1
|
A micropatterning approach for imaging dynamic Cx43 trafficking to cell-cell borders. FEBS Lett 2014; 588:1439-45. [PMID: 24444605 DOI: 10.1016/j.febslet.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/31/2013] [Accepted: 01/04/2014] [Indexed: 11/22/2022]
Abstract
The precise expression and timely delivery of connexin 43 (Cx43) proteins to form gap junctions are essential for electrical coupling of cardiomyocytes. Growing evidence supports a cytoskeletal-based trafficking paradigm for Cx43 delivery directly to adherens junctions at the intercalated disc. A limitation of Cx43 localization assays in cultured cells, in which cell-cell contacts are essential, is the inability to control for cell geometry or reproducibly generate contact points. Here we present a micropatterned cell pairing system well suited for live microscopy to examine how the microtubule and actin cytoskeleton confer specificity to Cx43 trafficking to precisely defined cell-cell junctions. This system can be adapted for other cell types and used to study dynamic intracellular movements of other proteins important for cell-cell communication.
Collapse
|
2
|
Liu SJ. Characterization of functional capacity of adult ventricular myocytes in long-term culture. Int J Cardiol 2013; 168:1923-36. [PMID: 23375882 DOI: 10.1016/j.ijcard.2012.12.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/15/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Functional properties of freshly isolated adult ventricular myocytes (AVMs) or those of AVMs during first few weeks in culture were well described. However, the functional capacity of these AVMs such as regenerative potential remains unknown, in part, due to the short lifespan of AVMs in culture. This study modified culture conditions that extended the lifespan of AVMs, isolated from adult rat hearts, longer than 6 months. METHODS Temporal changes in the morphology of individual AVMs, cell-cell interaction, formation of myofibers, self-repair capacity after injury, expression of senescence biomarkers, and contractile function of AVMs over 5 weeks (defined as long-term culture) were chronologically characterized and quantified with live-cell video and fluorescence microscopy, and immunocytochemistry. RESULTS Cell growth in size reached a plateau after 4 weeks in culture concomitantly with continuous increase in structural remodeling in long-term culture. Dynamic remodeling of AVMs promoted self-contact of filopodia and cell-cell contact where these contained abundant myofilaments, connexin 43 proteins, and high density and high integrity of mitochondria. Such high capacity also enabled self-repair of AVMs after injury, cytokinesis, and formation of myofibers. AVMs in long-term culture displayed spontaneous contraction and importantly were responsive to electrical stimulation. Moreover, AVMs expressed senescence-associated β-galactosidase, p16, and stress-associated atrial natriuretic peptides that resulted likely from cellular modeling. CONCLUSIONS Prolonged longevity of AVMs in culture with characteristics of high functional capacity of organelle regeneration and contraction makes them invaluable for further longitudinal mechanistic studies in cardiac (patho)physiology (e.g., hypertrophy and aging), single-cell analysis (e.g., function of hetero-phenotypes) and drug discovery.
Collapse
Affiliation(s)
- Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
3
|
Zhang Y, Wang X, Xu X, Wang J, Liu X, Chen Y. Distinct microRNA expression signatures in human right atrial and ventricular myocardium. Mol Cell Biochem 2012; 371:23-9. [PMID: 22890914 DOI: 10.1007/s11010-012-1417-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/01/2012] [Indexed: 01/25/2023]
Abstract
Human atrial and ventricular myocardium has distinct structure and physiology. MicroRNAs (miRNAs) are the central players in the regulation of gene expression, participating in many physiological processes. A comprehensive knowledge of miRNA expression in the human heart is essential for the understanding of myocardial function. The aim of this study was to compare the miRNA signature in human right atrial and ventricular myocardium. Agilent human miRNA arrays were used to indicate the miRNA expression signatures of the right atrial (n = 8) and ventricular (n = 9) myocardium of healthy individuals. Quantitative reverse transcription-polymerase chain reactions (qRT-PCRs) were used to validate the array results. DIANA-mirPath was used to incorporate the miRNAs into pathways. MiRNA arrays showed that 169 miRNAs were expressed at different levels in human right atrial and ventricular myocardium. The unsupervised hierarchical clustering analysis based on the 169 dysregulated miRNAs showed that miRNA expression categorized two well-defined clusters that corresponded to human right atrial and ventricular myocardium. The qRT-PCR results correlated well with the microarray data. Bioinformatic analysis indicated the potential miRNA targets and molecular pathways. This study indicates that distinct miRNA expression signatures in human right atrial and ventricular myocardium. The findings provide a novel understanding of the molecular differences between human atrial and ventricular myocardium and may establish a framework for an anatomically detailed evaluation of cardiac function regulation.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
