1
|
Burma JS, Neill MG, Fletcher EKS, Dennett BE, Johnson NE, Javra R, Griffiths JK, Smirl JD. Examining the upper frequency limit of dynamic cerebral autoregulation: Considerations across the cardiac cycle during eucapnia. Exp Physiol 2024; 109:2100-2121. [PMID: 39382938 DOI: 10.1113/ep091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/21/2024] [Indexed: 10/10/2024]
Abstract
There are differences within the literature regarding the upper frequency cut-off point of the dynamic cerebral autoregulation (CA) high-pass filter. The projection pursuit regression approach has demonstrated that the upper frequency limit is ∼0.07 Hz, whereas another approach [transfer function analysis (TFA) phase approaching zero] indicated a theoretical upper frequency limit for the high-pass filter of 0.24 Hz. We investigated how these limits accurately represent the CA upper frequency limit, in addition to extending earlier findings with respect to biological sexes and across the cardiac cycle. Sixteen participants (nine females and seven males) performed repeated squat-stand manoeuvres at frequencies of 0.05, 0.10, 0.15, 0.20 and 0.25 Hz, with insonation of the middle and posterior cerebral arteries. Linear regression modelling with adjustment for sex and order of squat completion was used to compared TFA gain and phase with 0.25 Hz (above the theoretical limit of CA). The upper frequency limit of CA with TFA gain was within the range of 0.05-0.10 Hz, whereas TFA phase was within the range of 0.20-0.25 Hz, and consistent between vessels, between sexes and across the cardiac cycle. Females displayed greater middle cerebral artery gain compared with males (all P < 0.047), and no phase differences were present (all P > 0.072). Although sex-specific differences were present for specific TFA metrics at a given frequency, the upper frequency limit of autoregulation was similar between cerebral conduit vessels, cardiac cycle phase and biological sex. Future work is warranted to determine whether an upper frequency limit exists with respect to hysteresis analyses.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Brooke E Dennett
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Raelyn Javra
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - James K Griffiths
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Burma JS, Roy MA, Kennedy CM, Labrecque L, Brassard P, Smirl JD. A systematic review, meta-analysis and meta-regression amalgamating the driven approaches used to quantify dynamic cerebral autoregulation. J Cereb Blood Flow Metab 2024; 44:1271-1297. [PMID: 38635887 PMCID: PMC11342731 DOI: 10.1177/0271678x241235878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024]
Abstract
Numerous driven techniques have been utilized to assess dynamic cerebral autoregulation (dCA) in healthy and clinical populations. The current review aimed to amalgamate this literature and provide recommendations to create greater standardization for future research. The PubMed database was searched with inclusion criteria consisting of original research articles using driven dCA assessments in humans. Risk of bias were completed using Scottish Intercollegiate Guidelines Network and Methodological Index for Non-Randomized Studies. Meta-analyses were conducted for coherence, phase, and gain metrics at 0.05 and 0.10 Hz using deep-breathing, oscillatory lower body negative pressure (OLBNP), sit-to-stand maneuvers, and squat-stand maneuvers. A total of 113 studies were included, with 40 of these incorporating clinical populations. A total of 4126 participants were identified, with younger adults (18-40 years) being the most studied population. The most common techniques were squat-stands (n = 43), deep-breathing (n = 25), OLBNP (n = 20), and sit-to-stands (n = 16). Pooled coherence point estimates were: OLBNP 0.70 (95%CI:0.59-0.82), sit-to-stands 0.87 (95%CI:0.79-0.95), and squat-stands 0.98 (95%CI:0.98-0.99) at 0.05 Hz; and deep-breathing 0.90 (95%CI:0.81-0.99); OLBNP 0.67 (95%CI:0.44-0.90); and squat-stands 0.99 (95%CI:0.99-0.99) at 0.10 Hz. This review summarizes clinical findings, discusses the pros/cons of the 11 unique driven techniques included, and provides recommendations for future investigations into the unique physiological intricacies of dCA.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Yang J, Acharya D, Scammon WB, Schmitt S, Crane EC, Smith MA, Kainerstorfer JM. Cerebrovascular Impedance as a Function of Cerebral Perfusion Pressure. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:96-101. [PMID: 37234191 PMCID: PMC10208597 DOI: 10.1109/ojemb.2023.3236267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 09/30/2023] Open
Abstract
Goal: Cerebrovascular impedance is modulated by a vasoactive autoregulative mechanism in response to changes in cerebral perfusion pressure. Characterization of impedance and the limits of autoregulation are important biomarkers of cerebral health. We developed a method to quantify impedance based on the spectral content of cerebral blood flow and volume at the cardiac frequency, measured with diffuse optical methods. Methods: In three non-human primates, we modulated cerebral perfusion pressure beyond the limits of autoregulation. Cerebral blood flow and volume were measured with diffuse correlation spectroscopy and near-infrared spectroscopy, respectively. Results: We show that impedance can be used to identify the lower and upper limits of autoregulation. Conclusions: This impedance method may be an alternative method to measure autoregulation and a way of assessing cerebral health non-invasively at the clinical bedside.
Collapse
Affiliation(s)
- Jason Yang
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Deepshikha Acharya
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - William B. Scammon
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Samantha Schmitt
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghPA15213USA
| | - Emily C. Crane
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Matthew A. Smith
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghPA15213USA
| | - Jana M. Kainerstorfer
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
4
|
Yang J, Ruesch A, Kainerstorfer JM. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:015002. [PMID: 36699625 PMCID: PMC9868286 DOI: 10.1117/1.nph.10.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Cerebrovascular impedance (CVI) is related to cerebral autoregulation (CA), which is the mechanism of the brain to maintain near-constant cerebral blood flow (CBF) despite changes in cerebral perfusion pressure (CPP). Changes in blood vessel impedance enable the stabilization of blood flow. Due to the interplay between CVI and CA, assessment of CVI may enable quantification of CA and may serve as a biomarker for cerebral health. AIM We developed a method to quantify CVI based on a combination of diffuse correlation spectroscopy (DCS) and continuous wave (CW) near-infrared spectroscopy (NIRS). Data on healthy human volunteers were used to validate the method. APPROACH A combined high-speed DCS-NIRS system was developed, allowing for simultaneous, noninvasive blood flow, and volume measurements in the same tissue compartment. Blood volume was used as a surrogate measurement for blood pressure and CVI was calculated as the spectral ratio of blood volume and blood flow changes. This technique was validated on six healthy human volunteers undergoing postural changes to elicit CVI changes. RESULTS Averaged across the six subjects, a decrease in CVI was found for a head of bed (HOB) tilting of - 40 deg . These impedance changes were reversed when returning to the horizontal (0 deg) HOB baseline. CONCLUSIONS We developed a combined DCS-NIRS system, which measures CBF and volume changes, which we demonstrate can be used to measure CVI. Using CVI as a metric of CA may be beneficial for assessing cerebral health, especially in patients where CPP is altered.
Collapse
Affiliation(s)
- Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Alexander Ruesch
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Molina-Rodríguez S, Mirete-Fructuoso M, Martínez LM, Ibañez-Ballesteros J. Frequency-domain analysis of fNIRS fluctuations induced by rhythmic mental arithmetic. Psychophysiology 2022; 59:e14063. [PMID: 35394075 PMCID: PMC9540762 DOI: 10.1111/psyp.14063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Functional near‐infrared spectroscopy (fNIRS) is an increasingly used technology for imaging neural correlates of cognitive processes. However, fNIRS signals are commonly impaired by task‐evoked and spontaneous hemodynamic oscillations of non‐cerebral origin, a major challenge in fNIRS research. In an attempt to isolate the task‐evoked cortical response, we investigated the coupling between hemodynamic changes arising from superficial and deep layers during mental effort. For this aim, we applied a rhythmic mental arithmetic task to induce cyclic hemodynamic fluctuations suitable for effective frequency‐resolved measurements. Twenty university students aged 18–25 years (eight males) underwent the task while hemodynamic changes were monitored in the forehead using a newly developed NIRS device, capable of multi‐channel and multi‐distance recordings. We found significant task‐related fluctuations for oxy‐ and deoxy‐hemoglobin, highly coherent across shallow and deep tissue layers, corroborating the strong influence of surface hemodynamics on deep fNIRS signals. Importantly, after removing such surface contamination by linear regression, we show that the frontopolar cortex response to a mental math task follows an unusual inverse oxygenation pattern. We confirm this finding by applying for the first time an alternative method to estimate the neural signal, based on transfer function analysis and phasor algebra. Altogether, our results demonstrate the feasibility of using a rhythmic mental task to impose an oscillatory state useful to separate true brain functional responses from those of non‐cerebral origin. This separation appears to be essential for a better understanding of fNIRS data and to assess more precisely the dynamics of the neuro‐visceral link. We proposed the use of rhythmic mental arithmetic tasks to induce cyclic oscillations in multi‐distance fNIRS signals measured on the forehead, suitable for effective frequency‐domain analysis to better identify the actual neural functional response. We confirm the impairment of deep signals by task‐evoked non‐cerebral confounds, while providing evidence for an inverse oxygenation response in the frontopolar cortex.
