1
|
Pfenniger A, Yoo S, Arora R. Oxidative stress and atrial fibrillation. J Mol Cell Cardiol 2024; 196:141-151. [PMID: 39307416 DOI: 10.1016/j.yjmcc.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Though the pathogenesis of AF is complex and is not completely understood, many studies suggest that oxidative stress is a major mechanism in pathophysiology of AF. Through multiple mechanisms, reactive oxygen species (ROS) lead to the formation of an AF substrate that facilitates the development and maintenance of AF. In this review article, we provide an update on the different mechanisms by which oxidative stress promotes atrial remodeling. We then discuss several therapeutic strategies targeting oxidative stress for the prevention or treatment of AF. Considering the complex biology of ROS induced remodeling, and the evolution of ROS sources and compartmentalization during AF progression, there is a definite need for improvement in timing, targeting and reduction of off-target effects of therapeutic strategies targeting oxidative injury in AF.
Collapse
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
2
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Goette A, Corradi D, Dobrev D, Aguinaga L, Cabrera JA, Chugh SS, de Groot JR, Soulat-Dufour L, Fenelon G, Hatem SN, Jalife J, Lin YJ, Lip GYH, Marcus GM, Murray KT, Pak HN, Schotten U, Takahashi N, Yamaguchi T, Zoghbi WA, Nattel S. Atrial cardiomyopathy revisited-evolution of a concept: a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace 2024; 26:euae204. [PMID: 39077825 PMCID: PMC11431804 DOI: 10.1093/europace/euae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS The concept of "atrial cardiomyopathy" (AtCM) had been percolating through the literature since its first mention in 1972. Since then, publications using the term were sporadic until the decision was made to convene an expert working group with representation from four multinational arrhythmia organizations to prepare a consensus document on atrial cardiomyopathy in 2016 (EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication). Subsequently, publications on AtCM have increased progressively. METHODS AND RESULTS The present consensus document elaborates the 2016 AtCM document further to implement a simple AtCM staging system (AtCM stages 1-3) by integrating biomarkers, atrial geometry, and electrophysiological changes. However, the proposed AtCM staging needs clinical validation. Importantly, it is clearly stated that the presence of AtCM might serve as a substrate for the development of atrial fibrillation (AF) and AF may accelerates AtCM substantially, but AtCM per se needs to be viewed as a separate entity. CONCLUSION Thus, the present document serves as a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS) to contribute to the evolution of the AtCM concept.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
- MAESTRIA Consortium at AFNET, Münster, Germany
- Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology; Center of Excellence for Toxicological Research (CERT), University of Parma, Parma, Italy
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Montréal Heart Institute, Université de Montréal, 5000 Belanger St. E., Montréal, Québec H1T1C8, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Luis Aguinaga
- Director Centro Integral de Arritmias Tucumán, Presidente Sociedad de Cardiología de Tucumàn, Ex-PRESIDENTE DE SOLAECE (LAHRS), Sociedad Latinoamericana de EstimulaciónCardíaca y Electrofisiología, Argentina
| | - Jose-Angel Cabrera
- Hospital Universitario QuirónSalud, Madrid, Spain
- European University of Madrid, Madrid, Spain
| | - Sumeet S Chugh
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Health System, Los Angeles, CA, USA
| | - Joris R de Groot
- Department of Cardiology; Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, The Netherlands
| | - Laurie Soulat-Dufour
- Department of Cardiology, Saint Antoine and Tenon Hospital, AP-HP, Unité INSERM UMRS 1166 Unité de recherche sur les maladies cardiovasculaires et métaboliques, Institut Hospitalo-Universitaire, Institut de Cardiométabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | | | - Stephane N Hatem
- Department of Cardiology, Assistance Publique—Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Sorbonne University; INSERM UMR_S1166; Institute of Cardiometabolism and Nutrition-ICAN, Paris, France
| | - Jose Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Yenn-Jiang Lin
- Cardiovascular Center, Taipei Veterans General Hospital, and Faculty of Medicine National Yang-Ming University Taipei, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregory M Marcus
- Electrophysiology Section, Division of Cardiology, University of California, San Francisco, USA
| | - Katherine T Murray
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Ulrich Schotten
- MAESTRIA Consortium at AFNET, Münster, Germany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Takanori Yamaguchi
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - William A Zoghbi
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Stanley Nattel
- McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G1Y6, Canada
- West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg, Essen, Germany
| |
Collapse
|
4
|
Gong Q, LE X, Yu P, Zhuang L. Therapeutic advances in atrial fibrillation based on animal models. J Zhejiang Univ Sci B 2024; 25:135-152. [PMID: 38303497 PMCID: PMC10835209 DOI: 10.1631/jzus.b2300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 02/03/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia among humans, with its incidence increasing significantly with age. Despite the high frequency of AF in clinical practice, its etiology and management remain elusive. To develop effective treatment strategies, it is imperative to comprehend the underlying mechanisms of AF; therefore, the establishment of animal models of AF is vital to explore its pathogenesis. While spontaneous AF is rare in most animal species, several large animal models, particularly those of pigs, dogs, and horses, have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options. This review aims to provide a comprehensive discussion of various animal models of AF, with an emphasis on the unique features of each model and its utility in AF research and treatment. The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.