4
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ordered assembly of the adhesive and electrochemical connections within newly formed intercalated disks in primary cultures of adult rat cardiomyocytes. J Biomed Biotechnol 2010; 2010:624719. [PMID: 20467587 PMCID: PMC2868981 DOI: 10.1155/2010/624719] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 02/17/2010] [Indexed: 02/06/2023] Open
Abstract
The intercalated disk (ID) is a complex structure that electromechanically couples adjoining cardiac myocytes into a functional syncitium. The integrity of the disk is essential for normal cardiac function, but how the diverse elements are assembled into a fully integrated structure is not well understood. In this study, we examined the assembly of new IDs in primary cultures of adult rat cardiac myocytes. From 2 to 5 days after dissociation, the cells flatten and spread, establishing new cell-cell contacts in a manner that recapitulates the in vivo processes that occur during heart development and myocardial remodeling. As cells make contact with their neighbors, transmembrane adhesion proteins localize along the line of apposition, concentrating at the sites of membrane attachment of the terminal sarcomeres. Cx43 gap junctions and ankyrin-G, an essential cytoskeletal component of voltage gated sodium channel complexes, were secondarily recruited to membrane domains involved in cell-cell contacts. The consistent order of the assembly process suggests that there are specific scaffolding requirements for integration of the mechanical and electrochemical elements of the disk. Defining the relationships that are the foundation of disk assembly has important implications for understanding the mechanical dysfunction and cardiac arrhythmias that accompany alterations of ID architecture.
Collapse
|
6
|
Kallenbach K, Sorrentino S, Mertsching H, Kostin S, Pethig K, Haverich A, Cebotari S. A Novel Small-Animal Model for Accelerated Investigation of Tissue-Engineered Aortic Valve Conduits. Tissue Eng Part C Methods 2010; 16:41-50. [DOI: 10.1089/ten.tec.2008.0595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Klaus Kallenbach
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sajoscha Sorrentino
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heike Mertsching
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Sawa Kostin
- Department of Experimental Cardiology, Max-Plank-Institute, Bad Nauheim, Germany
| | - Klaus Pethig
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
- Department of Cardiology, Evangelische Krankenhaus, Hamm, Germany
| | - Axel Haverich
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| | - Serghei Cebotari
- Leibniz Research Laboratory for Biotechnology and Artificial Organs, Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Stacchiotti A, Bonomini F, Lavazza A, Rodella LF, Rezzani R. Adverse effects of cyclosporine A on HSP25, alpha B-crystallin and myofibrillar cytoskeleton in rat heart. Toxicology 2009; 262:192-8. [DOI: 10.1016/j.tox.2009.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/27/2022]
|
8
|
Möllmann H, Nef HM, Kostin S, Dragu A, Maack C, Weber M, Troidl C, Rolf A, Elsässer A, Böhm M, Brantner R, Hamm CW, Holubarsch CJF. Ischemia triggers BNP expression in the human myocardium independent from mechanical stress. Int J Cardiol 2009; 143:289-97. [PMID: 19329198 DOI: 10.1016/j.ijcard.2009.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 01/04/2009] [Accepted: 03/02/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND It is unknown whether the increased B-type natriuretic peptide (BNP) values found in ischemic heart disease are triggered directly by ischemia or whether they are caused indirectly by ischemia through diastolic contractures or regional wall motion abnormalities. Therefore, we investigated the BNP expression in isolated human muscle strips under conditions of ischemia with and without mechanical stress. METHODS Muscle strips (n=90) were isolated from human right atria (n=46). Contractures were induced by oxygen and glucose withdrawal. In 18 muscle strips contractures were prevented by means of butanedione monoxime (BDM). Sarcomere lengths were measured by electron microscopy (n=12). The gene expression and protein amount of BNP were determined and compared to control muscle strips contracting under physiological conditions. RESULTS Hypoxia significantly decreased systolic force and induced diastolic contractures. This mechanical stress could be prevented in the group treated with BDM as evidenced by electron microscopy. Ischemia significantly increased BNP expression in both groups as evidenced by Northern blot analysis and immunohistochemistry. This increase was independent from mechanical stress. CONCLUSION Our results indicate that ischemia is a potent mechanism for the expression of BNP. The increase in BNP expression under ischemic conditions is independent from concomitant mechanical alterations.
