat abdominal aorta for up to 4 weeks. All grafts remained patent as observed using color Doppler and stereomicroscope. Host cells infiltrated into the graft wall and the neointima was formed in peptides-eluting grafts. The lumen of the SP grafts was covered by the endothelial cells with cobblestone-like morphology, which were elongated in the direction of the blood flow, as discerned using scanning electron microscopy. Moreover, SDF-1α and SP grafts led to the formation of a confluent endothelium as evaluated using immunofluorescence staining with von Willebrand factor antibody. SP and SDF-1α grafts also promoted smooth muscle cell regeneration, endogenous stem cell recruitment, and blood vessel formation, which was the most prominent in the SP grafts. Evaluation of inflammatory response showed that 3 groups did not significantly differ in terms of the numbers of proinflammatory macrophages, whereas SP grafts showed significantly higher numbers of proremodeling macrophages than that of the control and SDF-1α grafts. CONCLUSIONS SDF-1α and SP grafts can be potential candidates for in situ vascular regeneration and are worthy for future investigations.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/chemistry
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Aorta, Abdominal/surgery
- Blood Vessel Prosthesis
- Blood Vessel Prosthesis Implantation/instrumentation
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemokine CXCL12/chemistry
- Chemokine CXCL12/pharmacology
- Coated Materials, Biocompatible
- Collagen Type I/chemistry
- Humans
- Male
- Mesenchymal Stem Cells/drug effects
- Neointima
- Neovascularization, Physiologic/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Polyesters/chemistry
- Prosthesis Design
- Rats, Sprague-Dawley
- Substance P/chemistry
- Substance P/pharmacology
- Time Factors
- Ultrasonography, Doppler, Color
- Vascular Patency
- Vascular Remodeling
Collapse
Affiliation(s)
- Muhammad Shafiq
- From the Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon (M.S., S.H.K.)
- Center for Biomaterials, Biomedical Research Institute, Department of Biomedical Engineering, Korea Institute of Science and Technology, Seoul, Republic of Korea (M.S., S.H.K.)
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Department of Biochemistry and Molecular Biology, Nankai University, China (M.S., Q.Z., D.Z., K.W., D.K.)
| | - Qiuying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Department of Biochemistry and Molecular Biology, Nankai University, China (M.S., Q.Z., D.Z., K.W., D.K.)
| | - Dengke Zhi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Department of Biochemistry and Molecular Biology, Nankai University, China (M.S., Q.Z., D.Z., K.W., D.K.)
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Department of Biochemistry and Molecular Biology, Nankai University, China (M.S., Q.Z., D.Z., K.W., D.K.)
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Department of Biochemistry and Molecular Biology, Nankai University, China (M.S., Q.Z., D.Z., K.W., D.K.)
| | - Dong-Hwee Kim
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China (D.K.)
- Department of Nano-Bio-Information Technology (NBIT), KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul (D.-H.K., S.H.K.)
| | - Soo Hyun Kim
- From the Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon (M.S., S.H.K.)
- Center for Biomaterials, Biomedical Research Institute, Department of Biomedical Engineering, Korea Institute of Science and Technology, Seoul, Republic of Korea (M.S., S.H.K.)
- Department of Nano-Bio-Information Technology (NBIT), KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul (D.-H.K., S.H.K.)
| |
Collapse
|
24
|
Sustained release of targeted cardiac therapy with a replenishable implanted epicardial reservoir. Nat Biomed Eng 2018; 2:416-428. [DOI: 10.1038/s41551-018-0247-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
|
25
|
Sun J, Mou C, Shi Q, Chen B, Hou X, Zhang W, Li X, Zhuang Y, Shi J, Chen Y, Dai J. Controlled release of collagen-binding SDF-1α from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model. Biomaterials 2018; 162:22-33. [DOI: 10.1016/j.biomaterials.2018.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/21/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
26
|
Chatterjee M, Behrendt A, Schmid M, Beck S, Schneider M, Mack A, Müller I, Geisler T, Gawaz M. Platelets as a novel source of Gremlin-1: Implications for thromboinflammation. Thromb Haemost 2017; 117:311-324. [DOI: 10.1160/th16-08-0665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/08/2016] [Indexed: 11/05/2022]
Abstract
SummaryPlatelets mediating haemostasis-thrombosis are central players in coronary artery disease (CAD). We characterised platelets as a novel source of Gremlin-1. Platelets express Gremlin-1 like inflammatory and endothelial cells. Gremlin-1 co-localised with P-selectin containing randomly distributed α–granules under resting state, which were peripheralised following platelet activation or adhesion over fibrinogen-coated surface. Gremlin-1 release upon activation with ADP, CRP, and TRAP was detected as enhanced surface expression; also in activated platelet supernatant as detected by Western Blot following CRP activation and by ELISA upon activation with ADP, CRP, PAR-1, and PAR4 agonist. Recombinant (rh)Gremlin-1 synergistically enhanced CRP-triggered intracellular calcium mobilisation, ADP-TRAP induced platelet activation, aggregation, and thrombin-activation triggered apoptosis; also thrombus formation ex vivo. Intracellular localisation of macrophage migration inhibitory factor (MIF) and Gremlin-1 a high-affinity binding partner and functional antagonist of MIF were found in intracoronary thrombus sections from acute coronary syndrome (ACS) patients and showed moderate overlap in α-granules of platelets. Intra-platelet Gremlin-1 levels were significantly decreased in ACS patients as compared to stable CAD (n=235). rhGremlin-1 also counteracted the anti-apoptotic and anti-thrombotic effects of rhMIF on platelets. Platelet-derived-Gremlin-1 prompted monocyte migration, facilitated adhesion under static and dynamic arterial flow conditions to collagen-adherent activated platelets; supported monocyte survival against BH-3-mimetic–induced apoptosis and macrophage differentiation in monocyte-platelet co-culture system, which were counteracted upon Gremlin-1 neutralisation. Thus platelet derived Gremlin-1 might contribute to the elevated circulating levels of Gremlin-1 in ACS and serve as a thrombo-inflammatory mediator in cardiovascular pathophysiologies.
