1
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
2
|
Aujla PK, Hu M, Hartley B, Kranrod JW, Viveiros A, Kilic T, Owen CA, Oudit GY, Seubert JM, Julien O, Kassiri Z. Loss of ADAM15 Exacerbates Transition to Decompensated Myocardial Hypertrophy and Dilation Through Activation of the Calcineurin Pathway. Hypertension 2023; 80:97-110. [PMID: 36330793 DOI: 10.1161/hypertensionaha.122.19411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Myocardial hypertrophy and dilation are key features of cardiomyopathies and involve several cellular and molecular events. ADAMs (a disintegrin and metalloproteinases) are membrane-bound proteinases with diverse functions whose role in heart disease remains underexplored. ADAM15 is expressed in the heart and is downregulated in the failing human heart. We investigated the role ADAM15 in pressure overload cardiomyopathy. METHODS We assessed ADAM15 levels in myocardial specimens from patients. Its direct role in pressure overload was investigated by subjecting wildtype and Adam15-deficient mice to transverse aortic constriction (TAC). RESULTS ADAM15 levels did not change in patients with concentric hypertrophy, but markedly decreased in eccentric hypertrophy and heart failure. Loss of ADAM15 alone did not cause cardiomyopathy in mice (1 year old). After TAC, Adam15-/- mice exhibited worsened eccentric hypertrophy and dilation with greater increase in hypertrophy markers (pJNK, pERK1/2; Nppb, Nppa, Myh7, Acta1) compared with wildtype-TAC. Expression of integrin-α7 (but not integrin β1) increased significantly more in Adam15-/--TAC hearts, while the interaction of these integrins with basement membrane (laminin), decreased consistent with worsened left ventricle dilation. In vitro, ADAM15 knockdown increased cardiomyocyte hypertrophy in response to mechanical stretch. Adam15-/--TAC hearts exhibited increased calcineurin activity and de-phosphorylation of nuclear factor of activated T cells. Calcineurin inhibition (cyclosporin-A) blocked the excess hypertrophy and dilation in Adam15-/--TAC mice. Proteome profiling demonstrated the increased abundance of the key proteins linked to worsened DCM in Adam15-/--TAC. CONCLUSION This is the first report demonstrating that ADAM15 can suppress hypertrophy through regulating the integrin-laminin interaction and the calcineurin pathway.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Mei Hu
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Bridgette Hartley
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (B.H., O.J.)
| | - Joshua W Kranrod
- Department of Pharmacology, Faculty of Medicine and Dentistry; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada (J.W.K., J.M.S.)
| | - Anissa Viveiros
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| | - Caroline A Owen
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA (C.A.O.)
| | - Gavin Y Oudit
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.).,Department of Medicine, Cardiovascular Research Center, Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada (G.Y.O.)
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada (J.W.K., J.M.S.)
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (B.H., O.J.)
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (P.K.A., M.H., A.V., T.K., G.Y.O., Z.K.)
| |
Collapse
|
3
|
Lim WW, Corden B, Ye L, Viswanathan S, Widjaja AA, Xie C, Su L, Tee NGZ, Schafer S, Cook SA. Antibody-mediated neutralization of IL11 signalling reduces ERK activation and cardiac fibrosis in a mouse model of severe pressure overload. Clin Exp Pharmacol Physiol 2021; 48:605-613. [PMID: 33462828 DOI: 10.1111/1440-1681.13458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Interleukin-11 (IL11) is important for fibroblast-to-myofibroblast transformations. Here, we examined the signalling and phenotypic effects of inhibiting IL11 signalling using neutralizing antibodies against IL11 or its cognate receptor (IL11RA) in a mouse model of acute and severe pressure overload. C57BL/6J mice underwent ascending aortic constriction (AAC) surgery and were randomized to anti-IL11, anti-IL11RA, or isotype control antibodies (20 mg/kg, bi-weekly for 2 weeks). AAC surgery induced the expression of IL11, IL11RA and extracellular matrix (ECM) genes that was associated with cardiac hypertrophy and aortic remodelling. Inhibition of IL11 signalling reduced AAC-induced cardiac fibrosis and ECM gene expression as well as ERK1/2 phosphorylation but had no effect on cardiac hypertrophy. STAT3 was phosphorylated in the hearts of AAC-treated mice but this was unrelated to IL11 activity, which we confirmed in mouse cardiac fibroblasts in vitro. These data highlight that blocking IL11 signalling reduces cardiac fibrosis due to severe pressure overload and suggests ERK, but not STAT3, activity as the relevant underlying signalling pathway.