Collapse
Affiliation(s)
- Sergio Molina-Rodríguez
- Cellular and Systems Neurobiology, Institute of Neurosciences, Spanish National Research Council-Miguel Hernandez University, Alicante, Spain
| | - Marcos Mirete-Fructuoso
- Cellular and Systems Neurobiology, Institute of Neurosciences, Spanish National Research Council-Miguel Hernandez University, Alicante, Spain
| | - Luis M Martínez
- Cellular and Systems Neurobiology, Institute of Neurosciences, Spanish National Research Council-Miguel Hernandez University, Alicante, Spain
| | | |
Collapse
|
6
|
Mol A, Claassen JAHR, Maier AB, van Wezel RJA, Meskers CGM. Determinants of orthostatic cerebral oxygenation assessed using near-infrared spectroscopy. Auton Neurosci 2022; 238:102942. [PMID: 35124323 DOI: 10.1016/j.autneu.2022.102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND To understand the relationship between blood pressure changes during standing up and clinical outcome, cerebral oxygenation needs to be measured, which may be performed using near-infrared spectroscopy (NIRS). However, the role of potential determinants of NIRS-derived orthostatic cerebral oxygenation, i.e., age, sex, type of postural change (i.e., standing up from sitting versus supine position), blood pressure (BP) and baroreflex sensitivity (BRS) is still unknown and needed to better interpret findings from studies using orthostatic NIRS measurements. METHODS 34 younger (median age 25 years, inter quartile range (IQR) 22-45) and 31 older adults (median age 77 years, IQR 72-81) underwent BP, BRS and NIRS measurements during standing up from sitting and supine position. Linear regression models were used to assess the potential determinant role of age, sex, type of postural change, BP and BRS in orthostatic cerebral oxygenation drop and recovery. Orthostatic cerebral oxygenation test-retest reliability was assessed using intra class correlations. RESULTS Younger age, male sex and standing up from supine compared to sitting position were positively associated with cerebral oxygenation drop; older age and standing up from sitting compared to supine position were associated with higher cerebral oxygenation recovery. Test-retest reliability was highest (ICC > 0.83) during standing up from supine position. CONCLUSION Based on the findings of this study, age, sex and type of postural change are significant determinants of NIRS-derived orthostatic cerebral oxygenation and should be taken into account in the interpretation of NIRS measurements. In the design of new studies, standing up from supine position is preferable (higher reliability) over standing up from sitting position.
Collapse
Affiliation(s)
- Arjen Mol
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT Amsterdam, the Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT Amsterdam, the Netherlands; Department of Medicine and Aged Care, @AgeMelbourne, The University of Melbourne, The Royal Melbourne Hospital, City Campus, Level 6 North, 300 Grattan Street, Parkville, Victoria 3050, Australia; Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, National University Health System, 10 Medical Dr, Singapore 117597, Singapore
| | - Richard J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Zuidhorst Building, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam Movement Sciences, P.O. Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
7
|
Panerai RB, Batterham A, Robinson TG, Haunton VJ. Determinants of cerebral blood flow velocity change during squat-stand maneuvers. Am J Physiol Regul Integr Comp Physiol 2021; 320:R452-R466. [PMID: 33533312 DOI: 10.1152/ajpregu.00291.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The large changes in mean arterial blood pressure (MABP) and cerebral blood flow velocity (CBFV) induced by squat-stand maneuvers (SSM) make this approach particularly suited for studying dynamic cerebral autoregulation (CA). However, the role of other systemic determinants of CBFV has not been described and could provide alternative physiological interpretations of SSM results. In 32 healthy subjects (16 female), continuous recordings of MABP (Finometer), bilateral CBFV (transcranial Doppler, MCA), end-tidal CO2 (EtCO2; capnography), and heart rate (HR; electrocardiogram) were performed for 5 min standing at rest, and during 15 SSM at the frequency of 0.05 Hz. A time-domain, multivariate dynamic model estimated the CBFV variance explained by different inputs, corresponding to significant contributions from MABP (P < 0.00001), EtCO2 (P < 0.0001), and HR (P = 0.041). The autoregulation index (ARI; range 0-9) was estimated from the CBFV response to a step change in MABP. At rest, ARI values (typically 5.7) were independent of the number of model inputs, but during SSM, ARI was reduced compared with baseline (P < 0.0001), and the three input model yielded lower values for the right and left MCA (3.4 ± 1.2, 3.1 ± 1.3) when compared with the single-input MABP-CBFV model (4.1 ± 1.1, 3.9 ± 1.0; P < 0.0001). The high coherence of the MABP-CBFV transfer function at 0.05 Hz (typically 0.98) was considerably reduced (around 0.71-0.73; P < 0.0001) when the contribution of CBFV covariates was taken into account. Not taking into consideration other determinants of CBFV, in addition to MABP, could be misleading and introduce biases in physiological and clinical studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Angus Batterham
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
Panerai RB, Minhas JS, Llwyd O, Salinet ASM, Katsogridakis E, Maggio P, Robinson TG. The critical closing pressure contribution to dynamic cerebral autoregulation in humans: influence of arterial partial pressure of CO 2. J Physiol 2020; 598:5673-5685. [PMID: 32975820 DOI: 10.1113/jp280439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 03/07/2024] Open
Abstract
KEY POINTS Dynamic cerebral autoregulation (CA) is often expressed by the mean arterial blood pressure (MAP)-cerebral blood flow (CBF) relationship, with little attention given to the dynamic relationship between MAP and cerebrovascular resistance (CVR). In CBF velocity (CBFV) recordings with transcranial Doppler, evidence demonstrates that CVR should be replaced by a combination of a resistance-area product (RAP) with a critical closing pressure (CrCP) parameter, the blood pressure value where CBFV reaches zero due to vessels collapsing. Transfer function analysis of the MAP-CBFV relationship can be extended to the MAP-RAP and MAP-CrCP relationships, to assess their contribution to the dynamic CA response. During normocapnia, both RAP and CrCP make a significant contribution to explaining the MAP-CBFV relationship. Hypercapnia, a surrogate state of depressed CA, leads to marked changes in dynamic CA, that are entirely explained by the CrCP response, without further contribution from RAP in comparison with normocapnia. ABSTRACT Dynamic cerebral autoregulation (CA) is manifested by changes in the diameter of intra-cerebral vessels, which control cerebrovascular resistance (CVR). We investigated the contribution of critical closing pressure (CrCP), an important determinant of CVR, to explain the cerebral blood flow (CBF) response to a sudden change in mean arterial blood pressure (MAP). In 76 healthy subjects (age range 21-70 years, 36 women), recordings of MAP (Finometer), CBF velocity (CBFV; transcranial Doppler ultrasound), end-tidal CO2 (capnography) and heart rate (ECG) were performed for 5 min at rest (normocapnia) and during hypercapnia induced by breathing 5% CO2 in air. CrCP and the resistance-area product (RAP) were obtained for each cardiac cycle and their dynamic response to a step change in MAP was calculated by means of transfer function analysis. The recovery of the CBFV response, following a step change in MAP, was mainly due to the contribution of RAP during both breathing conditions. However, CrCP made a highly significant contribution during normocapnia (P < 0.0001) and was the sole determinant of changes in the CBFV response, resulting from hypercapnia, which led to a reduction in the autoregulation index from 5.70 ± 1.58 (normocapnia) to 4.14 ± 2.05 (hypercapnia; P < 0.0001). In conclusion, CrCP makes a very significant contribution to the dynamic CBFV response to changes in MAP and plays a major role in explaining the deterioration of dynamic CA induced by hypercapnia. Further studies are needed to assess the relevance of CrCP contribution in physiological and clinical studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Angela S M Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Emmanuel Katsogridakis
- Department of Vascular Surgery, Wythenshawe Hospital, Manchester Foundation Trust, Manchester, UK
| | - Paola Maggio
- Neurology Department, ASST Bergamo EST (BG), Italy
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
9
|
Xu M, Zheng Y, Chen X, Li Y, Lin W, Zeng B. Dynamic microcirculation PIPE model for functional neuroimaging, non-neuroimaging, and coherent hemodynamics spectroscopy: blood volume and flow velocity variations, and vascular autoregulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:4602-4626. [PMID: 32923067 PMCID: PMC7449742 DOI: 10.1364/boe.396817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
We present a dynamic microcirculation PIPE model for functional neuroimaging, non-neuroimaging, and coherent hemodynamics spectroscopy. The temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, comprised of the contributions from the arterioles, capillaries, and venules of microvasculature, is determined by time-resolved hemodynamic and metabolic variations in blood volume, flow velocity, and oxygen consumption with a fluid mechanics treatment. Key parameters regarding microcirculation can be assessed, including the effective blood transit times through the capillaries and the venules, and the rate constant of oxygen release from hemoglobin to tissue. The vascular autoregulation can further be quantified from the relationship between the resolved blood volume and flow velocity variations. The PIPE model shows excellent agreement with the experimental cerebral and cutaneous coherent hemodynamics spectroscopy (CHS) and fMRI-BOLD data. It further identifies the impaired cerebral autoregulation distinctively in hemodialysis patients compared to healthy subjects measured by CHS. This new dynamic microcirculation PIPE model provides a valuable tool for brain and other functional studies with hemodynamic-based techniques. It is instrumental in recovering physiological parameters from analyzing and interpreting the signals measured by hemodynamic-based neuroimaging and non-neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation, physiological challenges, or physical maneuvers.
Collapse
Affiliation(s)
- M. Xu
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Dept. of Physics and Astronomy, Hunter College and the Graduate Center, The City University of New York, 695 Park Ave, New York, NY 10065, USA
| | - Yang Zheng
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinlin Chen
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Li
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weihao Lin
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bixin Zeng
- Institute of Lasers and Biomedical Photonics, Biomedical Engineering College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
10
|
Panerai RB, Robinson TG, Minhas JS. The upper frequency limit of dynamic cerebral autoregulation. J Physiol 2019; 597:5821-5833. [DOI: 10.1113/jp278710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences University of Leicester Leicester LE2 7LX UK
- National Institute for Health Research Leicester Biomedical Research Centre University of Leicester Leicester LE3 9QP UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences University of Leicester Leicester LE2 7LX UK
- National Institute for Health Research Leicester Biomedical Research Centre University of Leicester Leicester LE3 9QP UK
| | - Jatinder S. Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group, Department of Cardiovascular Sciences University of Leicester Leicester LE2 7LX UK
- National Institute for Health Research Leicester Biomedical Research Centre University of Leicester Leicester LE3 9QP UK
| |
Collapse
|
11
|
Stok WJ, Karemaker JM, Berecki‐Gisolf J, Immink RV, van Lieshout JJ. Slow sinusoidal tilt movements demonstrate the contribution to orthostatic tolerance of cerebrospinal fluid movement to and from the spinal dural space. Physiol Rep 2019; 7:e14001. [PMID: 30810293 PMCID: PMC6391715 DOI: 10.14814/phy2.14001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/24/2022] Open
Abstract
Standing up elicits a host of cardiovascular changes which all affect the cerebral circulation. Lowered mean arterial blood pressure (ABP) at brain level, change in the cerebral venous outflow path, lowered end-tidal PCO2 (PET CO2 ), and intracranial pressure (ICP) modify cerebral blood flow (CBF). The question we undertook to answer is whether gravity-induced blood pressure (BP) changes are compensated in CBF with the same dynamics as are spontaneous or induced ABP changes in a stable position. Twenty-two healthy subjects (18/4 m/f, 40 ± 8 years) were subjected to 30° and 70° head-up tilt (HUT) and sinusoidal tilts (SinTilt, 0°↨60° around 30° at 2.5-10 tilts/min). Additionally, at those three tilt levels, they performed paced breathing at 6-15 breaths/min to induce larger than spontaneous cardiovascular oscillations. We measured continuous finger BP and cerebral blood flow velocity (CBFv) in the middle cerebral artery by transcranial Doppler to compute transfer functions (TFs) from ABP- to CBFv oscillations. SinTilt induces the largest ABP oscillations at brain level with CBFv gains strikingly lower than for paced breathing or spontaneous variations. This would imply better autoregulation for dynamic gravitational changes. We demonstrate in a mathematical model that this difference is explained by ICP changes due to movement of cerebrospinal fluid (CSF) into and out of the spinal dural sack. Dynamic cerebrovascular autoregulation seems insensitive to how BP oscillations originate if the effect of ICP is factored in. CSF-movement in-and-out of the spinal dural space contributes importantly to orthostatic tolerance by its effect on cerebral perfusion pressure.