Collapse
Affiliation(s)
- Qian Gong
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuan LE
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
5
|
Schröder LC, Frank D, Müller OJ. Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors. Pathogens 2023; 12:1301. [PMID: 38003766 PMCID: PMC10675517 DOI: 10.3390/pathogens12111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiac-targeted transgene delivery offers new treatment opportunities for cardiovascular diseases, which massively contribute to global mortality. Restricted gene transfer to cardiac tissue might protect extracardiac organs from potential side-effects. This could be mediated by using cis-regulatory elements, including promoters and enhancers that act on the transcriptional level. Here, we discuss examples of tissue-specific promoters for targeted transcription in myocytes, cardiomyocytes, and chamber-specific cardiomyocytes. Some promotors are induced at pathological states, suggesting a potential use as "induction-by-disease switches" in gene therapy. Recent developments have resulted in the identification of novel enhancer-elements that could further pave the way for future refinement of transcriptional targeting, for example, into the cardiac conduction system.
Collapse
Affiliation(s)
- Lena C. Schröder
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
| | - Derk Frank
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| |
Collapse
|
6
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Arulsamy K, Lu F, Keating EM, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Hill LD, Kyoung Song M, Trembley MA, Wang P, Gianeselli M, Prondzynski M, Bortolin RH, Bezzerides VJ, Chen K, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. NATURE CARDIOVASCULAR RESEARCH 2023; 2:881-898. [PMID: 38344303 PMCID: PMC10854392 DOI: 10.1038/s44161-023-00334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/21/2023] [Indexed: 02/15/2024]
Abstract
Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Yangpo Cao
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Carlos Perez-Cervantes
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Kulandai Arulsamy
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Erin M. Keating
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Hill
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Mi Kyoung Song
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Michael A. Trembley
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Peizhe Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Matteo Gianeselli
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Raul H. Bortolin
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Jonathan G. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Christine E. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Ivan P. Moskowitz
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
7
|
Keefe JA, Hulsurkar MM, Reilly S, Wehrens XHT. Mouse models of spontaneous atrial fibrillation. Mamm Genome 2023; 34:298-311. [PMID: 36173465 PMCID: PMC10898345 DOI: 10.1007/s00335-022-09964-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in adults, with a prevalence increasing with age. Current clinical management of AF is focused on tertiary prevention (i.e., treating the symptoms and sequelae) rather than addressing the underlying molecular pathophysiology. Robust animal models of AF, particularly those that do not require supraphysiologic stimuli to induce AF (i.e., showing spontaneous AF), enable studies that can uncover the underlying mechanisms of AF. Several mouse models of AF have been described to exhibit spontaneous AF, but pathophysiologic drivers of AF differ among models. Here, we describe relevant AF mechanisms and provide an overview of large and small animal models of AF. We then provide an in-depth review of the spontaneous mouse models of AF, highlighting the relevant AF mechanisms for each model.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Song MK, Trembley MA, Wang P, Lu F, Gianeselli M, Prondzynski M, Bortolin RH, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity by regulating an atrial enhancer network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537535. [PMID: 37131696 PMCID: PMC10153240 DOI: 10.1101/2023.04.21.537535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.
Collapse
|
9
|
Lage R, Cebro-Márquez M, Vilar-Sánchez ME, González-Melchor L, García-Seara J, Martínez-Sande JL, Fernández-López XA, Aragón-Herrera A, Martínez-Monzonís MA, González-Juanatey JR, Rodríguez-Mañero M, Moscoso I. Circulating miR-451a Expression May Predict Recurrence in Atrial Fibrillation Patients after Catheter Pulmonary Vein Ablation. Cells 2023; 12:cells12040638. [PMID: 36831306 PMCID: PMC9953933 DOI: 10.3390/cells12040638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Atrial fibrillation is the most prevalent tachyarrhythmia in clinical practice, with very high cardiovascular morbidity and mortality with a high-cost impact in health systems. Currently, it is one of the main causes of stroke and subsequent heart failure and sudden death. miRNAs mediate in several processes involved in cardiovascular disease, including fibrosis and electrical and structural remodeling. Several studies suggest a key role of miRNAs in the course and maintenance of atrial fibrillation. In our study, we aimed to identify the differential expression of circulating miRNAs and their predictive value as biomarkers of recurrence in atrial fibrillation patients undergoing catheter pulmonary vein ablation. To this effect, 42 atrial fibrillation patients were recruited for catheter ablation. We measured the expression of 84 miRNAs in non-recurrent and recurrent groups (45.2%), both in plasma from peripheral and left atrium blood. Expression analysis showed that miRNA-451a is downregulated in recurrent patients. Receiver operating characteristic curve analysis showed that miR-451a in left atrium plasma could predict atrial fibrillation recurrence after pulmonary vein isolation. In addition, atrial fibrillation recurrence is positively associated with the increment of scar percentage. Our data suggest that miRNA-451a expression plays an important role in AF recurrence by controlling fibrosis and progression.