Collapse
Affiliation(s)
- Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Ben Corden
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chen Xie
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Nicole G Z Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sebastian Schafer
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
4
|
Zhang Q, Yuan P, Li M, Fu Y, Hou Y, Sun Y, Gao L, Wei Y, Feng W, Zheng X. Effect of phenylacetamide isolated from lepidium apetalum on myocardial injury in spontaneously hypertensive rats and its possible mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:597-609. [PMID: 32631115 PMCID: PMC7470167 DOI: 10.1080/13880209.2020.1778043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/30/2019] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Context: In the antihypertensive study of phenylacetamide (PA) on spontaneously hypertensive rats (SHR), it was occasionally found that PA prevents myocardial injury.Objective: Clarify the protective mechanism of PA on myocardial injury in SHR rats.Materials and methods: In vivo, SHR rats were treated with or without PA (15, 30, 45 mg/kg) for 3 weeks (12 per group). In vitro, H9c2 cells were treated with PA (1, 5, 10 μM) for 24 h, and then stimulated with H2O2 (300 μM) for 4 h. Molecular mechanisms were explored through cardiac pathology, cardiac function and biochemical markers.Results: In vivo, PA (15, 30, 45 mg/kg) reduced CVF from 14.8 ± 1.62 to 9.94 ± 1.56, 8.6 ± 1.33, 8.14 ± 1.45%; increased the LVEF relative level from 0.8 ± 0.06 to 0.83 ± 0.04, 0.86 ± 0.05, 0.9 ± 0.04. All three doses can improve the cardiac pathological structure and function (LVEDD, LVESD, LVFS, heart index, NT-proBNP, CKMB, SBP); however, 45 mg/kg works best. But different doses show different molecular mechanisms. PA (15 mg/kg) improves RAAS system (REN, ACE), inflammation (ET-1, IL-1β) and MAPK pathway (p-ERK/ERK, p-JNK/JNK) better. PA (45 mg/kg) improves oxidative stress (SOD, NOX1) and TGF-β pathway (Smad3) better. In vitro, PA improved cell viability, oxidative stress (SOD, NOX1) and Smad3 protein expression.Discussion and conclusions: PA regulates different mechanisms at different concentrations to improve myocardial injury, and high dose is the best. This experiment provides a theoretical basis for the development of new clinical drugs for cardiovascular disease.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Peipei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Meng Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Ying Hou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yaping Sun
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Liyuan Gao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yaxin Wei
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
5
|
Huang JJ, Xie Y, Li H, Zhang XX, Huang Q, Zhu Y, Gu P, Jiang WM. YQWY decoction reverses cardiac hypertrophy induced by TAC through inhibiting GATA4 phosphorylation and MAPKs. Chin J Nat Med 2020; 17:746-755. [PMID: 31703755 DOI: 10.1016/s1875-5364(19)30091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 12/20/2022]
Abstract
To investigate the effect of Yiqi Wenyang (YQWY) decoction on reversing cardiac hypertrophy induced by the transverse aortic constriction (TAC). Wistar rats aged 7-8 weeks were subjected to TAC surgery and then randomly divided into 4 groups (n = 5/group): Sham group, TAC group, low-dose group and high dose group. After 16-week intragastric administration of YQWY decoction, the effect of YQWY decoction on alleviating cardiomyocyte hypertrophy was examined by transthoracic echocardiography (TTE), hematoxylin/eosin (HE), wheat germ agglutinin (WGA) staining, enzyme linked immunosorbent assay (ELISA), Western blot (WB), immunohistochemistry (IHC) and immunofluorescence (IF), respectively. The results showed significant differences in left ventricle volume-diastole/systole (LV Vol d/s), N-terminal pro-B-type brain natriuretic peptide (NT-proBNP) (P < 0.01), Ejection Fraction (EF), LV mass and fractional shortening (FS) (P < 0.05) between YQWY-treated group and TAC group. HE and WGA staining showed that treatment with YQWY decoction dramatically prevented TAC-induced cardiomycyte hypertrophy. Moreover, the results of WB, IHC and IF indicated that administration of YQWY could suppress the expressions of cardiac hypertrophic markers, which included the atrial natriuretic peptide (ANP), BNP and myosin heavy chain 7 (MYH7) (P < 0.05) and inhibit phosphorylation of GATA binding protein 4 (P-GATA4) (P < 0.05), phosphorylation of extracellular signal-regulated kinase (P-ERK) (P < 0.05), phosphorylation of P38 mitogen activated protein kinase (P-P38) (P < 0.05) and phosphorylation of c-Jun N-terminal kinase (P-JNK) (P < 0.05). Thus, we concluded that YQWY decoction suppressed cardiomyocyte hypertrophy and reversed the impaired heart function, and the curative effects of YQWY decoction were associated with the decreased phosphorylation of GATA4 and mitogen activated protein kinases (MAPKs), as well as the reduced expression of the downstream targets of GATA4, including ANP, BNP, and MYH7.