Collapse
Affiliation(s)
- Helge Möllmann
- Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The existence of a novel type of interstitial cells in the heart, interstitial Cajal-like cells (ICLCs), had been described for the first time in 2005. Their identification was mainly based on ultrastructural criteria: very long (tens up to hundreds of micrometres) and moniliform prolongations, which are extremely thin (less than 0.2 μm), below the resolving power of light microscopy. Myocardial ICLCs were also identified by methylene-blue vital staining, silver impregnation, and immunoreactivity for CD 34, vimentin, CD117/c-kit, etc. Although a series of studies provided evidence for the existence of ICLCs in human atria and rat ventricles, further investigations in other laboratories, using additional techniques, are required to substantiate the consistency of these findings. Here we provide further evidence for the existence of ICLCs in human and mammalian hearts (by transmission and scanning electron microscopy, as well as confocal laser scanning microscopy). Noteworthy, we confirm that ICLCs communicate with neighbouring cells via shedding (micro)vesicles. Although these so-called ICLCs represent a distinct type of cells, different from classical interstitial cells of Cajal, or fibroblasts, their role(s) in myocardium remain(s) to be established. Several hypotheses are proposed: (i) adult stromal (mesenchymal) stem cells, which might participate in cardiac repair/remodelling; (ii) intercellular signalling (e.g. via shedding microvesicles); (iii) chemo-mechanical transducers and (iv) players in pacemaking and/or arrhytmogenesis, and so on.
Collapse
Affiliation(s)
- S Kostin
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | | |
Collapse
|
10
|
Möllmann H, Nef HM, Kahlert P, Kostin S, Möllmann S, Weber M, Troidl C, Hamm CW, Holubarsch CJF, Elsässer A. Negative Inotropic Effect of Rapamycin on Isolated Human Cardiomyocytes. J Int Med Res 2008; 36:810-4. [DOI: 10.1177/147323000803600424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapamycin is an increasingly important immunosuppressive drug and reduces restenosis after coronary stenting, but its effects on cardiac contractility are largely unknown. We investigated the acute inotropic effects of rapamycin on isolated human cardiomyocytes. Cardiomyocytes were enzymatically isolated from right atrial appendages obtained during routine coronary artery bypass surgery. Cell morphology was examined by confocal microscopy. Cell contraction was recorded after electrical stimulation. Rapamycin elicited a concentration-dependent decrease in fractional cell shortening ranging from 14.3 ± 2.6% at 10−8 M rapamycin to 26.4 ± 4.2% at 10−5 M. Rapamycin also caused a concentration-dependent decrease in diastolic cell length. Contractile performance of isolated cardiomyocytes was well preserved, as evidenced by the profound positive inotropic effects of high extracellular calcium concentration and the β-adrenoreceptor agonist isoproterenol. The acute negative inotropic effect of rapamycin on human cardiomyocytes might be due to altered calcium homeostasis through the binding of rapamycin to FKBP12.6 and its regulatory function on the ryanodine receptor, with increased calcium leakage from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- H Möllmann
- Kerckhoff Heart Centre, Bad Nauheim, Germany
| | - HM Nef
- Kerckhoff Heart Centre, Bad Nauheim, Germany
| | - P Kahlert
- Department of Cardiology, Western German Heart Centre, Essen, Germany
| | - S Kostin
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - S Möllmann
- Kerckhoff Heart Centre, Bad Nauheim, Germany
| | - M Weber
- Kerckhoff Heart Centre, Bad Nauheim, Germany
| | - C Troidl
- Kerckhoff Heart Centre, Bad Nauheim, Germany
| | - CW Hamm
- Kerckhoff Heart Centre, Bad Nauheim, Germany
| | | | - A Elsässer
- Kerckhoff Heart Centre, Bad Nauheim, Germany
| |
Collapse
|
11
|
Kuwabara M, Kakinuma Y, Katare RG, Ando M, Yamasaki F, Doi Y, Sato T. Granulocyte colony-stimulating factor activates Wnt signal to sustain gap junction function through recruitment of β-catenin and cadherin. FEBS Lett 2007; 581:4821-30. [PMID: 17888912 DOI: 10.1016/j.febslet.2007.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/04/2007] [Accepted: 09/04/2007] [Indexed: 11/15/2022]
Abstract