Collapse
Affiliation(s)
- Wim J. Stok
- Department of Medical BiologySection Systems PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical BiologyLaboratory for Clinical Cardiovascular PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - John M. Karemaker
- Department of Medical BiologySection Systems PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janneke Berecki‐Gisolf
- Department of Medical BiologySection Systems PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Present address:
Monash University Accident Research Centre (Vic Injury Surveillance Unit)Monash University Clayton CampusClaytonVictoriaAustralia
| | - Rogier V. Immink
- Department of AnesthesiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johannes J. van Lieshout
- Department of Medical BiologyLaboratory for Clinical Cardiovascular PhysiologyAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Internal MedicineAmsterdam UMCLocation AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
12
|
Sassaroli A, Tgavalekos K, Fantini S. The meaning of "coherent" and its quantification in coherent hemodynamics spectroscopy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2018; 11:1850036. [PMID: 31762798 PMCID: PMC6874396 DOI: 10.1142/s1793545818500360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have recently introduced a new technique, coherent hemodynamics spectroscopy (CHS), which aims at characterizing a specific kind of tissue hemodynamics that feature a high level of covariation with a given physiological quantity. In this study, we carry out a detailed analysis of the significance of coherence and phase synchronization between oscillations of arterial blood pressure (ABP) and total hemoglobin concentration ([Hbt]), measured with near-infrared spectroscopy (NIRS) during a typical protocol for CHS, based on a cyclic thigh cuff occlusion and release. Even though CHS is based on a linear time invariant model between ABP (input) and NIRS measurands (outputs), for practical reasons in a typical CHS protocol, we induce finite "groups" of ABP oscillations, in which each group is characterized by a different frequency. For this reason, ABP (input) and NIRS measurands (output) are not stationary processes, and we have used wavelet coherence and phase synchronization index (PSI), as a metric of coherence and phase synchronization, respectively. PSI was calculated by using both the wavelet cross spectrum and the Hilbert transform. We have also used linear coherence (which requires stationary process) for comparison with wavelet coherence. The method of surrogate data is used to find critical values for the significance of covariation between ABP and [Hbt]. Because we have found similar critical values for wavelet coherence and PSI by using five of the most used methods of surrogate data, we propose to use the data-independent Gaussian random numbers (GRNs), for CHS. By using wavelet coherence and wavelet cross spectrum, and GRNs as surrogate data, we have found the same results for the significance of coherence and phase synchronization between ABP and [Hbt]: on a total set of 20 periods of cuff oscillations, we have found 17 coherent oscillations and 17 phase synchronous oscillations. Phase synchronization assessed with Hilbert transform yielded similar results with 14 phase synchronous oscillations. Linear coherence and wavelet coherence overall yielded similar number of significant values. We discuss possible reasons for this result. Despite the similarity of linear and wavelet coherence, we argue that wavelet coherence is preferable, especially if one wants to use baseline spontaneous oscillations, in which phase locking and coherence between signals might be only temporary.
Collapse
|
13
|
Smirl JD, Wright AD, Ainslie PN, Tzeng YC, van Donkelaar P. Differential Systolic and Diastolic Regulation of the Cerebral Pressure-Flow Relationship During Squat-Stand Manoeuvres. ACTA NEUROCHIRURGICA SUPPLEMENT 2018; 126:263-268. [DOI: 10.1007/978-3-319-65798-1_52] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Viski S, Orosz M, Czuriga-Kovacs KR, Magyar MT, Csiba L, Olah L. The acute effects of alcohol on cerebral hemodynamic changes induced by the head-up tilt test in healthy subjects. J Neurol Sci 2016; 368:113-20. [PMID: 27538612 DOI: 10.1016/j.jns.2016.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Alcohol is a known triggering factor for orthostatic dysfunction, increasing the risk of neurally-mediated syncope. Since orthostatic tolerance may be affected by both systemic and cerebral hemodynamic changes, our aim was to investigate the acute effects of alcohol on cerebral vasoreactivity measured during the head-up tilt (HUT) test in 20 healthy subjects. METHODS Mean arterial blood pressure (mBP), heart rate, and flow parameters in both middle cerebral arteries (MCAs) were continuously recorded in the supine and during a 10-minute HUT positions before and after alcohol intake. RESULTS The HUT test resulted in a more prominent decline of adjusted mBP at the level of MCAs (mBPMCA) and a significantly larger decrease of MCA mean flow velocities (MFVMCA) in the post-alcohol period than before alcohol intake. During the HUT phase, the relative decrease in MFVMCA was significantly smaller than the reduction in mBPMCA before drinking alcohol, while these changes were similar after alcohol ingestion. The cerebrovascular resistance index (CVRi) decreased during the HUT phase in the control period, however, it increased after alcohol intake. CONCLUSION The similar decrease in mBPMCA and MFVMCA during orthostatic stress after alcohol ingestion together with the increased CVRi indicated the impairment of the compensatory vasodilation of cerebral resistance vessels, i.e. impaired cerebral autoregulation. These findings suggest that alcohol may contribute to impaired orthostatic tolerance not only by a hypotensive response but also by the alteration of cerebral blood flow regulation.
Collapse
Affiliation(s)
- Sandor Viski
- Department of Neurology, University of Debrecen, Moricz Zs. krt. 22, H-4032 Debrecen, Hungary
| | - Miklos Orosz
- Bethesda Children's Hospital of Reformed Church in Hungary, Bethesda u. 3., H-1146 Budapest, Hungary
| | | | - Maria Tunde Magyar
- Department of Neurology, University of Debrecen, Moricz Zs. krt. 22, H-4032 Debrecen, Hungary
| | - Laszlo Csiba
- Department of Neurology, University of Debrecen, Moricz Zs. krt. 22, H-4032 Debrecen, Hungary
| | - Laszlo Olah
- Department of Neurology, University of Debrecen, Moricz Zs. krt. 22, H-4032 Debrecen, Hungary.
| |
Collapse
|
15
|
Smirl JD, Hoffman K, Tzeng YC, Hansen A, Ainslie PN. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships. J Appl Physiol (1985) 2015; 119:487-501. [PMID: 26183476 DOI: 10.1152/japplphysiol.00264.2015] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
We examined the between-day reproducibility of active (squat-stand maneuvers)- and passive [oscillatory lower-body negative pressure (OLBNP) maneuvers]-driven oscillations in blood pressure. These relationships were examined in both younger (n = 10; 25 ± 3 yr) and older (n = 9; 66 ± 4 yr) adults. Each testing protocol incorporated rest (5 min), followed by driven maneuvers at 0.05 (5 min) and 0.10 (5 min) Hz to increase blood-pressure variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal partial pressure of CO2 were monitored. The pressure-flow relationship was quantified in the very low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequencies (LF; spontaneous data) and at 0.05 and 0.10 Hz (driven maneuvers point estimates). Although there were no between-age differences, very few spontaneous and OLBNP transfer function metrics met the criteria for acceptable reproducibility, as reflected in a between-day, within-subject coefficient of variation (CoV) of <20%. Combined CoV data consist of LF coherence (15.1 ± 12.2%), LF gain (15.1 ± 12.2%), and LF normalized gain (18.5 ± 10.9%); OLBNP data consist of 0.05 (12.1 ± 15.%) and 0.10 (4.7 ± 7.8%) Hz coherence. In contrast, the squat-stand maneuvers revealed that all metrics (coherence: 0.6 ± 0.5 and 0.3 ± 0.5%; gain: 17.4 ± 12.3 and 12.7 ± 11.0%; normalized gain: 16.7 ± 10.9 and 15.7 ± 11.0%; and phase: 11.6 ± 10.2 and 17.3 ± 10.8%) at 0.05 and 0.10 Hz, respectively, were considered biologically acceptable for reproducibility. These findings have important implications for the reliable assessment and interpretation of cerebral pressure-flow dynamics in humans.