Collapse
|
27
|
von Ungern-Sternberg SNI, Vogel S, Walker-Allgaier B, Geue S, Maurer A, Wild AM, Münzer P, Chatterjee M, Heinzmann D, Kremmer E, Borst O, Loughran P, Zernecke A, Neal MD, Billiar TR, Gawaz M, Seizer P. Extracellular Cyclophilin A Augments Platelet-Dependent Thrombosis and Thromboinflammation. Thromb Haemost 2017; 117:2063-2078. [PMID: 28981554 DOI: 10.1160/th17-01-0067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cyclophilin A (CyPA) is involved in the pathophysiology of several inflammatory and cardiovascular diseases. To our knowledge, there is no specific inhibitor targeting extracellular CyPA without affecting other extracellular cyclophilins or intracellular CyPA functions. In this study, we developed an antibody-based inhibitor of extracellular CyPA and analysed its effects in vitro and in vivo. To generate a specific antibody, mice and rats were immunized with a peptide containing the extracellular matrix metalloproteinase inducer binding site and various antibody clones were selected and purified. At first, antibodies were tested for their binding capacity to recombinant CyPA and their functional activity. The clone 8H7-mAb was chosen for further experiments. 8H7-mAb reduced the CyPA-induced migration of inflammatory cells in vitro and in vivo. Furthermore, 8H7-mAb revealed strong antithrombotic effects by inhibiting CyPA-dependent activation of platelets and thrombus formation in vitro and in vivo. Surprisingly, 8H7-mAb did not influence in vivo tail bleeding time or in vitro whole blood coagulation parameters. Our study provides first evidence that antibody-based inhibition of extracellular CyPA inhibits thrombosis and thromboinflammation without affecting blood homeostasis. Thus, 8H7-mAb may be a promising compound for thrombi modulation in inflammatory diseases to prevent organ dysfunction.
Collapse
Affiliation(s)
| | - Sebastian Vogel
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Britta Walker-Allgaier
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Sascha Geue
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Anna-Maria Wild
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Patrick Münzer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Madhumita Chatterjee
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - David Heinzmann
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, Institut für Molekulare Immunologie, München, Germany
| | - Oliver Borst
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alma Zernecke
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Germany
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Meinrad Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Peter Seizer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Reboll MR, Korf-Klingebiel M, Klede S, Polten F, Brinkmann E, Reimann I, Schönfeld HJ, Bobadilla M, Faix J, Kensah G, Gruh I, Klintschar M, Gaestel M, Niessen HW, Pich A, Bauersachs J, Gogos JA, Wang Y, Wollert KC. EMC10 (Endoplasmic Reticulum Membrane Protein Complex Subunit 10) Is a Bone Marrow-Derived Angiogenic Growth Factor Promoting Tissue Repair After Myocardial Infarction. Circulation 2017; 136:1809-1823. [PMID: 28931551 DOI: 10.1161/circulationaha.117.029980] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Clinical trials of bone marrow cell-based therapies after acute myocardial infarction (MI) have produced mostly neutral results. Treatment with specific bone marrow cell-derived secreted proteins may provide an alternative biological approach to improving tissue repair and heart function after MI. We recently performed a bioinformatic secretome analysis in bone marrow cells from patients with acute MI and discovered a poorly characterized secreted protein, EMC10 (endoplasmic reticulum membrane protein complex subunit 10), showing activity in an angiogenic screen. METHODS We investigated the angiogenic potential of EMC10 and its mouse homolog (Emc10) in cultured endothelial cells and infarcted heart explants. We defined the cellular sources and function of Emc10 after MI using wild-type, Emc10-deficient, and Emc10 bone marrow-chimeric mice subjected to transient coronary artery ligation. Furthermore, we explored the therapeutic potential of recombinant Emc10 delivered by osmotic minipumps after MI in heart failure-prone FVB/N mice. RESULTS Emc10 signaled through small GTPases, p21-activated kinase, and the p38 mitogen-activated protein kinase (MAPK)-MAPK-activated protein kinase 2 (MK2) pathway to promote actin polymerization and endothelial cell migration. Confirming the importance of these signaling events in the context of acute MI, Emc10 stimulated endothelial cell outgrowth from infarcted mouse heart explants via p38 MAPK-MK2. Emc10 protein abundance was increased in the infarcted region of the left ventricle and in the circulation of wild-type mice after MI. Emc10 expression was also increased in left ventricular tissue samples from patients with acute MI. Bone marrow-derived monocytes and macrophages were the predominant sources of Emc10 in the infarcted murine heart. Emc10 KO mice showed no cardiovascular phenotype at baseline. After MI, however, capillarization of the infarct border zone was impaired in KO mice, and the animals developed larger infarct scars and more pronounced left ventricular remodeling compared with wild-type mice. Transplanting KO mice with wild-type bone marrow cells rescued the angiogenic defect and ameliorated left ventricular remodeling. Treating FVB/N mice with recombinant Emc10 enhanced infarct border-zone capillarization and exerted a sustained beneficial effect on left ventricular remodeling. CONCLUSIONS We have identified Emc10 as a previously unknown angiogenic growth factor that is produced by bone marrow-derived monocytes and macrophages as part of an endogenous adaptive response that can be enhanced therapeutically to repair the heart after MI.