Collapse
Affiliation(s)
- Jing-Jing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yong Xie
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - He Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Xiao Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Qing Huang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yao Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 21002, China.
| | - Wei-Min Jiang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
6
|
Involvement of fatty acid synthase in right ventricle dysfunction in pulmonary hypertension. Exp Cell Res 2019; 383:111569. [DOI: 10.1016/j.yexcr.2019.111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
7
|
Schiattarella GG. Extracellular signal–regulated kinase (ERK) in left ventricular pathological hypertrophy: not a new kid on the block anymore. Int J Cardiol 2018; 271:260-261. [DOI: 10.1016/j.ijcard.2018.06.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
|
8
|
Ji Y, Qiu M, Shen Y, Gao L, Wang Y, Sun W, Li X, Lu Y, Kong X. MicroRNA-327 regulates cardiac hypertrophy and fibrosis induced by pressure overload. Int J Mol Med 2018; 41:1909-1916. [PMID: 29393356 PMCID: PMC5810199 DOI: 10.3892/ijmm.2018.3428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA/miR) dysregulation has been reported to be fundamental in the development and progression of cardiac hypertrophy and fibrosis. In the present study, miR-327 levels in fibroblasts were increased in response to cardiac hypertrophy induced by transverse aortic constriction with prominent cardiac fibrosis, particularly when compared with the levels in unstressed cardiomyocytes. In neonatal rat cardiac fibroblasts, induced expression of miR-327 upregulated fibrosis-associated gene expression and activated angiotensin II-induced differentiation into myofibroblasts, as assessed via α-smooth muscle actin staining. By contrast, miR-327 knockdown mitigated angiotensin II-induced differentiation. Cardiac fibroblast proliferation was not affected under either condition. In a mouse model subjected to transverse aortic constriction, miR-327 knockdown through tail-vein injection reduced the development of cardiac fibrosis and ventricular dysfunction. miR-327 was demonstrated to target integrin β3 and diminish the activation of cardiac fibroblasts. Thus, the present study supports the use of miR-327 as a therapeutic target in the reduction of cardiac fibrosis.
Collapse
Affiliation(s)
- Yue Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yejiao Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yaqing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
9
|
Esposito G, Schiattarella GG, Perrino C, Cattaneo F, Pironti G, Franzone A, Gargiulo G, Magliulo F, Serino F, Carotenuto G, Sannino A, Ilardi F, Scudiero F, Brevetti L, Oliveti M, Giugliano G, Del Giudice C, Ciccarelli M, Renzone G, Scaloni A, Zambrano N, Trimarco B. Dermcidin: a skeletal muscle myokine modulating cardiomyocyte survival and infarct size after coronary artery ligation. Cardiovasc Res 2015; 107:431-41. [PMID: 26101262 DOI: 10.1093/cvr/cvv173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Coronary artery disease is the leading cause of death in western countries, and its association with lower extremity peripheral artery disease (LE-PAD) represents an independent predictor of worse outcome. However, the molecular mechanisms underlying these effects are currently unknown. METHODS AND RESULTS To investigate these processes, we used in vitro approaches and several mouse models: (i) unilateral limb ischaemia by left common femoral artery ligation [peripheral ischaemia (PI), n = 38]; (ii) myocardial infarction by permanent ligation of the left descending coronary artery (MI, n = 40); (iii) MI after 5 weeks of limb ischaemia (PI + MI, n = 44); (iv) sham operation (SHAM, n = 20). Compared with MI, PI + MI hearts were characterized by a significant increase in cardiomyocyte apoptosis, larger infarct areas, and decreased cardiac function. By using a proteomic approach, we identified a ≅ 8 kDa circulating peptide, Dermcidin (DCD), secreted by ischaemic skeletal muscles, enhancing cardiomyocytes apoptosis under hypoxic conditions and infarct size after permanent coronary artery ligation. siRNA interference experiments to reduce DCD circulating levels significantly reduced infarct size and ameliorated cardiac function after MI. CONCLUSION Our data demonstrate that chronic limb ischaemia activates detrimental pathways in the ischaemic heart through humoral mechanisms of remote organ crosstalk. Thus, DCD may represent a novel important myokine modulating cardiomyocyte survival and function.