Collapse
Affiliation(s)
- Jonathan D Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| | - Keegan Hoffman
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| | - Yu-Chieh Tzeng
- Cardiovascular Systems Laboratory, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Alex Hansen
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, British Columbia, Canada; and
| |
Collapse
|
16
|
Brar I, Robertson AD, Hughson RL. Increased central arterial stiffness and altered cerebrovascular haemodynamic properties in South Asian older adults. J Hum Hypertens 2015; 30:309-14. [PMID: 26178590 DOI: 10.1038/jhh.2015.76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/25/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
Abstract
South Asians (SA) suffer from a higher burden of heart disease and stroke compared with White Caucasians (CA). We hypothesized that increased arterial stiffness in older adults of SA origin would be associated with greater cerebrovascular pulsatile pressure and flow characteristics compared with CA older adults. Forty-four SA and CA older adults, free of known cardiovascular and cerebrovascular diseases, were assessed. Vascular ageing was characterized by brachial-ankle pulse wave velocity, carotid pulse pressure, compliance coefficient (CC) and intima-media thickness (IMT). Duplex ultrasonography of the internal carotid arteries estimated anterior cerebral blood flow (aCBF) and cerebrovascular resistance (aCVR), and transcranial Doppler ultrasound quantified middle cerebral artery blood flow velocity, resistive index (RI) and pulsatility index (PI). Fasting blood samples were collected to assess glycaemic status, lipid profile and C-reactive protein. SA had higher carotid pulse pressure and lower CC indicating stiffer arteries compared with CA. Multiple regression analyses revealed that ethnic differences in arterial stiffness were associated with glycated haemoglobin level in SA. Among SA, an inverse association was observed between carotid CC and aCVR. In turn, aCVR was associated with a steeper reduction in aCBF in SA than in CA. IMT was strongly associated with greater PI and RI (r>0.81, P<0.001) in SA, whereas a weaker relationship for PI (r=0.46, P=0.03) and no significant relationship for RI were found in CA. The study found stronger associations between pulsatile cerebrovascular haemodynamics and structural and functional alterations in central arteries in SA that may underlie the elevated risk for cerebrovascular disease.
Collapse
Affiliation(s)
- I Brar
- Faculty of Applied Health Sciences, Schlegel-University of Waterloo Research Institute for Aging, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - A D Robertson
- Faculty of Applied Health Sciences, Schlegel-University of Waterloo Research Institute for Aging, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - R L Hughson
- Faculty of Applied Health Sciences, Schlegel-University of Waterloo Research Institute for Aging, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
17
|
Yang C, Gao Y, Greaves DK, Villar R, Beltrame T, Fraser KS, Hughson RL. Prior head-down tilt does not impair the cerebrovascular response to head-up tilt. J Appl Physiol (1985) 2015; 118:1356-63. [PMID: 25749443 DOI: 10.1152/japplphysiol.00871.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/26/2015] [Indexed: 11/22/2022] Open
Abstract
The hypothesis that cerebrovascular autoregulation was not impaired during head-up tilt (HUT) that followed brief exposures to varying degrees of prior head-down tilt (HDT) was tested in 10 healthy young men and women. Cerebral mean flow velocity (MFV) and cardiovascular responses were measured in transitions to a 60-s period of 75° HUT that followed supine rest (control) or 15 s HDT at -10°, -25°, and -55°. During HDT, heart rate (HR) was reduced for -25° and -55°, and cardiac output was lower at -55° HDT. MFV increased during -10° HDT, but not in the other conditions even though blood pressure at the middle cerebral artery (BPMCA) increased. On the transition to HUT, HR increased only for -55° condition, but stroke volume and cardiac output transiently increased for -25° and -55°. Total peripheral resistance index decreased in proportion to the magnitude of HDT and recovered over the first 20 s of HUT. MFV was significantly less in all HDT conditions compared with the control in the first 5-s period of HUT, but it recovered quickly. An autoregulation correction index derived from MFV recovery relative to BPMCA decline revealed a delay in the first 5 s for prior HDT compared with control but then a rapid increase to briefly exceed control after -55° HDT. This study showed that cerebrovascular autoregulation is modified by but not impaired by brief HDT prior to HUT and that cerebral MFV recovered quickly and more rapidly than arterial blood pressure to protect against cerebral hypoperfusion and potential syncope.
Collapse
Affiliation(s)
- Changbin Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Yuan Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Danielle K Greaves
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Rodrigo Villar
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Thomas Beltrame
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Katelyn S Fraser
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
18
|
Kainerstorfer JM, Sassaroli A, Fantini S. Coherent hemodynamics spectroscopy in a single step. BIOMEDICAL OPTICS EXPRESS 2014; 5:3403-16. [PMID: 25360359 PMCID: PMC4206311 DOI: 10.1364/boe.5.003403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 05/03/2023]
Abstract
Coherent Hemodynamics Spectroscopy (CHS) is a technique based on inducing cerebral hemodynamic oscillations at multiple frequencies, measuring them with near-infrared spectroscopy (NIRS), and analyzing them with a hemodynamic model to obtain physiological information such as blood transit times in the microvasculature and the autoregulation cutoff frequency. We have previously demonstrated that such oscillations can be induced one frequency at a time. Here we demonstrate that CHS can be performed by a single inflation of two pneumatic thigh cuffs (duration: 2 min; pressure: 200 mmHg), whose sudden release produces a step response in systemic arterial blood pressure that lasts for ~20 s and induces cerebral hemodynamics that contain all the frequency information necessary for CHS. Following a validation study on simulated data, we performed measurements on human subjects with this new method based on a single occlusion/release of the thigh cuffs and with the previous method based on sequential sets of cyclic inflation/deflation one frequency at a time, and demonstrated that the two methods yield the same CHS spectra and the same physiological parameters (within measurement errors). The advantages of the new method presented here are that CHS spectra cover the entire bandwidth of the induced hemodynamic response, they are measured over ~20 s thus better satisfying the requirement of time invariance of physiological conditions, and they can be measured every ~2.5 min thus achieving finer temporal sampling in monitoring applications.
Collapse
|
19
|
Miyamoto T, Bailey DM, Nakahara H, Ueda S, Inagaki M, Ogoh S. Manipulation of central blood volume and implications for respiratory control function. Am J Physiol Heart Circ Physiol 2014; 306:H1669-78. [DOI: 10.1152/ajpheart.00987.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The respiratory operating point (ventilatory or arterial Pco2 response) is determined by the intersection point between the controller and plant subsystem elements within the respiratory control system. However, to what extent changes in central blood volume (CBV) influence these two elements and the corresponding implications for the respiratory operating point remain unclear. To examine this, 17 apparently healthy male participants were exposed to water immersion (WI) or lower body negative pressure (LBNP) challenges to manipulate CBV and determine the corresponding changes. The respiratory controller was characterized by determining the linear relationship between end-tidal Pco2 (PetCO2) and minute ventilation (V̇e) [V̇e = S × (PetCO2 − B)], whereas the plant was determined by the hyperbolic relationship between V̇e and PetCO2 (PetCO2 = A/V̇e + C). Changes in V̇e at the operating point were not observed under either WI or LBNP conditions despite altered PetCO2 ( P < 0.01), indicating a moving respiratory operating point. An increase (WI) and a decrease (LBNP) in CBV were shown to reset the controller element (PetCO2 intercept B) rightward and leftward, respectively ( P < 0.05), without any change in S, whereas the plant curve remained unaltered at the operating point. Collectively, these findings indicate that modification of the controller element rather than the plant element is the major factor that contributes toward an alteration of the respiratory operating point during CBV shifts.
Collapse
Affiliation(s)
- Tadayoshi Miyamoto
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka City, Osaka, Japan
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita City, Osaka, Japan
| | - Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom; and
| | - Hidehiro Nakahara
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka City, Osaka, Japan
| | - Shinya Ueda
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka City, Osaka, Japan
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita City, Osaka, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe City, Saitama, Japan
| |
Collapse
|
20
|
Robertson AD, Edgell H, Hughson RL. Assessing cerebrovascular autoregulation from critical closing pressure and resistance area product during upright posture in aging and hypertension. Am J Physiol Heart Circ Physiol 2014; 307:H124-33. [PMID: 24858843 DOI: 10.1152/ajpheart.00086.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static cerebral autoregulation (sCA) is believed to be resistant to aging and hypertensive pathology. However, methods to characterize autoregulation commonly rely on beat-by-beat mean hemodynamic measures and do not consider within-beat pulse wave characteristics that are impacted by arterial stiffening. We examined the role of critical closing pressure (CrCP) and resistance area product (RAP), two measures derived from the pulse wave, across supine lying, sitting, and standing postures in young adults, normotensive older adults, and older adults with controlled and uncontrolled hypertension (N = 80). Traditional measures of sCA, using both intracranial and extracranial methods, indicated similar efficiency across all groups, but within-beat measures suggested different mechanisms of regulation. At rest, RAP was increased in hypertension compared with young adults (P < 0.001), but CrCP was similar. In contrast, the drop in CrCP was the primary regulator of change in cerebrovascular resistance upon adopting an upright posture. Both CrCP and RAP demonstrated group-by-posture interaction effects (P < 0.05), with older hypertensive adults exhibiting a rise in RAP that was absent in other groups. The posture-related swings in CrCP and RAP were related to changes in both the pulsatile and mean components of arterial pressure, independent of age, cardiac output, and carbon dioxide. Group-by-posture differences in pulse pressure were mediated in part by an attenuated heart rate response in older hypertensive adults (P = 0.002). Examination of pulsatile measures in young, elderly, and hypertensive adults identified unique differences in how cerebral blood flow is regulated in upright posture.
Collapse
Affiliation(s)
- Andrew D Robertson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Heather Edgell
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Nonstationarity of dynamic cerebral autoregulation. Med Eng Phys 2014; 36:576-84. [DOI: 10.1016/j.medengphy.2013.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022]
|
22
|
Del Pozzi AT, Schwartz CE, Tewari D, Medow MS, Stewart JM. Reduced cerebral blood flow with orthostasis precedes hypocapnic hyperpnea, sympathetic activation, and postural tachycardia syndrome. Hypertension 2014; 63:1302-8. [PMID: 24711524 DOI: 10.1161/hypertensionaha.113.02824] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperventilation and reduced cerebral blood flow velocity can occur in postural tachycardia syndrome (POTS). We studied orthostatically intolerant patients, with suspected POTS, with a chief complaint of upright dyspnea. On the basis of our observations of an immediate reduction of cerebral blood flow velocity with orthostasis, we hypothesize that the resulting ischemic hypoxia of the carotid body causes chemoreflex activation, hypocapnic hyperpnea, sympathetic activation, and increased heart rate and blood pressure in this subset of POTS. We compared 11 dyspneic POTS subjects with 10 healthy controls during a 70° head-up tilt. In POTS subjects during initial orthostasis before blood pressure recovery; central blood volume and mean arterial pressure were reduced (P<0.025), resulting in a significant (P<0.001) decrease in cerebral blood flow velocity, which temporally preceded (17±6 s; P<0.025) a progressive increase in minute ventilation and decrease in end tidal CO2 (P<0.05) when compared with controls. Sympathoexcitation, measured by muscle sympathetic nerve activity, was increased in POTS (P<0.01) and inversely proportional to end tidal CO2 and resulted in an increase in heart rate (P<0.001), total peripheral resistance (P<0.025), and a decrease in cardiac output (P<0.025). The decrease in cerebral blood flow velocity and mean arterial pressure during initial orthostasis was greater (P<0.025) in POTS. Our data suggest that exaggerated initial central hypovolemia during initial orthostatic hypotension in POTS results in reduced cerebral blood flow velocity and postural hypocapnic hyperpnea that perpetuates cerebral ischemia. We hypothesize that sustained hypocapnia and cerebral ischemia produce sympathoexcitation, tachycardia, and a statistically significant increase in blood pressure.