Collapse
Affiliation(s)
- Marc R Reboll
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Mortimer Korf-Klingebiel
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Stefanie Klede
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Felix Polten
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Eva Brinkmann
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Ines Reimann
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Hans-Joachim Schönfeld
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Maria Bobadilla
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Jan Faix
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - George Kensah
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Ina Gruh
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Michael Klintschar
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Matthias Gaestel
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Hans W Niessen
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Andreas Pich
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Johann Bauersachs
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Joseph A Gogos
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Yong Wang
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.)
| | - Kai C Wollert
- From Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (M.R.R., M.K.-K., S.K., E.B., I.R., Y.W., K.C.W.), Core Unit Proteomics, Institute of Toxicology (F.P., A.P.), Department of Biophysical Chemistry (J.F.), Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation, and Vascular Surgery (G.K., I.G.), Institute of Legal Medicine (M.K.), Institute of Physiological Chemistry (M.G.), and Department of Cardiology and Angiology (J.B.), Hannover Medical School, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development, Basel, Switzerland (H.-J.S., M.B.); Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands (H.W.N.); and Department of Physiology and Cellular Biophysics and Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY (J.A.G.).
| |
Collapse
|
29
|
Ziegler M, Wang X, Lim B, Leitner E, Klingberg F, Ching V, Yao Y, Huang D, Gao XM, Kiriazis H, Du XJ, Haigh JJ, Bobik A, Hagemeyer CE, Ahrens I, Peter K. Platelet-Targeted Delivery of Peripheral Blood Mononuclear Cells to the Ischemic Heart Restores Cardiac Function after Ischemia-Reperfusion Injury. Theranostics 2017; 7:3192-3206. [PMID: 28900504 PMCID: PMC5595126 DOI: 10.7150/thno.19698] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
One of the major hurdles in intravenous regenerative cell therapy is the low homing efficiency to the area where these cells are needed. To increase cell homing toward areas of myocardial damage, we developed a bispecific tandem single-chain antibody (Tand-scFvSca-1+GPIIb/IIIa) that binds with high affinity to activated platelets via the activated glycoprotein (GP)IIb/IIIa receptor, and to a subset of peripheral blood mononuclear cells (PBMC) which express the stem cell antigen-1 (Sca-1) receptor. Methods: The Tand-scFvSca-1+GPIIb/IIIa was engineered, characterized and tested in a mouse model of ischemia-reperfusion (IR) injury applying left coronary artery occlusion for 60 min. Fluorescence cell tracking, cell infiltration studies, echocardiographic and histological analyses were performed. Results: Treatment of mice undergoing myocardial infarction with targeted-PBMCs led to successful cell delivery to the ischemic-reperfused myocardium, followed by a significant decrease in infiltration of inflammatory cells. Homing of targeted-PBMCs as shown by fluorescence cell tracking ultimately decreased fibrosis, increased capillary density, and restored cardiac function 4 weeks after ischemia-reperfusion injury. Conclusion: Tand-scFvSca-1+GPIIb/IIIa is a promising candidate to enhance therapeutic cell delivery in order to promote myocardial regeneration and thereby preventing heart failure.
Collapse
|
30
|
Shafiq M, Kong D, Kim SH. SDF-1α peptide tethered polyester facilitates tissue repair by endogenous cell mobilization and recruitment. J Biomed Mater Res A 2017; 105:2670-2684. [DOI: 10.1002/jbm.a.36130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology; 176 Gajeong-dong Yuseong-gu Daejeon Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology; Cheongryang Seoul 130-650 Republic of Korea
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science; Nankai University; Tianjin 300071 China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science; Nankai University; Tianjin 300071 China
- Tianjin Key Laboratory of Biomedical Materials; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical; Tianjin China
| | - Soo Hyun Kim
- Korea University of Science and Technology; 176 Gajeong-dong Yuseong-gu Daejeon Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology; Cheongryang Seoul 130-650 Republic of Korea
- Department of Nano-Bio-Information Technology (NBIT), KU-KIST Graduate School of Converging Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
31
|
Ziegler M, Alt K, Paterson BM, Kanellakis P, Bobik A, Donnelly PS, Hagemeyer CE, Peter K. Highly Sensitive Detection of Minimal Cardiac Ischemia using Positron Emission Tomography Imaging of Activated Platelets. Sci Rep 2016; 6:38161. [PMID: 27909290 PMCID: PMC5133579 DOI: 10.1038/srep38161] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/04/2016] [Indexed: 01/12/2023] Open
Abstract
A reliable method for the diagnosis of minimal cardiac ischemia would meet a strong demand for the sensitive diagnosis of coronary artery disease in cardiac stress testing and risk stratification in patients with chest pain but unremarkable ECGs and biomarkers. We hypothesized that platelets accumulate early on in ischemic myocardium and a newly developed technology of non-invasive molecular PET imaging of activated platelets can thus detect minimal degrees of myocardial ischemia. To induce different degrees of minimal cardiac ischemia, the left anterior descending artery (LAD) was ligated for 10, 20 or 60 min. Mice were injected with a newly generated scFvanti-GPIIb/IIIa-64CuMeCOSar radiotracer, composed of a single-chain antibody that only binds to activated integrin GPIIb/IIIa (αIIbβIII) and thus to activated platelets, and a sarcophagine cage MeCOSar complexing the long half-life PET tracer copper-64. A single PET/CT scan was performed. Evans Blue/TTC staining to detect necrosis as well as classical serological biomarkers like Troponin I and heart-type fatty acid-binding protein (H-FABP) were negative, whereas PET imaging of activated platelets was able to detect small degrees of ischemia. Taken together, molecular PET imaging of activated platelets represents a unique and highly sensitive method to detect minimal cardiac ischemia.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Karen Alt
- Atherothrombosis and Vascular Biology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia.,Vascular Biotechnology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Brett M Paterson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Peter Kanellakis
- Vascular Biology &Atherosclerosis, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Alex Bobik
- Vascular Biology &Atherosclerosis, Baker IDI Heart &Diabetes Institute, Melbourne, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Christoph E Hagemeyer