Collapse
Affiliation(s)
- Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Marta E. Vilar-Sánchez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Laila González-Melchor
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Javier García-Seara
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Luis Martínez-Sande
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Xesús Alberte Fernández-López
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Ramón González-Juanatey
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: (M.R.-M.); (I.M.); Tel.: +0034-88181-5409 (I.M.)
| | - Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: (M.R.-M.); (I.M.); Tel.: +0034-88181-5409 (I.M.)
| |
Collapse
|
10
|
Ni L, Lahiri SK, Nie J, Pan X, Abu-Taha I, Reynolds JO, Campbell HM, Wang H, Kamler M, Schmitz W, Müller FU, Li N, Wei X, Wang DW, Dobrev D, Wehrens XHT. Genetic inhibition of Nuclear Factor of Activated T-cell c2 (NFATc2) prevents atrial fibrillation in CREM transgenic mice. Cardiovasc Res 2021; 118:2805-2818. [PMID: 34648001 PMCID: PMC9586567 DOI: 10.1093/cvr/cvab325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Abnormal intracellular calcium handling contributes to the progressive nature of atrial fibrillation (AF), the most common sustained cardiac arrhythmia. Evidence in mouse models suggests that activation of the nuclear factor of activated T-cell (NFAT) signaling pathway contributes to atrial remodeling. Our aim was to determine the role of NFATc2 in AF in humans and mouse models. METHODS AND RESULTS Expression levels of NFATc1-c4 isoforms were assessed by quantitative reverse transcription-polymerase chain reaction in right atrial appendages from patients with chronic AF. NFATc1 and NFATc2 mRNA levels were elevated in chronic AF (cAF) patients compared with those in sinus rhythm (SR). Western blotting revealed increased cytosolic and nuclear levels of NFATc2 in AF patients. Similar findings were obtained in CREM-IbΔC-X transgenic (CREM) mice, a model of progressive AF. Telemetry ECG recordings revealed age-dependent spontaneous AF in CREM mice, which was prevented by NFATc2 knockout in CREM: NFATc2-/- mice. Programmed electrical stimulation revealed that CREM: NFATc2-/- mice lacked an AF substrate. Morphometric analysis and histology revealed increased atrial weight and atrial fibrosis in CREM mice compared with WT controls, which was reversed in CREM: NFATc2-/- mice. Confocal microscopy showed an increased Ca2+ spark frequency despite a reduced sarcoplasmic reticulum (SR) Ca2+ load in CREM mice compared with controls, whereas these abnormalities were normalized in CREM: NFATc2-/- mice. Western blotting revealed that genetic inhibition of Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of S2814 on RyR2 in CREM: RyR2-S2814A mice suppressed NFATc2 activation observed in CREM mice, suggesting that NFATc2 is activated by excessive SR Ca2+ leak via RyR2. Finally, chromatin immunoprecipitation sequencing from AF patients identified Ras And EF-Hand Domain-Containing Protein (RASEF) as a direct target of NFATc2 mediated transcription. CONCLUSION Our findings reveal activation of the NFAT signaling pathway in patients of Chinese and European descent. NFATc2 knockout prevents the progression of AF in the CREM mouse model. TRANSLATIONAL PERSPECTIVE Atrial fibrillation (AF) is a progressive disease characterized by electrical and structural remodeling which promotes atrial arrhythmias. This study provides evidence for increased 'nuclear factor of activated T-cell' (NFAT) signaling in patients with chronic AF. Studies in the CREM transgenic model of progressive AF revealed that the NFATc2 isoform mediates atrial remodeling associated with AF substrate development. Chromatin immunoprecipitation sequencing of atrial biopsies from AF patients identified 'Ras And EF-Hand Domain-Containing Protein' (RASEF) as a downstream target of NFATc2-mediated transcription, suggesting that targeting these factors might be beneficial for curtailing AF progression.
Collapse
Affiliation(s)
- Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Satadru K Lahiri
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiaolu Pan
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Julia O Reynolds
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hannah M Campbell
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Haihao Wang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Markus Kamler
- Cardiac Surgery II Essen-Huttrop, University Hospital, West German Heart Center, University of Essen, Germany
| | - Wilhelm Schmitz
- Institute of Pharmacology and Toxicology, University of Münster, Germany
| | | | - Na Li
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Institute of Pharmacology and Toxicology, University of Münster, Germany
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, 77030 USA.,Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, 77030 USA.,Department of Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|