Collapse
Affiliation(s)
- Andrew T Del Pozzi
- Center for Hypotension, 19 Bradhurst Ave, Suite 1600 S, Hawthorne, NY 10532.
| | | | | | | | | |
Collapse
|
23
|
Pierro ML, Kainerstorfer JM, Civiletto A, Weiner DE, Sassaroli A, Hallacoglu B, Fantini S. Reduced speed of microvascular blood flow in hemodialysis patients versus healthy controls: a coherent hemodynamics spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:026005. [PMID: 24522805 PMCID: PMC3922146 DOI: 10.1117/1.jbo.19.2.026005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 05/19/2023]
Abstract
We present a pilot clinical application of coherent hemodynamics spectroscopy (CHS), a technique to investigate cerebral hemodynamics at the microcirculatory level. CHS relies on frequency-resolved measurements of induced cerebral hemodynamic oscillations that are measured with near-infrared spectroscopy (NIRS) and analyzed with a hemodynamic model. We have used cyclic inflation (200 mmHg) and deflation of a pneumatic cuff placed around the subject's thigh at seven frequencies in the range of 0.03 to 0.17 Hz to generate CHS spectra and to obtain a set of physiological parameters that include the blood transit times in the cerebral microcirculation, the cutoff frequency for cerebral autoregulation, and blood volume ratios across the three different compartments. We have investigated five hemodialysis patients, during the hemodialysis procedure, and six healthy subjects. We have found that the blood transit time in the cerebral microcirculation is significantly longer in hemodialysis patients with respect to healthy subjects. No significant differences were observed between the two groups in terms of autoregulation efficiency and blood volume ratios. The demonstration of the applicability of CHS in a clinical setting and its sensitivity to the highly important cerebral microcirculation may open up new opportunities for NIRS applications in research and in medical diagnostics and monitoring.
Collapse
Affiliation(s)
- Michele L. Pierro
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155
| | - Jana M. Kainerstorfer
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155
- Address all correspondence to: Jana M. Kainerstorfer, E-mail:
| | - Amanda Civiletto
- Tufts Medical Center, 800 Washington Street, Boston, Massachusetts 02111
| | - Daniel E. Weiner
- Tufts Medical Center, 800 Washington Street, Boston, Massachusetts 02111
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155
| | - Bertan Hallacoglu
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, Massachusetts 02155
| |
Collapse
|
24
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
25
|
Asymmetrical Changes in Cerebral Blood Oxygenation Induced by an Active Standing Test in Children with Postural Tachycardia Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:271-278. [DOI: 10.1007/978-1-4939-0620-8_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Elting JW, Aries MJH, van der Hoeven JH, Vroomen PCAJ, Maurits NM. Reproducibility and variability of dynamic cerebral autoregulation during passive cyclic leg raising. Med Eng Phys 2013; 36:585-91. [PMID: 24176834 DOI: 10.1016/j.medengphy.2013.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/26/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Dynamic cerebral autoregulation (dCA) estimates require mean arterial blood pressure (MABP) fluctuations of sufficient amplitude. Current methods to induce fluctuations are not easily implemented or require patient cooperation. In search of an alternative method, we evaluated if MABP fluctuations could be increased by passive cyclic leg raising (LR) and tested if reproducibility and variability of dCA parameters could be improved. Middle cerebral artery cerebral blood flow velocity (CBFV), MABP and end tidal CO2 (PetCO2) were obtained at rest and during LR at 0.1 Hz in 16 healthy subjects. The MABP-CBFV phase difference and gain were determined at 0.1 Hz and in the low frequency (LF) range (0.06-0.14 Hz). In addition the autoregulation index (ARI) was calculated. The LR maneuver increased the power of MABP fluctuations at 0.1 Hz and across the LF range. Despite a clear correlation between both phase and gain reproducibility and MABP variability in the rest condition, only the reproducibility of gain increased significantly with the maneuver. During the maneuver patients were breathing faster and more irregularly, accompanied by increased PetCO2 fluctuations and increased coherence between PetCO2 and CBFV. Multiple regression analysis showed that these concomitant changes were negatively correlated with the MABP-CBFV phase difference at 0.1 Hz Variability was not reduced by LR for any of the dCA parameters. The clinical utility of cyclic passive leg raising is limited because of the concomitant changes in PetCO2. This limits reproducibility of the most important dCA parameters. Future research on reproducibility and variability of dCA parameters should incorporate PetCO2 variability or find methods to keep PetCO2 levels constant.
Collapse
Affiliation(s)
- J W Elting
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - M J H Aries
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - J H van der Hoeven
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - P C A J Vroomen
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - N M Maurits
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
27
|
Tan CO, Taylor JA. Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol 2013; 99:3-15. [PMID: 24097158 DOI: 10.1113/expphysiol.2013.072355] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brain requires steady delivery of oxygen and glucose, without which neurodegeneration occurs within minutes. Thus, the ability of the cerebral vasculature to maintain relatively steady blood flow in the face of changing systemic pressure, i.e. cerebral autoregulation, is critical to neurophysiological health. Although the study of autoregulation dates to the early 20th century, only the recent availability of cerebral blood flow measures with high temporal resolution has allowed rapid, beat-by-beat measurements to explore the characteristics and mechanisms of autoregulation. These explorations have been further enhanced by the ability to apply sophisticated computational approaches that exploit the large amounts of data that can be acquired. These advances have led to unique insights. For example, recent studies have revealed characteristic time scales wherein cerebral autoregulation is most active, as well as specific regions wherein autonomic mechanisms are prepotent. However, given that effective cerebral autoregulation against pressure fluctuations results in relatively unchanging flow despite changing pressure, estimating the pressure-flow relationship can be limited by the error inherent in computational models of autoregulatory function. This review focuses on the autonomic neural control of the cerebral vasculature in health and disease from an integrative physiological perspective. It also provides a critical overview of the current analytical approaches to understand cerebral autoregulation.
Collapse
Affiliation(s)
- Can Ozan Tan
- C. O. Tan: CVLab, SW052, Spaulding Hospital Cambridge, 1575 Cambridge Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
28
|
Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol 2013. [PMID: 23737006 DOI: 10.1007/s00421‐013‐2667‐y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cerebral autoregulation (CA) is integral to the delicate process of maintaining stable cerebral perfusion and brain tissue oxygenation against changes in arterial blood pressure. The last four decades has seen dramatic advances in understanding CA physiology, and the role that CA might play in the causation and progression of disease processes that affect the cerebral circulation such as stroke. However, the translation of these basic scientific advances into clinical practice has been limited by the maintenance of old constructs and because there are persistent gaps in our understanding of how this vital vascular mechanism should be quantified. In this review, we re-evaluate relevant studies that challenge established paradigms about how the cerebral perfusion pressure and blood flow are related. In the context of blood pressure being a major haemodynamic challenge to the cerebral circulation, we conclude that: (1) the physiological properties of CA remain inconclusive, (2) many extant methods for CA characterisation are based on simplistic assumptions that can give rise to misleading interpretations, and (3) robust evaluation of CA requires thorough consideration not only of active vasomotor function, but also the unique properties of the intracranial environment.
Collapse
|
29
|
Tzeng YC, Ainslie PN. Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol 2013; 114:545-59. [PMID: 23737006 PMCID: PMC3929776 DOI: 10.1007/s00421-013-2667-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
Cerebral autoregulation (CA) is integral to the delicate process of maintaining stable cerebral perfusion and brain tissue oxygenation against changes in arterial blood pressure. The last four decades has seen dramatic advances in understanding CA physiology, and the role that CA might play in the causation and progression of disease processes that affect the cerebral circulation such as stroke. However, the translation of these basic scientific advances into clinical practice has been limited by the maintenance of old constructs and because there are persistent gaps in our understanding of how this vital vascular mechanism should be quantified. In this review, we re-evaluate relevant studies that challenge established paradigms about how the cerebral perfusion pressure and blood flow are related. In the context of blood pressure being a major haemodynamic challenge to the cerebral circulation, we conclude that: (1) the physiological properties of CA remain inconclusive, (2) many extant methods for CA characterisation are based on simplistic assumptions that can give rise to misleading interpretations, and (3) robust evaluation of CA requires thorough consideration not only of active vasomotor function, but also the unique properties of the intracranial environment.
Collapse
Affiliation(s)
- Yu-Chieh Tzeng
- Cardiovascular Systems Laboratory, Centre for Translational Physiology, University of Otago, 23A Mein Street, PO Box 7343, Wellington South, New Zealand,
| | | |
Collapse
|
30
|
Fantini S. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). Neuroimage 2013; 85 Pt 1:202-21. [PMID: 23583744 DOI: 10.1016/j.neuroimage.2013.03.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022] Open
Abstract
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
31
|
Cerebrovascular autoregulation: lessons learned from spaceflight research. Eur J Appl Physiol 2012; 113:1909-17. [PMID: 23132388 DOI: 10.1007/s00421-012-2539-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
This review summarizes our current understanding of cerebral blood flow regulation with exposure to microgravity, outlines potential mechanisms associated with post-flight orthostatic intolerance, and proposes future directions for research and linkages with cerebrovascular disorders found in the general population. It encompasses research from cellular mechanisms (e.g. hind limb suspension: tissue, animal studies) to whole body analysis with respect to understanding human responses using space analogue studies (bed rest, parabolic flight) as well as data collected before, during, and after spaceflight. Recent evidence indicates that cerebrovascular autoregulation may be impaired in some astronauts leading to increased susceptibility to syncope upon return to a gravitational environment. The proposed review not only provides insights into the mechanisms of post-flight orthostatic intolerance, but also increases our understanding of the mechanisms associated with pathophysiological conditions (e.g. unexplained syncope) with clinical applications in relation to postural hypotension or intradialytic hypotension.