Our previous study reveals that connexin (Cx) 43 is targeted by ACh to prevent lethal arrhythmia. Granulocyte colony-stimulating factor (G-CSF), used against ischemic heart failure, may be another candidate, however, with unknown mechanisms. Therefore, we investigated the cellular effects of G-CSF. G-CSF activated the Wnt and Jak2 signals in cardiomyocytes, and up-regulated Cx43 protein and phosphorylation levels. In addition, G-CSF enhanced the localization of Cx43, beta-catenin and cadherin on the plasma membrane. G-CSF inhibited the reduction of Cx43 by enhancing Cx43 anchoring and sustained the cell-cell communication during hypoxia. Consequently, G-CSF suppressed ventricular arrhythmia induced by myocardial infarction. As a result, G-CSF could be used as a therapeutic tool for arrhythmia.
Collapse
Affiliation(s)
- Masanori Kuwabara
- Department of Medicine and Geriatrics, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Fischer S, Gerriets T, Wessels C, Walberer M, Kostin S, Stolz E, Zheleva K, Hocke A, Hippenstiel S, Preissner KT. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood 2007; 110:2457-65. [PMID: 17576819 DOI: 10.1182/blood-2006-08-040691] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell injury leads to exposure of intracellular material and is associated with increased permeability of vessels in the vicinity of the damage. Here, we demonstrate that natural extracellular RNA as well as artificial RNA (poly-I:C), or single-stranded RNA but not DNA, significantly increased the permeability across brain microvascular endothelial cells in vitro and in vivo. RNA-induced hyperpermeability of tight monolayers of endothelial cells correlated with disintegration of tight junctions and was mediated through vascular endothelial growth factor (VEGF), reminiscent of heparin's activities. Antisense oligonucleotides against VEGF-receptor 2 (VEGF-R2) prevented the permeability-inducing activity of extracellular RNA and heparin completely. Hence, these polyanionic substances can lead to mobilization/stabilization of VEGF with the subsequent activation of VEGF-R2. In accordance with these functional data, strong binding of VEGF as well as other growth factors to RNA was demonstrable. In in vivo rat models of FeCl(3)-induced sinus sagittal is superior thrombosis and stroke/brain edema, pretreatment of animals with RNase (but not DNase) resulted in a significant reduction of vessel occlusion, infarct volume, and prevention of brain edema formation. Together, these results identify extracellular RNA as a novel natural permeability factor, upstream of VEGF, whereas counteracting RNase treatment may serve as new vessel-protective modality.
Collapse
Affiliation(s)
- Silvia Fischer
- Department of Biochemistry Medical School, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boateng SY, Lateef SS, Mosley W, Hartman TJ, Hanley L, Russell B. RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes. Am J Physiol Cell Physiol 2004; 288:C30-8. [PMID: 15371257 DOI: 10.1152/ajpcell.00199.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the mammalian heart, the extracellular matrix plays an important role in regulating cell behavior and adaptation to mechanical stress. In cell culture, a significant number of cells detach in response to mechanical stimulation, limiting the scope of such studies. We describe a method to adhere the synthetic peptides RGD (fibronectin) and YIGSR (laminin) onto silicone for culturing primary cardiac cells and studying responses to mechanical stimulation. We first examined cardiac cells on stationary surfaces and observed the same degree of cellular adhesion to the synthetic peptides as their respective native proteins. However, the number of striated myocytes on the peptide surfaces was significantly reduced. Focal adhesion kinase (FAK) protein was reduced by 50% in cardiac cells cultured on YIGSR peptide compared with laminin, even though beta(1)-integrin was unchanged. Connexin43 phosphorylation increased in cells adhered to RGD and YIGSR peptides. We then subjected the cardiac cells to cyclic strain at 20% maximum strain (1 Hz) for 48 h. After this period, cell attachment on laminin was reduced to approximately 50% compared with the unstretched condition. However, in cells cultured on the synthetic peptides, there was no significant difference in cell adherence after stretch. On YIGSR peptide, myosin protein was decreased by 50% after mechanical stimulation. However, total myosin was unchanged in cells stretched on laminin. These results suggest that RGD and YIGSR peptides promote the same degree of cellular adhesion as their native proteins; however, they are unable to promote the signaling required for normal FAK expression and complete sarcomere formation in cardiac myocytes.