- Vascular Biotechnology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,RMIT University, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker IDI Heart &Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,RMIT University, Melbourne, Australia
| |
Collapse
|
32
|
Rath D, Schaeffeler E, Winter S, Hewer J, Müller K, Droppa M, Stimpfle F, Gawaz M, Schwab M, Geisler T. SDF1 Polymorphisms Influence Outcome in Patients with Symptomatic Cardiovascular Disease. PLoS One 2016; 11:e0161933. [PMID: 27607427 PMCID: PMC5015912 DOI: 10.1371/journal.pone.0161933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/14/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND SDF1 and its cognate receptors CXCR4 and CXCR7 are involved in myocardial repair and are associated with outcome in cardiovascular patients. Hence, we aimed to investigate clinically significant SDF1 SNPs for their prognostic impact in patients with cardiovascular disease. METHODS AND RESULTS Genotyping for selected SDF1 variants (rs1065297, rs2839693, rs1801157, rs266087, rs266085 and rs266089 was performed in patients (n = 872) who underwent percutaneous coronary intervention. Carriers of variant rs2839693 and rs266089 showed significantly higher cumulative event-free survival compared with non-carriers. All other polymorphisms had no relevant influence on outcome. Multivariate Cox regression analysis showed a significant correlation of these SNPs with cardiovascular outcome after inclusion of clinical and prognostic relevant variables (hazard ratio (HR) 0.51 (95% CI 0.30-0.88), p = 0.015 and [HR 0.51 (95% CI 0.30-0.88), p = 0.016, respectively). In addition, multivariate Cox regression with SDF1 haplotypes revealed a significantly reduced risk for the haplotype carrying the minor alleles of rs2839693 and rs266089 (HR 0.47 (95% CI 0.27-0.84), p = 0.011). CONCLUSION Distinct SDF1 polymorphisms are associated with improved cardiovascular prognosis in CAD patients. Further studies are warranted to validate these results and to better describe the endogenous regeneration potential in carriers of these SNPs. Targeted, genotype guided therapeutic approaches to foster myocardial regeneration and thus cardiovascular prognosis should be evaluated in future.
Collapse
Affiliation(s)
- Dominik Rath
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
| | - Stefan Winter
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
| | - Jens Hewer
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Karin Müller
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Michal Droppa
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Fabian Stimpfle
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tuebingen, Auf der Morgenstelle 8, Tuebingen, Germany
| | - Tobias Geisler
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| |
Collapse
|
33
|
Rath D, Chatterjee M, Bongartz A, Müller K, Droppa M, Stimpfle F, Borst O, Zuern C, Vogel S, Gawaz M, Geisler T. Platelet surface expression of SDF-1 is associated with clinical outcomes in the patients with cardiovascular disease. Platelets 2016; 28:34-39. [PMID: 27463607 DOI: 10.1080/09537104.2016.1203399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platelet surface expression levels of stromal cell derived factor 1 (SDF-1) are elevated in acute coronary syndrome and associated with LVEF% improvement after myocardial infarction (MI). Platelet SDF-1 might facilitate thrombus formation and endomyocardial expression of SDF-1 is enhanced in inflammatory cardiomyopathy and positively correlates with myocardial fibrosis. The influence of platelet SDF-1 on outcome in the patients with symptomatic coronary artery disease (CAD) is to the best of our knowledge unknown. Blood samples of 608 consecutive CAD patients were collected during the percutaneous coronary intervention and analyzed for surface expression of SDF-1 by flow cytometry. The primary combined endpoint was defined as the composite of either MI, or ischemic stroke, or all-cause death. Secondary endpoints were defined as the aforementioned single events. The patients with baseline platelet SDF-1 levels above the third quartile showed a significantly worse cumulative event-free survival when compared to the patients with lower baseline SDF-1 levels (first to third quartile) (log rank 0.009 for primary combined endpoint and log rank 0.016 for secondary endpoint all-cause death). Multivariate Cox regression analysis showed that SDF-1 levels above the third quartile were independently associated with the primary combined endpoint and the secondary endpoint all-cause death. We provide first clinical evidence that high platelet expression levels of SDF-1 influence clinical outcomes in CAD patients in a negative way.
Collapse
Affiliation(s)
- Dominik Rath
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Madhumita Chatterjee
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Angela Bongartz
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Karin Müller
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Michal Droppa
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Fabian Stimpfle
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Oliver Borst
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Christine Zuern
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Sebastian Vogel
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Meinrad Gawaz
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| | - Tobias Geisler
- a Medizinische Klinik III, Kardiologie und Kreislauferkrankungen , University Tübingen , Tübingen , Germany
| |
Collapse
|
34
|
Cardiomyocyte-derived CXCL12 is not involved in cardiogenesis but plays a crucial role in myocardial infarction. J Mol Med (Berl) 2016; 94:1005-14. [PMID: 27251706 DOI: 10.1007/s00109-016-1432-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED The chemokine CXCL12/SDF-1 is crucial for heart development and affects cardiac repair processes due to its ability to attract leukocytes and stem cells to injured myocardium. However, there is a great controversy whether CXCL12 is beneficial or detrimental after myocardial infarction (MI). The divergence in the reported CXCL12 actions may be due to the cellular source and time of release of the chemokine after MI. This study was designed to evaluate the role of cardiomyocyte-derived CXCL12 for cardiogenesis and heart repair after MI. We generated two rodent models each targeting CXCL12 in only one cardiac cell type: cardiomyocyte-specific CXCL12-overexpressing transgenic (Tg) rats and CXCL12 conditional knockout (cKO) mice. Animals of both models did not show any signs of cardiac abnormalities under baseline conditions. After induction of MI, cKO mice displayed preserved cardiac function and remodeling. Moreover, fibrosis was less pronounced in the hearts of cKO mice after MI. Accordingly, CXCL12 Tg rats revealed impaired cardiac function post-MI accompanied by enhanced fibrosis. Furthermore, we observed decreased numbers of infiltrating Th1 cells in the hearts of cKO mice. Collectively, our findings demonstrate that cardiomyocyte-derived CXCL12 is not involved in cardiac development but has adverse effects on the heart after injury via promotion of inflammation and fibrosis. KEY MESSAGES • CXCL12 in cardiomyocytes is not involved in cardiac development. • CXCL12 deficiency in cardiomyocytes improves outcome of myocardial infarction. • CXCL12 overexpression in cardiomyocytes worsens outcome of myocardial infarction. • CXCL12 increases fibrosis and invasion of Th1 cells in the heart after infarction.