Collapse
|
32
|
Edgell H, Robertson AD, Hughson RL. Hemodynamics and brain blood flow during posture change in younger women and postmenopausal women compared with age-matched men. J Appl Physiol (1985) 2012; 112:1482-93. [DOI: 10.1152/japplphysiol.01204.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased incidence of orthostatic hypotension and presyncopal symptoms in young women could be related to hormonal factors that might be isolated by comparing cardiovascular and cerebrovascular responses to postural change in young and older men and women. Seven young women, 11 young men, 10 older women (>1 yr postmenopausal, no hormone therapy), and 9 older men participated in a supine-to-sit-to-stand test while measuring systemic hemodynamics, end-tidal Pco2, and blood flow velocity of the middle cerebral artery (MCA). Women had a greater reduction in stroke volume index compared with age-matched men (change from supine to standing: young women: −22.9 ± 1.6 ml/m2; young men: −14.4 ± 2.4 ml/m2; older women: −17.4 ± 3.3 ml/m2; older men: −13.8 ± 2.2 ml/m2). This was accompanied by offsetting changes in heart rate, particularly in young women, resulting in no age or sex differences in cardiac output index. Mean arterial pressure (MAP) was higher in older subjects and increased with movement to upright postures. Younger men and women had higher forearm vascular resistance that increased progressively in the upright posture compared with older men and women. There was no difference between sexes or ages in total peripheral resistance index. Women had higher MCA velocity, but both sexes had reduced MCA velocity while upright, which was a function of reduced blood pressure at the MCA and a significant reduction in end-tidal Pco2. The reductions in stroke volume index suggested impaired venous return in women, but augmented responses of heart rate and forearm vascular resistance protected MAP in younger women. Overall, these results showed significant sex and age-related differences, but compensatory mechanisms preserved MAP and MCA velocity in young women.
Collapse
Affiliation(s)
- H. Edgell
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario; and
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A. D. Robertson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario; and
| | - R. L. Hughson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario; and
| |
Collapse
|
33
|
Rickards CA, Ryan KL, Cooke WH, Convertino VA. Tolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity. J Appl Physiol (1985) 2011; 111:1048-58. [DOI: 10.1152/japplphysiol.00231.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Higher oscillations of cerebral blood velocity and arterial pressure (AP) induced by breathing with inspiratory resistance are associated with delayed onset of symptoms and increased tolerance to central hypovolemia. We tested the hypothesis that subjects with high tolerance (HT) to central hypovolemia would display higher endogenous oscillations of cerebral blood velocity and AP at presyncope compared with subjects with low tolerance (LT). One-hundred thirty-five subjects were exposed to progressive lower body negative pressure (LBNP) until the presence of presyncopal symptoms. Subjects were classified as HT if they completed at least the −60-mmHg level of LBNP (93 subjects; LBNP time, 1,880 ± 259 s) and LT if they did not complete this level (42 subjects; LBNP time, 1,277 ± 199 s). Middle cerebral artery velocity (MCAv) was measured by transcranial Doppler, and AP was measured at the finger by photoplethysmography. Mean MCAv and mean arterial pressure (MAP) decreased progressively from baseline to presyncope for both LT and HT subjects ( P < 0.001). However, low frequency (0.04–0.15 Hz) oscillations of mean MCAv and MAP were higher at presyncope in HT subjects compared with LT subjects (MCAv: HT, 7.2 ± 0.7 vs. LT, 5.3 ± 0.6 (cm/s)2, P = 0.075; MAP: HT, 15.3 ± 1.4 vs. 7.9 ± 1.2 mmHg2, P < 0.001). Consistent with our previous findings using inspiratory resistance, high oscillations of mean MCAv and MAP are associated with HT to central hypovolemia.
Collapse
Affiliation(s)
- Caroline A. Rickards
- Department of Health and Kinesiology, University of Texas at San Antonio, San Antonio; and
| | - Kathy L. Ryan
- US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - William H. Cooke
- Department of Health and Kinesiology, University of Texas at San Antonio, San Antonio; and
| | | |
Collapse
|
34
|
Tzeng YC, Chan GSH, Willie CK, Ainslie PN. Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca²⁺ channel blockade. J Physiol 2011; 589:3263-74. [PMID: 21540346 DOI: 10.1113/jphysiol.2011.206953] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fundamental determinants of human dynamic cerebral autoregulation are poorly understood, particularly the role of vascular compliance and the myogenic response. We sought to 1) determine whether capacitive blood flow associated with vascular compliance and driven by the rate of change in mean arterial blood pressure (dMAP/dt) is an important determinant of middle cerebral artery velocity (MCAv) dynamics and 2) characterise the impact of myogenic blockade on these cerebral pressure-flow velocity relations in humans. We measured MCAv and mean arterial pressure (MAP) during oscillatory lower body negative pressure (n =8) at 0.10 and 0.05 Hz before and after cerebral Ca²⁺ channel blockade (nimodipine). Pressure-flow velocity relationships were characterised using transfer function analysis and a regression-based Windkessel analysis that incorporates MAP and dMAP/dt as predictors of MCAv dynamics. Results show that incorporation of dMAP/dt accounted for more MCAv variance (R² 0.80-0.99) than if only MAP was considered (R2 0.05-0.90). The capacitive gain relating dMAP/dt and MCAv was strongly correlated to transfer function gain (0.05 Hz, r =0.93, P<0.01; 0.10 Hz, r =0.91, P<0.01), but not to phase or coherence. Ca²⁺ channel blockade increased the conductive gain relation between MAP and MCAv (P<0.05), and reduced phase at 0.05 Hz (P<0.01). Capacitive and transfer function gain were unaltered. The findings suggest capacitive blood flow is an important determinant of cerebral haemodynamics that bears strong relations to some metrics of dynamic cerebral autoregulation derived from transfer function analysis, and that Ca²⁺ channel blockade enhances pressure-driven resistive blood flow but does not alter capacitive blood flow. the causes and effects of cerebrovascular diseases such as stroke and dementia.
Collapse
Affiliation(s)
- Yu-Chieh Tzeng
- Cardiovascular Systems Laboratory, Department of Surgery and Anaesthesia, University of Otago, Wellington, 23A Mein Street, PO Box 7343, Wellington South, New Zealand.
| | | | | | | |
Collapse
|
35
|
Canova D, Roatta S, Bosone D, Micieli G. Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests. J Appl Physiol (1985) 2011; 110:1646-55. [PMID: 21474700 DOI: 10.1152/japplphysiol.00003.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The attractive possibility of near infrared spectroscopy (NIRS) to noninvasively assess cerebral blood volume and oxygenation is challenged by the possible interference from extracranial tissues. However, to what extent this may affect cerebral NIRS monitoring during standard clinical tests is ignored. To address this issue, 29 healthy subjects underwent a randomized sequence of three maneuvers that differently affect intra- and extracranial circulation: Valsalva maneuver (VM), hyperventilation (HV), and head-up tilt (HUT). Putative intracranial ("i") and extracranial ("e") NIRS signals were collected from the forehead and from the cheek, respectively, and acquired together with cutaneous plethysmography at the forehead (PPG), cerebral blood velocity from the middle cerebral artery, and arterial blood pressure. Extracranial contribution to cerebral NIRS monitoring was investigated by comparing Beer-Lambert (BL) and spatially resolved spectroscopy (SRS) blood volume indicators [the total hemoglobin concentration (tHb) and the total hemoglobin index, (THI)] and by correlating their changes with changes in extracranial circulation. While THIe and tHbe generally provided concordant indications, tHbi and THIi exhibited opposite-sign changes in a high percentage of cases (VM: 46%; HV: 31%; HUT: 40%). Moreover, tHbi was correlated with THIi only during HV (P < 0.05), not during VM and HUT, while it correlated with PPG in all three maneuvers (P < 0.01). These results evidence that extracranial circulation may markedly affect BL parameters in a high percentage of cases, even during standard clinical tests. Surface plethysmography at the forehead is suggested as complementary monitoring helpful in the interpretation of cerebral NIRS parameters.
Collapse
Affiliation(s)
- D Canova
- Neurovascular Laboratory, Istituto Di Ricovero e Cura a Carattere Scientifico, National Neurological Institute, C. Mondino Foundation, Pavia, [corrected] Italy.
| | | | | | | |
Collapse
|
36
|
Chan GSH, Ainslie PN, Willie CK, Taylor CE, Atkinson G, Jones H, Lovell NH, Tzeng YC. Contribution of arterial Windkessel in low-frequency cerebral hemodynamics during transient changes in blood pressure. J Appl Physiol (1985) 2011; 110:917-25. [PMID: 21292835 DOI: 10.1152/japplphysiol.01407.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Windkessel properties of the vasculature are known to play a significant role in buffering arterial pulsations, but their potential importance in dampening low-frequency fluctuations in cerebral blood flow has not been clearly examined. In this study, we quantitatively assessed the contribution of arterial Windkessel (peripheral compliance and resistance) in the dynamic cerebral blood flow response to relatively large and acute changes in blood pressure. Middle cerebral artery flow velocity (MCA(V); transcranial Doppler) and arterial blood pressure were recorded from 14 healthy subjects. Low-pass-filtered pressure-flow responses (<0.15 Hz) during transient hypertension (intravenous phenylephrine) and hypotension (intravenous sodium nitroprusside) were fitted to a two-element Windkessel model. The Windkessel model was found to provide a superior goodness of fit to the MCA(V) responses during both hypertension and hypotension (R² = 0.89 ± 0.03 and 0.85 ± 0.05, respectively), with a significant improvement in adjusted coefficients of determination (P < 0.005) compared with the single-resistance model (R² = 0.62 ± 0.06 and 0.61 ± 0.08, respectively). No differences were found between the two interventions in the Windkessel capacitive and resistive gains, suggesting similar vascular properties during pressure rise and fall episodes. The results highlight that low-frequency cerebral hemodynamic responses to transient hypertension and hypotension may include a significant contribution from the mechanical properties of vasculature and, thus, cannot solely be attributed to the active control of vascular tone by cerebral autoregulation. The arterial Windkessel should be regarded as an important element of dynamic cerebral blood flow modulation during large and acute blood pressure perturbation.