Collapse
Affiliation(s)
- Samuel Y Boateng
- Department of Physiology and Biophysics, University of Illinois at Chicago, 60612-7342, USA
| | | | | | | | | | | |
Collapse
|
14
|
Renner O, Tsimpas A, Kostin S, Valable S, Petit E, Schaper W, Marti HH. Time- and cell type-specific induction of platelet-derived growth factor receptor-beta during cerebral ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 113:44-51. [PMID: 12750005 DOI: 10.1016/s0169-328x(03)00085-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During cerebral ischemia, angiogenesis occurs inside and around the infarcted area. The growth of new blood vessels may contribute to a better outcome after stroke due to accelerated and increased delivery of nutrients and oxygen to the ischemic tissue. The platelet-derived growth factor (PDGF)-B/PDGF receptor (PDGFR)-beta system, hitherto thought to contribute mainly to neuroprotection, may also support angiogenesis and vascular remodeling by mediating interactions of endothelial cells with pericytes after cerebral ischemia. While platelet-derived growth factor (PDGF)-B and its receptor PDGFR-beta are essential factors for the recruitment of pericytes to brain capillaries during embryonic development, their role in blood vessel maturation during cerebral ischemia is not clear. The aim of the present study was to investigate the time course and location of PDGF-B and PDGFR-beta expression in a mouse model of focal cerebral ischemia. In contrast to the early and continuous induction of PDGF-B, PDGFR-beta mRNA was specifically upregulated in vascular structures in the infarcted area 48 h after occlusion of the middle cerebral artery. Immunohistology and confocal microscopy analysis revealed the specific upregulation of PDGFR-beta on blood vessels and suggested expression mainly on pericytes. Our results imply PDGFR-beta as a key factor in vascular remodeling during stroke and suggest that the pleiotropic functions of PDGF-B may be regulated via the expression of its receptor. Influencing the PDGF system therapeutically might improve angiogenesis, cellular protection, and edema inhibition.
Collapse
Affiliation(s)
- Oliver Renner
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Yeh HI, Lai YJ, Lee YN, Chen YJ, Chen YC, Chen CC, Chen SA, Lin CI, Tsai CH. Differential expression of connexin43 gap junctions in cardiomyocytes isolated from canine thoracic veins. J Histochem Cytochem 2003; 51:259-66. [PMID: 12533535 DOI: 10.1177/002215540305100215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated the phenotypic features of cardiomyocytes, including the gap junctions, in the myocardial sleeve of thoracic veins. Single cardiomyocytes, isolated from the canine pulmonary veins (PV) and superior vena cava (SVC) using digestive enzymes, were examined by immunoconfocal microscopy using antisera against connexin43 (Cx43), Cx40, and other cell markers. The results showed that isolated cardiomyocytes displayed rod shapes of various sizes, ranging from <50 microm to >200 microm in length, and all the cells expressed alpha-actinin and vinculin. Gap junctions made of various amounts of Cx43 and Cx40 were found at the cell borders. These two connexins were extensively co-localized. Comparison between the thoracic veins showed that cells of the SVC contained more Cx43 gap junctions (total Cx43 gap junctions area per cell surface area, 4.0 +/- 0.2% vs 1.5 +/- 0.2%; p<0.01). In addition, for single-nucleus cells, those from the PV were longer (103.7 +/- 3.6 vs 85.0 +/- 3.1 microm; p<0.01) but narrower (14.4 +/- 0.5 vs 16.9 +/- 0.9 microm; p<0.01). In conclusion, canine thoracic veins contain cardiomyocytes with differences in shape and gap junctions, suggesting that the electrical conduction properties may be different between the thoracic veins.