Collapse
Affiliation(s)
- Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Gabriele Giacomo Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fabio Cattaneo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Gianluigi Pironti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy Department of Medicine, Duke University Medical Center, Durham, USA
| | - Anna Franzone
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Giuseppe Gargiulo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fabio Magliulo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Federica Serino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Giuseppe Carotenuto
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Anna Sannino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Federica Ilardi
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Fernando Scudiero
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Linda Brevetti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Marco Oliveti
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | | | - Carmine Del Giudice
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, Naples, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Nicola Zambrano
- Department of Molecular Medicine and Medical Biotechnologies/CEINGE-Advanced Biotechnology, Federico II University, Naples, Italy
| | - Bruno Trimarco
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
10
|
Ledvényiová-Farkašová V, Bernátová I, Balis P, Puzserova A, Barteková M, Gablovsky I, Ravingerová T. Effect of crowding stress on tolerance to ischemia-reperfusion injury in young male and female hypertensive rats: molecular mechanisms. Can J Physiol Pharmacol 2015; 93:793-802. [PMID: 26317433 DOI: 10.1139/cjpp-2015-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sex and social stress may represent risk factors in the etiology of hypertension and heart response to ischemia-reperfusion (I/R) injury. Phosphatidylinositol 3-kinase/protein kinase B (Akt) plays an important role in the processes associated with hypertension and myocardial tolerance to I/R, and may be involved in myocardial stress reaction. The impact of chronic stress on the response to I/R was investigated in the hearts of 7-week-old spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats of both sexes. Stress was induced by reducing living space to 70 cm(2)/100 g body mass of rat for 2 weeks, while the controls were kept at 200 cm(2)/100 g. Langendorff-perfused hearts, subjected to I/R, exhibited higher vulnerability to ventricular tachycardia in crowd-stressed SHR vs. the control rats, and this was more pronounced in the males. Myocardial infarction was not affected by crowding stress in any of the groups. Male and female SHR showed increased activation of cardiac Akt, whereas nitric oxide synthase activity (NOS) with pro-apoptotic signaling decreased in the males but was not altered in the females (vs. WKY rats). NOS was enhanced in the female SHR and WKY groups by comparison with the respective males. Stress only reduced NOS activity in the SHR groups, and without changes in apoptotic markers. In conclusion, we showed that stress in young SHR mainly affects the nonlethal markers for I/R, and has no impact on myocardial infarction and apoptosis, despite reduced NOS activity.
Collapse
Affiliation(s)
| | - Iveta Bernátová
- b Institute of Normal and Pathological Physiology, Slovak Academy of Sciences and Centre of Excellence for Examination of Regulatory Role of Nitric Oxide in Civilization Diseases, Bratislava, Slovak Republic
| | - Peter Balis
- b Institute of Normal and Pathological Physiology, Slovak Academy of Sciences and Centre of Excellence for Examination of Regulatory Role of Nitric Oxide in Civilization Diseases, Bratislava, Slovak Republic
| | - Angelika Puzserova
- b Institute of Normal and Pathological Physiology, Slovak Academy of Sciences and Centre of Excellence for Examination of Regulatory Role of Nitric Oxide in Civilization Diseases, Bratislava, Slovak Republic
| | - Monika Barteková
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Ivan Gablovsky
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Tana Ravingerová
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| |
Collapse
|
11
|
Schiattarella GG, Magliulo F, Cattaneo F, Gargiulo G, Sannino A, Franzone A, Oliveti M, Perrino C, Trimarco B, Esposito G. Novel Molecular Approaches in Heart Failure: Seven Trans-Membrane Receptors Signaling in the Heart and Circulating Blood Leukocytes. Front Cardiovasc Med 2015; 2:13. [PMID: 26664885 PMCID: PMC4671356 DOI: 10.3389/fcvm.2015.00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/01/2015] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is the result of molecular, cellular, and structural changes induced by cardiac load or injury. A complex network of signaling pathways have been involved in the development and progression of cardiac dysfunction. In this review, we summarize the pivotal role of seven trans-membrane receptors (7TMRs), also called G-protein-coupled receptors (GPCRs), in HF. Moreover, we will discuss the current knowledge on the potential mirroring of 7TMR signaling between circulating blood leukocytes and the heart, and the related future possibilities in the management of HF patients.