Collapse
Affiliation(s)
- Gregory S H Chan
- Cardiovascular Systems Laboratory, Dept. of Surgery and Anesthesia, Univ. of Otago, Wellington South, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Deegan BM, Serrador JM, Nakagawa K, Jones E, Sorond FA, Olaighin G. The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation. Med Eng Phys 2011; 33:553-62. [PMID: 21239208 DOI: 10.1016/j.medengphy.2010.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/26/2010] [Accepted: 12/13/2010] [Indexed: 11/16/2022]
Abstract
There are methodological concerns with combined use of transcranial Doppler (TCD) and Finapres to measure dynamic cerebral autoregulation. The Finapres calibration mechanism ("physiocal") causes interruptions to blood pressure recordings. Also, TCD is subject to signal loss due to probe movement. We assessed the effects of "physiocals" and TCD signal loss on transfer function estimates in recordings of 45 healthy subjects. We added artificial "physiocals" and removed sections of TCD signal from 5 min Finapres and TCD recordings. We also compared transfer function results from 5 min time series with time series as short as 1 min. Accurate transfer function estimates can be achieved in the 0.03-0.07 Hz band using beat-by-beat data with linear interpolation, while data loss is less than 10s. At frequencies between 0.07 and 0.5 Hz, transfer function estimates become unreliable with 5s of data loss every 50s. 2s data loss only affects frequency bands above 0.15Hz. Finally, accurate transfer function assessment of autoregulatory function can be achieved from time series as short as 1min, although gain and coherence tend to be overestimated at higher frequencies.
Collapse
Affiliation(s)
- Brian M Deegan
- Electrical & Electronic Engineering, NUI Galway, University Road, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
38
|
van Beek AHEA, Olde Rikkert MGM, Pasman JW, Hopman MTE, Claassen JAHR. Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:192-201. [PMID: 20045593 DOI: 10.1016/j.ultrasmedbio.2009.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 10/16/2009] [Accepted: 10/22/2009] [Indexed: 05/28/2023]
Abstract
The aim of this study was to assess the feasibility and reproducibility of a simple and nonobtrusive repeated sit-stand maneuver to assess cerebral autoregulation (CA) in healthy old subjects >70 years. In 27 subjects aged 76 (SD 4) years, we continuously measured blood pressure using photoplethysmography and cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler ultrasonography) during 5 min of sitting rest and again during repeated sit-stand maneuvers at 10 s (0.05 Hz) and 5 s (0.1 Hz) intervals. In 11 randomly selected subjects, these measurements were repeated after 3 months. Both maneuvers induced substantial periodic oscillations in pressure and flow. For example, the maneuvers at 0.05 Hz increased the power spectral density (magnitude) of blood pressure and cerebral blood flow velocity oscillations with 16.3 (mm Hg)(2) and 14.5 (cm/s)(2), respectively (p<0.001). These larger oscillations led to an increase in transfer function coherence compared with spontaneous oscillations from 0.46 to 0.60 for 0.05 Hz maneuvers and from 0.56 to 0.76 for 0.1 Hz maneuvers (p<0.01), allowing for more confident assessment of CA through transfer function phase and gain. This increased coherence was not associated with improved reproducibility however. In conclusion, we were able to investigate CA in old patients using these repeated sit-stand maneuvers, which, compared with spontaneous oscillations, produced a stronger and more clinically relevant hemodynamic challenge for CA.
Collapse
Affiliation(s)
- Arenda H E A van Beek
- Department of Geriatric Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Ocon AJ, Kulesa J, Clarke D, Taneja I, Medow MS, Stewart JM. Increased phase synchronization and decreased cerebral autoregulation during fainting in the young. Am J Physiol Heart Circ Physiol 2009; 297:H2084-95. [PMID: 19820196 DOI: 10.1152/ajpheart.00705.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasovagal syncope may be due to a transient cerebral hypoperfusion that accompanies frequency entrainment between arterial pressure (AP) and cerebral blood flow velocity (CBFV). We hypothesized that cerebral autoregulation fails during fainting; a phase synchronization index (PhSI) between AP and CBFV was used as a nonlinear, nonstationary, time-dependent measurement of cerebral autoregulation. Twelve healthy control subjects and twelve subjects with a history of vasovagal syncope underwent 10-min tilt table testing with the continuous measurement of AP, CBFV, heart rate (HR), end-tidal CO2 (ETCO2), and respiratory frequency. Time intervals were defined to compare physiologically equivalent periods in fainters and control subjects. A PhSI value of 0 corresponds to an absence of phase synchronization and efficient cerebral autoregulation, whereas a PhSI value of 1 corresponds to complete phase synchronization and inefficient cerebral autoregulation. During supine baseline conditions, both control and syncope groups demonstrated similar oscillatory changes in phase, with mean PhSI values of 0.58+/-0.04 and 0.54+/-0.02, respectively. Throughout tilt, control subjects demonstrated similar PhSI values compared with supine conditions. Approximately 2 min before fainting, syncopal subjects demonstrated a sharp decrease in PhSI (0.23+/-0.06), representing efficient cerebral autoregulation. Immediately after this period, PhSI increased sharply, suggesting inefficient cerebral autoregulation, and remained elevated at the time of faint (0.92+/-0.02) and during the early recovery period (0.79+/-0.04) immediately after the return to the supine position. Our data demonstrate rapid, biphasic changes in cerebral autoregulation, which are temporally related to vasovagal syncope. Thus, a sudden period of highly efficient cerebral autoregulation precedes the virtual loss of autoregulation, which continued during and after the faint.
Collapse
Affiliation(s)
- Anthony J Ocon
- Department of Physiology, The Center for Hypotension, New York Medical College, 19 Bradhurst Ave., Suite 1600S, Hawthorne, NY 10532, USA
| | | | | | | | | | | |
Collapse
|
40
|
Robertson AD, Tessmer CF, Hughson RL. Association between arterial stiffness and cerebrovascular resistance in the elderly. J Hum Hypertens 2009; 24:190-6. [DOI: 10.1038/jhh.2009.56] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Panerai RB. Transcranial Doppler for evaluation of cerebral autoregulation. Clin Auton Res 2009; 19:197-211. [PMID: 19370374 DOI: 10.1007/s10286-009-0011-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/13/2009] [Indexed: 12/14/2022]
Abstract
Transcranial Doppler ultrasound (TCD) can measure cerebral blood flow velocity in the main intracranial vessels non-invasively and with high accuracy. Combined with the availability of non-invasive devices for continuous measurement of arterial blood pressure, the relatively low cost, ease-of-use, and excellent temporal resolution of TCD have stimulated the development of new techniques to assess cerebral autoregulation in the laboratory or bedside using a dynamic approach, instead of the more classical 'static' method. Clinical applications have shown consistent results in certain conditions such as severe head injury and carotid artery disease. Studies in syncopal patients revealed a more complex pattern due to aetiological non-homogeneity and methodological limitations mainly due to inadequate sample-size. Different analytical models to quantify autoregulatory performance have also contributed to the diversity of results in the literature. The review concludes with specific recommendations for areas where further validation and research are needed to improve the reliability and usefulness of TCD in clinical practice.
Collapse
Affiliation(s)
- Ronney B Panerai
- Medical Physics Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
42
|
Claassen JAHR, Levine BD, Zhang R. Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J Appl Physiol (1985) 2008; 106:153-60. [PMID: 18974368 DOI: 10.1152/japplphysiol.90822.2008] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfer function analysis of spontaneous oscillations in blood pressure (BP) and cerebral blood flow (CBF) can quantify the dynamic relationship between BP and CBF. However, such oscillation amplitudes are often small and of questionable clinical significance, vary substantially, and cannot be controlled. At the very low frequencies (<0.07 Hz), coherence between BP and CBF often is low (<0.50) and their causal relationship is debated. Eight healthy subjects performed repeated squat-stand maneuvers to induce large oscillations in BP at frequencies of 0.025 and 0.05 Hz (very low frequency) and 0.1 Hz (low frequency), respectively. BP (Finapres), CBF velocity (CBFV; transcranial Doppler), and end-tidal CO(2) (capnography) were monitored. Spectral analysis was used to quantify oscillations in BP and CBFV and to estimate transfer function phase, gain, and coherence. Compared with spontaneous oscillations, induced oscillations had higher coherence [mean 0.8 (SD 0.11); >0.5 in all subjects at all frequencies] and lower variability in phase estimates. However, gain estimates remained unchanged. Under both conditions, the "high-pass filter" characteristics of dynamic autoregulation were observed. In conclusion, using repeated squat-stand maneuvers, we were able to study dynamic cerebral autoregulation in the low frequencies under conditions of hemodynamically strong and causally related oscillations in BP and CBFV. This not only enhances the confidence of transfer function analysis as indicated by high coherence and improved phase estimation but also strengthens the clinical relevance of this method as induced oscillations in BP and CBFV mimic those associated with postural changes in daily life.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatric Medicine, Radbound University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
43
|
Taneja I, Medow MS, Glover JL, Raghunath NK, Stewart JM. Increased vasoconstriction predisposes to hyperpnea and postural faint. Am J Physiol Heart Circ Physiol 2008; 295:H372-81. [PMID: 18502909 DOI: 10.1152/ajpheart.00101.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our prior studies indicated that postural fainting relates to splanchnic hypervolemia and thoracic hypovolemia during orthostasis. We hypothesized that thoracic hypovolemia causes excessive sympathetic activation, increased respiratory tidal volume, and fainting involving the pulmonary stretch reflex. We studied 18 patients 13-21 yr old, 11 who fainted within 10 min of upright tilt (fainters) and 7 healthy control subjects. We measured continuous blood pressure and heart rate, respiration by inductance plethysmography, end-tidal carbon dioxide (ET(CO(2))) by capnography, and regional blood flows and blood volumes using impedance plethysmography, and we calculated arterial resistance with patients supine and during 70 degrees upright tilt. Splanchnic resistance decreased until faint in fainters (44 +/- 8 to 21 +/- 2 mmHg.l(-1).min(-1)) but increased in control subjects (47 +/- 5 to 53 +/- 4 mmHg.l(-1).min(-1)). Percent change in splanchnic blood volume increased (7.5 +/- 1.0 vs. 3.0 +/- 11.5%, P < 0.05) after the onset of tilt. Upright tilt initially significantly increased thoracic, pelvic, and leg resistance in fainters, which subsequently decreased until faint. In fainters but not control subjects, normalized tidal volume (1 +/- 0.1 to 2.6 +/- 0.2, P < 0.05) and normalized minute ventilation increased throughout tilt (1 +/- 0.2 to 2.1 +/- 0.5, P < 0.05), whereas respiratory rate decreased (19 +/- 1 to 15 +/- 1 breaths/min, P < 0.05). Maximum tidal volume occurred just before fainting. The increase in minute ventilation was inversely proportionate to the decrease in ET(CO(2)). Our data suggest that excessive splanchnic pooling and thoracic hypovolemia result in increased peripheral resistance and hyperpnea in simple postural faint. Hyperpnea and pulmonary stretch may contribute to the sympathoinhibition that occurs at the time of faint.