Collapse
|
35
|
Liebler S, Grunert F, Thompson J, Wedel M, Schlosshauer B. Towards a biofunctionalized vascular prosthesis: immune cell trapping via a growth factor receptor. J Tissue Eng Regen Med 2016; 11:2699-2709. [PMID: 27225726 DOI: 10.1002/term.2165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/07/2015] [Accepted: 02/03/2016] [Indexed: 01/12/2023]
Abstract
To improve the clinical performance of vascular prostheses, which is inacceptably low for implants with small diameters (< 6 mm), biofunctionalization of synthetic implants by endothelialization has become a major, although still unreached, aim. In order to be able to recruit native endothelial progenitor cells (EPCs) to luminal implant surfaces from the blood stream, we generated monoclonal antibodies against the EPC-specific vascular endothelial growth factor receptor 2 (VEGFR-2). Employing the very efficient genetic immunization strategy, > 10 000 hybridoma clones were generated. Screening with various deletion mutants of VEGFR-2, 49 highly-specific monoclonal antibodies (mAbs) covering all seven Ig domains of VEGFR-2 were selected. mAb 9H10 was characterized in detail. Once immobilized on synthetic surfaces, mAb 9H10 allowed, within min, nearly 100-fold enrichment of VEGFR-2-expressing cells under continuous flow conditions. Cell trapping was cell-type specific and essentially not affected by competing VEGFR-2-negative cells. To exclude that the antibody would adversely modify receptor responses, four different in vitro assays were employed. Cell proliferation, angiogenic tube formation, acetylated low-density lipoprotein uptake and VEGFR-2 phosphorylation remained unaffected, suggesting that the antibody did not interfere with the receptor functioning of human umbilical vascular endothelial cells. The molecular and cellular characteristics make the selected monoclonal antibody a very promising tool for the biofunctionalization of vascular implants. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sven Liebler
- Natural and Medical Sciences Institute (NMI), University of Tübingen, Reutlingen, Germany
| | | | | | - Miriam Wedel
- Natural and Medical Sciences Institute (NMI), University of Tübingen, Reutlingen, Germany
| | - Burkhard Schlosshauer
- Natural and Medical Sciences Institute (NMI), University of Tübingen, Reutlingen, Germany
| |
Collapse
|
36
|
Sun J, Zhao Y, Li Q, Chen B, Hou X, Xiao Z, Dai J. Controlled Release of Collagen-Binding SDF-1α Improves Cardiac Function after Myocardial Infarction by Recruiting Endogenous Stem Cells. Sci Rep 2016; 6:26683. [PMID: 27226084 PMCID: PMC4881239 DOI: 10.1038/srep26683] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/06/2016] [Indexed: 11/14/2022] Open
Abstract
Stromal cell-derived factor-1α (SDF-1α) is a well-characterized chemokine that mobilizes stem cells homing to the ischemic heart, which is beneficial for cardiac regeneration. However, clinically administered native SDF-1α diffuses quickly, thus decreasing its local concentration, and results in side effects. Thus, a controlled release system for SDF-1α is required to produce an effective local concentration in the ischemic heart. In this study, we developed a recombinant chemokine, consisting of SDF-1α and a collagen-binding domain, which retains both the SDF-1α and collagen-binding activity (CBD-SDF-1α). In an in vitro assay, CBD-SDF-1α could specifically bind to a collagen gel and achieve sustained release. An intramyocardial injection of CBD-SDF-1α after acute myocardial infarction demonstrated that the protein was largely tethered in the ischemic area and that controlled release had been achieved. Furthermore, CBD-SDF-1α enhanced the recruitment of c-kit positive (c-kit+) stem cells, increased capillary density and improved cardiac function, whereas NAT-SDF-1α had no such beneficial effects. Our findings demonstrate that CBD-SDF-1α can specifically bind to collagen and achieve controlled release both in vitro and in vivo. Local delivery of this protein could mobilize endogenous stem cells homing to the ischemic heart and improve cardiac function after myocardial infarction.
Collapse
Affiliation(s)
- Jie Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yannan Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Qingguo Li
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Xianglin Hou
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhifeng Xiao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jianwu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
37
|
Favreau-Lessard AJ, Ryzhov S, Sawyer DB. Novel Biological Therapies Targeting Heart Failure: Myocardial Rejuvenation. Heart Fail Clin 2016; 12:461-71. [PMID: 27371521 DOI: 10.1016/j.hfc.2016.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recovery of ventricular function occurs in a subset of patients with advanced heart failure treated with medical and/or mechanical therapy. Finding strategies that induce ventricular recovery through induction of repair, regeneration, or "rejuvenation" is a long-sought goal of research programs. Cell-based strategies, use of recombinant growth and survival factors, and gene delivery are under investigation. In this brief article we highlight a few of the biological approaches in development to treat heart failure.