Collapse
MESH Headings
- Animals
- Connexin 43/biosynthesis
- Connexin 43/immunology
- Coronary Vessels/cytology
- Coronary Vessels/metabolism
- Coronary Vessels/ultrastructure
- Dogs
- Gap Junctions/metabolism
- Immune Sera
- Immunohistochemistry
- Microscopy, Confocal
- Muscle Cells/metabolism
- Muscle Cells/ultrastructure
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Pulmonary Veins/cytology
- Pulmonary Veins/metabolism
- Pulmonary Veins/ultrastructure
- Thorax
- Vena Cava, Superior/cytology
- Vena Cava, Superior/metabolism
- Vena Cava, Superior/ultrastructure
Collapse
Affiliation(s)
- Hung-I Yeh
- Department of Internal Medicine, Mackay Memorial Hospital and Mackay Junior College of Nursing, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002; 283:H2411-9. [PMID: 12388258 DOI: 10.1152/ajpheart.01098.2001] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arteriogenesis has been associated with the presence of monocytes/macrophages within the collateral vessel wall. We tested the hypothesis that arteriogenesis is functionally linked to the concentration of circulating blood monocytes. Monocyte concentrations in peripheral blood were manipulated by single injections of the antimetabolite 5-fluorouracil (5-FU), resulting in a marked rebound effect in New Zealand White rabbits. Collateral artery growth was assessed by the use of a model of acute femoral artery ligation. Seven days after ligation, collateral conductance and the number of visible collateral arteries were increased in the rebound group. This increase was accompanied by an increased monocyte accumulation as demonstrated by immunohistology in the thigh 3 days after surgery. In a second animal model (129S2/SvHsd mice), 5-FU treatment caused a remarkable decrease in blood monocyte numbers at day 4, followed by a rebound effect at day 12. Foot blood flow, assessed by laser-Doppler imaging before and at various time points after surgery, increased from day 7 through day 21 in mice from the rebound group. In contrast, ligation during the phase of monocyte depletion resulted in a reduction of blood flow reconstitution. This inhibition could be reversed by an injection of isolated monocytes. In conclusion, we have demonstrated a functional link between the monocyte concentration in the peripheral blood and the enhancement of arteriogenesis.
Collapse
Affiliation(s)
- Matthias Heil
- Department for Experimental Cardiology, Max Planck Institute for Physiological and Clinical Research, 61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bieber T, Meissner W, Kostin S, Niemann A, Elsasser HP. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J Control Release 2002; 82:441-54. [PMID: 12175756 DOI: 10.1016/s0168-3659(02)00129-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyethylenimine (PEI) is a cationic polymer which can be complexed with DNA. PEI-DNA complexes can be used for in vitro and in vivo gene delivery approaches. The excess of positive surface charges enhances the association of the complex with the plasmamembrane of cells and facilitates their uptake by endocytosis. The intracellular transport pathway from the endosome to the nucleus is not understood. Here we show that PEI-DNA complexes are taken up by all cells which are treated with these complexes, indicating, that the uptake is not the rate limiting step in the final transfection efficiency. We reveal by fluorescent microscopy, cell fractionation studies and electron microscopy, that PEI-DNA complexes accumulate in the lysosomal compartment, from where they are released through small local membrane damages. However, the cytoplasmic pool of PEI-DNA complexes is small and with the applied morphological approaches PEI aggregates could not be detected in the nucleus. This indicates, that only a small fraction of the complexes reach their final destiny. To test whether the association of DNA with PEI might be the critical step for transfection, we performed in vitro transcription assays with PEI-DNA complexes. These experiments revealed, that the transcription is not impaired when PEI is closely attached to the template DNA. Our results thus point to the transfer of PEI-DNA complexes from the lysosomal compartment to the nucleus as the rate limiting step in cell transfection.
Collapse
Affiliation(s)
- Thorsten Bieber
- University of Marburg, Institut für Cytologie und Cytopathologie, Robert-Koch Strasse 5, D-35033, Marburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Kostin S. Structural determinants of atrial and ventricular conduction. J Cell Mol Med 2002; 6:108-9. [PMID: 12003673 PMCID: PMC6740249 DOI: 10.1111/j.1582-4934.2002.tb00315.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Sawa Kostin
- Department of Experimental Cardiology, Max-Planck Institute, Bad Nauheim, Germany.
| |
Collapse
|