Collapse
Affiliation(s)
- Indu Taneja
- Department of Pediatrics, New York Medical College, Hawthorne, NY 10532, USA.
| | | | | | | | | |
Collapse
|
44
|
Zabolotskikh NV. Pattern of changes in central and cerebral hemodynamics in the basilar artery during active orthostasis in healthy individuals. Bull Exp Biol Med 2008; 145:556-9. [DOI: 10.1007/s10517-008-0146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Brown CM, Marthol H, Zikeli U, Ziegler D, Hilz MJ. A simple deep breathing test reveals altered cerebral autoregulation in type 2 diabetic patients. Diabetologia 2008; 51:756-61. [PMID: 18309474 DOI: 10.1007/s00125-008-0958-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Patients with diabetes mellitus have an increased risk of stroke and other cerebrovascular complications. The purpose of this study was to evaluate the autoregulation of cerebral blood flow in diabetic patients using a simple method that could easily be applied to the clinical routine screening of diabetic patients. METHODS We studied ten patients with type 2 diabetes mellitus and 11 healthy volunteer control participants. Continuous and non-invasive measurements of blood pressure and cerebral blood flow velocity were performed during deep breathing at 0.1 Hz (six breaths per minute). Cerebral autoregulation was assessed from the phase shift angle between breathing-induced 0.1 Hz oscillations in mean blood pressure and cerebral blood flow velocity. RESULTS The controls and patients all showed positive phase shift angles between breathing-induced 0.1 Hz blood pressure and cerebral blood flow velocity oscillations. However, the phase shift angle was significantly reduced (p < 0.05) in the patients (48 +/- 9 degrees ) compared with the controls (80 +/- 12 degrees ). The gain between 0.1 Hz oscillations in blood pressure and cerebral blood flow velocity did not differ significantly between the patients and controls. CONCLUSIONS/INTERPRETATION The reduced phase shift angle between oscillations in mean blood pressure and cerebral blood flow velocity during deep breathing suggests altered cerebral autoregulation in patients with diabetes and might contribute to an increased risk of cerebrovascular disorders.
Collapse
Affiliation(s)
- C M Brown
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
46
|
Shoemaker JK. Hemodilution impairs cerebral autoregulation, demonstrating the complexity of integrative physiology. Anesth Analg 2007; 105:1179-81. [PMID: 17959937 DOI: 10.1213/01.ane.0000282825.13842.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Modified Cold Pressor Test by Cold Application to the Foot After Spinal Cord Injury. Am J Phys Med Rehabil 2007; 86:875-82. [DOI: 10.1097/phm.0b013e3181583caf] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Ichinose M, Koga S, Fujii N, Kondo N, Nishiyasu T. Modulation of the spontaneous beat-to-beat fluctuations in peripheral vascular resistance during activation of muscle metaboreflex. Am J Physiol Heart Circ Physiol 2007; 293:H416-24. [PMID: 17369459 DOI: 10.1152/ajpheart.01196.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Continuous measurement of leg blood flow (LBF) using Doppler ultrasound with simultaneous noninvasive mean arterial blood pressure (MAP) measurement permits beat-to-beat estimates of leg vascular resistance (LVR) in humans. We tested the hypothesis that the beat-to-beat fluctuations in LVR and the dynamic relationship between MAP and LVR are modulated by the activation of muscle metaboreflex. Twelve healthy subjects performed a 1-min isometric handgrip exercise at 50% maximal voluntary contraction, which was followed by a period of imposed postexercise muscle ischemia (PEMI). We then employed transfer function analysis to examine the dynamic relationships between MAP and LBF and between MAP and LVR, both at rest (control) and during PEMI. We found the following. 1) The spectral power for LBF and LVR in low-frequency (∼0.03–0.15 Hz) range significantly increased from control during PEMI without a significant change in the high-frequency (∼0.15–0.35 Hz) power. 2) During PEMI, the transfer function gains for MAP-LBF and MAP-LVR relationships in the low-frequency (∼0.05–0.15 Hz) range were significantly increased during PEMI (vs. control) but were unchanged in the high-frequency (∼0.2–0.3 Hz) range. 3) The phases for MAP-LBF and MAP-LVR relationships were not different during control and PEMI. The phase for MAP-LVR relationship revealed that changes in MAP were followed by directionally similar changes in LVR, which is consistent with the characteristics of intrinsic vascular regulatory mechanisms such as the myogenic response of the resistance arteries. We suggest that, in humans, modulation of the dynamic MAP-LVR relationship during activation of the muscle metaboreflex reflects complex interactions between intrinsic vascular regulatory mechanisms and sympathetic vascular regulation.
Collapse
Affiliation(s)
- Masashi Ichinose
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8574, Japan
| | | | | | | | | |
Collapse
|
49
|
Abstract
1. Blood pressure and organ perfusion are controlled by a variety of cardiovascular control systems, such as the baroreceptor reflex and the renin-angiotensin system (RAS), and by local vascular mechanisms, such as shear stress-induced release of nitric oxide (NO) from the endothelium and the myogenic vascular response. Deviations in arterial blood pressure from its set point activate these mechanisms in an attempt to restore blood pressure and/or secure organ perfusion. However, the response times at which different cardiovascular mechanisms operate differ considerably (e.g. blood pressure control by the RAS is slower than blood pressure control via the baroreceptor reflex). 2. Owing to these different response times, some cardiovascular control systems affect blood pressure more rapidly and others more slowly. Thus, identifying the frequency components of blood pressure variability (BPV) by power spectral analysis can potentially provide important information on individual blood pressure control mechanisms. 3. Evidence is presented that the RAS, catecholamines, endothelial-derived NO and myogenic vascular function affect BPV at very low frequencies (0.02-0.2 Hz) and that low-frequency (LF) BPV (0.2-0.6 Hz) is affected by sympathetic modulation of vascular tone and endothelial-derived NO in rats. In humans, LF BPV (0.075-0.15 Hz) is affected by sympathetic modulation of vascular tone and myogenic vascular function. The impact of the RAS and endothelial-derived NO on BPV in humans requires further investigation. 4. In conclusion, power spectral analysis is a powerful diagnostic tool that allows identification of pathophysiological mechanisms contributing to cardiovascular diseases, such as hypertension, heart failure and stroke, because it can separate slow from fast cardiovascular control mechanisms. The limitation that some cardiovascular control mechanisms affect the same frequency components of BPV requires the combination of blood pressure spectral analysis with other techniques.
Collapse
Affiliation(s)
- Harald M Stauss
- Department of Integrative Physiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
50
|
Kolb B, Rotella DL, Stauss HM. Frequency response characteristics of cerebral blood flow autoregulation in rats. Am J Physiol Heart Circ Physiol 2006; 292:H432-8. [PMID: 16963612 DOI: 10.1152/ajpheart.00794.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transfer function analysis of blood pressure and cerebral blood flow in humans demonstrated that cerebrovascular autoregulation operates most effectively for slow fluctuations in perfusion pressure, not exceeding a frequency of approximately 0.15 Hz. No information on the dynamic properties of cerebrovascular autoregulation is available in rats. Therefore, we tested the hypothesis that cerebrovascular autoregulation in rats is also most effective for slow fluctuations in perfusion pressure below 0.15 Hz. Normotensive Wistar-Kyoto rats (n = 10) were instrumented with catheters in the left common carotid artery and jugular vein and flow probes around the right internal carotid artery. During isoflurane anesthesia, fluctuations in cerebral perfusion pressure were elicited by periodically occluding the abdominal aorta at eight frequencies ranging from 0.008 Hz to 0.5 Hz. The protocol was repeated during inhibition of myogenic vascular function (nifedipine, 0.25 mg/kg body wt iv). Increases in cerebral perfusion pressure elicited initial increases in cerebrovascular conductance and decreases in resistance. At low occlusion frequencies (<0.1 Hz), these initial responses were followed by decreases in conductance and increases in resistance that were abolished by nifedipine. At occlusion frequencies of 0.1 Hz and above, the gains of the transfer functions between pressure and blood flow and between pressure and resistance were equally high in the control and nifedipine trial. At occlusion frequencies below 0.1 Hz, the gains of the transfer functions decreased twice as much under control conditions than during nifedipine application. We conclude that dynamic autoregulation of cerebral blood flow is restricted to very low frequencies (<0.1 Hz) in rats.
Collapse
Affiliation(s)
- Brittany Kolb
- Dept. of Integrative Physiology, Univ. of Iowa, 410 Field House, Iowa City, IA 52242, USA
| | | | | |
Collapse
|