Collapse
Affiliation(s)
- Amanda J Favreau-Lessard
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME 04074, USA
| | - Sergey Ryzhov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME 04074, USA
| | - Douglas B Sawyer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME 04074, USA.
| |
Collapse
|
38
|
The development and characterization of SDF1α-elastin-like-peptide nanoparticles for wound healing. J Control Release 2016; 232:238-47. [PMID: 27094603 DOI: 10.1016/j.jconrel.2016.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
Chronic skin wounds are characterized by poor re-epithelialization, angiogenesis and granulation. Previous work has demonstrated that topical stromal cell-derived growth factor-1 (SDF1) promotes neovascularization, resulting in faster re-epithelialization of skin wounds in diabetic mice. However, the clinical usefulness of such bioactive peptides is limited because they are rapidly degraded in the wound environment due to high levels of proteases. Here, we describe the development of a recombinant fusion protein comprised of SDF1 and an elastin-like peptide that confers the ability to self-assemble into nanoparticles. The fusion protein and recombinant human SDF1 showed similar binding characteristics, as indicated by the measured equilibrium dissociation constant (Kd) for the binding of free SDF1 or the fusion protein to the CXCR4 receptor. The biological activity of SDF1-ELP, as measured by intracellular calcium release in HL60 cells was dose dependent, and also very similar to that of free SDF1. In contrast, the biological activity of SDF1-ELP in vivo was significantly superior to that of free SDF1. When applied to full thickness skin wounds in diabetic mice, wounds treated with SDF1-ELP nanoparticles were 95% closed by day 21, and fully closed by day 28, while wounds treated with free SDF1, ELP alone, or vehicle were only 80% closed by day 21, and took 42days to fully close. In addition, the SDF1-ELP nanoparticles significantly increased the epidermal and dermal layer of the healed wound, as compared to the other groups. These results indicate that SDF1-ELP fusion protein nanoparticles are promising agents for the treatment of chronic skin wounds.
Collapse
|
39
|
Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides. Biomaterials 2016; 76:187-95. [DOI: 10.1016/j.biomaterials.2015.10.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/13/2015] [Accepted: 10/18/2015] [Indexed: 02/08/2023]
|
40
|
Chatterjee M, von Ungern-Sternberg SNI, Seizer P, Schlegel F, Büttcher M, Sindhu NA, Müller S, Mack A, Gawaz M. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis 2015; 6:e1989. [PMID: 26583329 PMCID: PMC4670914 DOI: 10.1038/cddis.2015.233] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/26/2015] [Accepted: 07/15/2015] [Indexed: 01/18/2023]
Abstract
Platelets store and release CXCL12 (SDF-1), which governs differentiation of hematopoietic progenitors into either endothelial or macrophage-foam cells. CXCL12 ligates CXCR4 and CXCR7 and regulates monocyte/macrophage functions. This study deciphers the relative contribution of CXCR4-CXCR7 in mediating the effects of platelet-derived CXCL12 on monocyte function, survival, and differentiation. CXCL12 and macrophage migration inhibitory factor (MIF) that ligate CXCR4-CXCR7 induced a dynamic bidirectional trafficking of the receptors, causing CXCR4 internalization and CXCR7 externalization during chemotaxis, thereby influencing relative receptor availability, unlike MCP-1. In vivo we found enhanced accumulation of platelets and platelet-macrophage co-aggregates in peritoneal fluid following induction of peritonitis in mice. The relative surface expression of CXCL12, CXCR4, and CXCR7 among infiltrated monocytes was also enhanced as compared with peripheral blood. Platelet-derived CXCL12 from collagen-adherent platelets and recombinant CXCL12 induced monocyte chemotaxis specifically through CXCR4 engagement. Adhesion of monocytes to immobilized CXCL12 and CXCL12-enriched activated platelet surface under static and dynamic arterial flow conditions were mediated primarily through CXCR7 and were counter-regulated by neutralizing platelet-derived CXCL12. Monocytes and culture-derived-M1-M2 macrophages phagocytosed platelets, with the phagocytic potential of culture-derived-M1 macrophages higher than M2 involving CXCR4-CXCR7 participation. CXCR7 was the primary receptor in promoting monocyte survival as exerted by platelet-derived CXCL12 against BH3-mimetic induced apoptosis (phosphatidylserine exposure, caspase-3 activation, loss of mitochondrial transmembrane potential). In co-culture experiments with platelets, monocytes predominantly differentiated into CD163(+) macrophages, which was attenuated upon CXCL12 neutralization and CXCR4/CXCR7 blocking antibodies. Moreover, OxLDL uptake by platelets induced platelet apoptosis, like other platelet agonists TRAP and collagen-related peptide (CRP). CXCL12 facilitated phagocytosis of apoptotic platelets by monocytes and M1-M2 macrophages, also promoted their differentiation into foam cells via CXCR4 and CXCR7. Thus, platelet-derived CXCL12 could regulate monocyte-macrophage functions through differential engagement of CXCR4 and CXCR7, indicating an important role in inflammation at site of platelet accumulation.
Collapse
Affiliation(s)
- M Chatterjee
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - S N I von Ungern-Sternberg
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - P Seizer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - F Schlegel
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - M Büttcher
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - N A Sindhu
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - S Müller
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - A Mack
- Institute of Anatomy, Universität Tübingen, Neuroanatomie, 72074 Tübingen, Germany
| | - M Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
41
|
Hinderer S, Brauchle E, Schenke-Layland K. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2015; 4:2326-41. [PMID: 25778713 PMCID: PMC4745029 DOI: 10.1002/adhm.201400762] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Indexed: 12/27/2022]
Abstract
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
| | - Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Nobelstrasse 12, Stuttgart, 70569, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at the, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
42
|
Affiliation(s)
- Dennis Schade
- Department
of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse
6, 44227 Dortmund, Germany
| | - Alleyn T. Plowright
- Department
of Medicinal Chemistry, Cardiovascular and Metabolic Diseases Innovative
Medicines, AstraZeneca, Pepparedsleden 1, Mölndal, 43183, Sweden
| |
Collapse
|
43
|
Mori M, Matsubara K, Matsubara Y, Uchikura Y, Hashimoto H, Fujioka T, Matsumoto T. Stromal Cell-Derived Factor-1α Plays a Crucial Role Based on Neuroprotective Role in Neonatal Brain Injury in Rats. Int J Mol Sci 2015; 16:18018-32. [PMID: 26251894 PMCID: PMC4581233 DOI: 10.3390/ijms160818018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/08/2015] [Accepted: 07/23/2015] [Indexed: 01/07/2023] Open
Abstract
Owing to progress in perinatal medicine, the survival of preterm newborns has markedly increased. However, the incidence of cerebral palsy has risen in association with increased preterm birth. Cerebral palsy is largely caused by cerebral hypoxic ischemia (HI), for which there are no effective medical treatments. We evaluated the effects of stromal cell-derived factor-1α (SDF-1α) on neonatal brain damage in rats. Left common carotid (LCC) arteries of seven-day-old Wistar rat pups were ligated, and animals were exposed to hypoxic gas to cause cerebral HI. Behavioral tests revealed that the memory and spatial perception abilities were disturbed in HI animals, and that SDF-1α treatment improved these cognitive functions. Motor coordination was also impaired after HI but was unimproved by SDF-1α treatment. SDF-1α reduced intracranial inflammation and induced cerebral remyelination, as indicated by the immunohistochemistry results. These data suggest that SDF-1α specifically influences spatial perception abilities in neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Miki Mori
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Keiichi Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Hisashi Hashimoto
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Toru Fujioka
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Takashi Matsumoto
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
44
|
Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem Soc Trans 2015; 43:720-6. [PMID: 26551719 DOI: 10.1042/bst20150113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Platelet-derived SDF-1α (stromal cell derived factor-α) mediates inflammation, immune defence and repair mechanisms at site of tissue injury. This review summarizes the relative expression of CXC chemokine receptor 4 (CXCR4) and CXCR7 in platelets, their dynamic trafficking in presence of ligands like chemokine C-X-C-motif ligand 11 (CXCL11), CXCL12 and MIF (macrophage migration inhibitory factor); how these receptors differentially mediate the functional and survival response to the chemokines CXCL11, CXCL12 and MIF. We further elaborate and emphasize the prognostic significance of platelet surface expression of CXCR4-CXCR7 in the context of coronary artery disease (CAD). SDF-1α/CXCL12, CXCL11, MIF effects mediated through CXCR4 and CXCR7 may play a regulatory role at the site of vascular and tissue inflammation, immune defence and repair where activated platelets reach as forerunners and function as critical players.
Collapse
|
45
|
Zuern CS, Walker B, Sauter M, Schaub M, Chatterjee M, Mueller K, Rath D, Vogel S, Tegtmeyer R, Seizer P, Geisler T, Kandolf R, Lang F, Klingel K, Gawaz M, Borst O. Endomyocardial expression of SDF-1 predicts mortality in patients with suspected myocarditis. Clin Res Cardiol 2015; 104:1033-43. [DOI: 10.1007/s00392-015-0871-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/18/2015] [Indexed: 01/19/2023]
|
46
|
Martin-Puig S, Tello D, Aragonés J. Novel perspectives on the PHD-HIF oxygen sensing pathway in cardioprotection mediated by IPC and RIPC. Front Physiol 2015; 6:137. [PMID: 26042040 PMCID: PMC4438228 DOI: 10.3389/fphys.2015.00137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Reperfusion of ischemic cardiac tissue is the standard treatment for improving clinical outcome following myocardial infarction but is inevitably associated with ischemia-reperfusion injury (IRI). Ischemic myocardial injury can be alleviated by exposing the heart to brief episodes of sublethal ischemia-reperfusion prior to the ischemic insult, a phenomenon that has been termed ischemic preconditioning (IPC). Similarly, remote IPC (RIPC) is defined as transient episodes of ischemia at a distant site before a subsequent prolonged injury of the target organ. In this setting, adaptive responses to hypoxia/ischemia in peripheral tissues include the release of soluble factors that have the potential to protect cardiomyocytes remotely. Oxygen fluctuations is a hallmark of insufficient tissue perfusion and ischemic episodes. Emerging evidence indicates that prolyl hydroxylase oxygen sensors (PHDs) and hypoxia-inducible transcription factors (HIFs) are critical regulators of IPC and RIPC. In this review, we discuss recent findings concerning the role of the PHD-HIF axis in IPC and RIPC-mediated cardioprotection and examine molecular pathways and cell types that might be involved. We also appraise the therapeutic value of targeting the PHD-HIF axis to enhance cardiac tolerance against IRI.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Cell and Developmental Biology Department, Centro Nacional de Investigaciones Cardiovasculares Madrid, Spain
| | - Daniel Tello
- Research Unit, Hospital Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid Madrid, Spain
| |
Collapse
|
47
|
Rath D, Chatterjee M, Borst O, Müller K, Langer H, Mack AF, Schwab M, Winter S, Gawaz M, Geisler T. Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. J Thromb Haemost 2015; 13:719-28. [PMID: 25660395 DOI: 10.1111/jth.12870] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Surface expression of stromal cell-derived factor-1 (SDF-1, CXCL12) on platelets is enhanced during ischemic events and plays an important role in peripheral homing of stem cells and myocardial repair mechanisms. SDF-1 effects are mediated through CXCR4 and CXCR7. Both CXCR4 and CXCR7 are surface expressed on human platelets and to a higher degree in patients with coronary artery disease (CAD) compared with healthy controls. In this study, we investigated the prognostic role of platelet CXCR4- and CXCR7 surface expression in patients with symptomatic CAD. METHODS AND RESULTS In a cohort study, platelet surface expression of CXCR4 and CXCR7 was measured by using flow cytometry in 284 patients with symptomatic CAD at the time of percutaneous coronary intervention (PCI). The primary combined end point was defined as all-cause death and/or myocardial infarction (MI) during 12-month follow-up. Secondary end points were defined as the single events of all-cause death and MI. We found significant differences of CXCR4 values in patients who developed a combined end point compared with event-free patients (mean MFIAUTHOR: Please define MFI at first use. 3.17 vs. 3.44, 95% confidence interval [CI] 0.09-0.45) and in patients who subsequently died (mean MFI 3.10 vs. 3.42, 95% CI 0.09-0.56). In multivariate Cox regression analysis, lower platelet CXCR4 levels were independently and significantly associated with all-cause mortality (hazard ratio 0.24, 95% CI 0.07-0.87) and the primary combined end point of all-cause death and/or MI (hazard ratio 0.30, 95% CI 0.13-0.72). CONCLUSION These findings highlight a potential prognostic value of platelet expression CXCR4 on clinical outcomes in patients with CAD.
Collapse
Affiliation(s)
- D Rath
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev 2015; 84:85-106. [PMID: 25172834 DOI: 10.1016/j.addr.2014.08.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
The spectrum of ischaemic cardiomyopathy, encompassing acute myocardial infarction to congestive heart failure is a significant clinical issue in the modern era. This group of diseases is an enormous source of morbidity and mortality and underlies significant healthcare costs worldwide. Cardiac regenerative therapy, whereby pro-regenerative cells, drugs or growth factors are administered to damaged and ischaemic myocardium has demonstrated significant potential, especially preclinically. While some of these strategies have demonstrated a measure of success in clinical trials, tangible clinical translation has been slow. To date, the majority of clinical studies and a significant number of preclinical studies have utilised relatively simple delivery methods for regenerative therapeutics, such as simple systemic administration or local injection in saline carrier vehicles. Here, we review cardiac regenerative strategies with a particular focus on advanced delivery concepts as a potential means to enhance treatment efficacy and tolerability and ultimately, clinical translation. These include (i) delivery of therapeutic agents in biomaterial carriers, (ii) nanoparticulate encapsulation, (iii) multimodal therapeutic strategies and (iv) localised, minimally invasive delivery via percutaneous transcatheter systems.
Collapse
|
49
|
Yang Y, Sun Y, Yi W, Li Y, Fan C, Xin Z, Jiang S, Di S, Qu Y, Reiter RJ, Yi D. A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. J Pineal Res 2014; 57:357-66. [PMID: 25230580 DOI: 10.1111/jpi.12175] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/12/2014] [Indexed: 12/16/2022]
Abstract
Cardiac tissue loss is one of the most important factors leading to the unsatisfactory recovery even after treatment of ischemic heart disease. Melatonin, a circadian molecule with marked antioxidant properties, protects against ischemia-reperfusion (IR) injury. In particular, the myocardial protection of melatonin is substantial. We initially focus on the cardioprotective effects of melatonin in myocardial IR. These studies showed how melatonin preserves the microstructure of the cardiomyocyte and reduces myocardial IR injury. Thereafter, downstream signaling pathways of melatonin were summarized including Janus kinase 2/signal transducers and activators of transcription 3, nitric oxide-synthase, and nuclear factor erythroid 2 related factor 2. Herein, we propose the clinical applications of melatonin in several ischemic heart diseases. Collectively, the information summarized in this review (based on in vitro, animal, and human studies) should serve as a comprehensive reference for the action of melatonin in cardioprotection and hopefully will contribute to the design of future experimental research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheng K, Shen D, Hensley MT, Middleton R, Sun B, Liu W, De Couto G, Marbán E. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat Commun 2014; 5:4880. [PMID: 25205020 PMCID: PMC4175574 DOI: 10.1038/ncomms5880] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022] Open
Abstract
Stem cell transplantation is a promising strategy for therapeutic cardiac regeneration, but current therapies are limited by inefficient interaction between potentially beneficial cells (either exogenously transplanted or endogenously recruited) and the injured tissue. Here we apply targeted nanomedicine to achieve in vivo cell-mediated tissue repair, imaging and localized enrichment without cellular transplantation. Iron nanoparticles are conjugated with two types of antibodies (one against antigens on therapeutic cells and the other directed at injured cells) to produce magnetic bifunctional cell engager (MagBICE). The antibodies link the therapeutic cells to the injured cells, whereas the iron core of MagBICE enables physical enrichment and imaging. We treat acute myocardial infarction by targeting exogenous bone marrow-derived stem cells (expressing CD45) or endogenous CD34-positive cells to injured cardiomyocytes (expressing myosin light chain. Targeting can be further enhanced by magnetic attraction, leading to augmented functional benefits. MagBICE represents a generalizable platform technology for regenerative medicine.
Collapse
Affiliation(s)
- Ke Cheng
- 1] Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA [2] Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, 1060 William Moore Drive, North Carolina State University, Raleigh, North Carolina 27607, USA [3] Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Deliang Shen
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, 1060 William Moore Drive, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Ryan Middleton
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Baiming Sun
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Weixin Liu
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Geoffrey De Couto
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| |
Collapse
|