Collapse
Affiliation(s)
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy
| | - Fabio Cattaneo
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy ; Department of Molecular Medicine and Medical Biotechnology, Federico II University , Naples , Italy
| | - Giuseppe Gargiulo
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy
| | - Anna Sannino
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy
| | - Anna Franzone
- Department of Cardiology, Swiss Cardiovascular Center Bern , Bern , Switzerland
| | - Marco Oliveti
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University , Naples , Italy
| |
Collapse
|
12
|
Song J, Zhu Y, Li J, Liu J, Gao Y, Ha T, Que L, Liu L, Zhu G, Chen Q, Xu Y, Li C, Li Y. Pellino1-mediated TGF-β1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. J Mol Cell Cardiol 2014; 79:145-56. [PMID: 25446187 DOI: 10.1016/j.yjmcc.2014.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022]
Abstract
Activation of cardiac fibroblasts is a key event in the progression of cardiac fibrosis that leads to heart failure. However, the molecular mechanisms underlying mechanical stress-induced cardiac fibroblast activation are complex and poorly understood. This study demonstrates that Pellino1, an E3 ubiquitin ligase, was activated in vivo in pressure overloaded rat hearts and in cultured neonatal rat cardiac fibroblasts (NRCFs) exposed to mechanical stretch in vitro. Suppression of the expression and activity of Pellino1 by adenovirus-mediated delivery of shPellino1 (adv-shpeli1) attenuated pressure overload-induced cardiac dysfunction and cardiac hypertrophy and decreased cardiac fibrosis in rat hearts. Transfection of adv-shpeli1 also significantly attenuated mechanical stress-induced proliferation, differentiation and collagen synthesis in NRCFs. Pellino1 silencing also abrogated mechanical stretch-induced polyubiquitination of tumor necrosis factor-alpha receptor association factor-6 (TRAF6) and receptor-interacting protein 1 (RIP1) and consequently decreased the DNA binding activity of nuclear factor-kappa B (NF-κB) in NRCFs. In addition, Pellino1 silencing prevented stretch-induced activation of p38 and activator protein 1 (AP-1) binding activity in NRCFs. Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays showed that Pellino1 silencing prevented the binding of NF-κB and AP-1 to the promoter region of transforming growth factor-β1 (TGF-β1) thus dampening TGF-β1 transactivation. Our data reveal a previously unrecognized role of Pellino1 in extracellular matrix deposition and cardiac fibroblast activation in response to mechanical stress and provides a novel target for treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Juan Song
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yun Zhu
- Department of Pathology, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Jiantao Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Jiahao Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yun Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Linli Que
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guoqing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qi Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
13
|
Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells. Braz J Infect Dis 2013; 17:410-7. [PMID: 23797008 PMCID: PMC9428059 DOI: 10.1016/j.bjid.2012.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 12/23/2022] Open
Abstract
Background Mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71) infection of human rhabdomyosarcoma (RD) cells. Methods Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. Results The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05). At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-β, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08–6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1) exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. Conclusion EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.
Collapse
|
14
|
Reyna SM, Tantiwong P, Cersosimo E, DeFronzo RA, Sriwijitkamol A, Musi N. Short-term exercise training improves insulin sensitivity but does not inhibit inflammatory pathways in immune cells from insulin-resistant subjects. J Diabetes Res 2013; 2013:107805. [PMID: 23671849 PMCID: PMC3647562 DOI: 10.1155/2013/107805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022] Open
Abstract
Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.
Collapse
Affiliation(s)
- Sara M. Reyna
- Medical Research Division, Regional Academic Health Center, 1214 W. Schunior Street, Edinburg, TX 78541, USA
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Texas Diabetes Institute, 701 S. Zarzamora, San Antonio, TX 78207, USA
| | - Puntip Tantiwong
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Texas Diabetes Institute, 701 S. Zarzamora, San Antonio, TX 78207, USA
| | - Eugenio Cersosimo
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Texas Diabetes Institute, 701 S. Zarzamora, San Antonio, TX 78207, USA
| | - Ralph A. DeFronzo
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Texas Diabetes Institute, 701 S. Zarzamora, San Antonio, TX 78207, USA
| | - Apiradee Sriwijitkamol
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Diabetes Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Texas Diabetes Institute, 701 S. Zarzamora, San Antonio, TX 78207, USA
- Geriatric, Research, Education, and Clinical Center, Audie L. Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators Inflamm 2013; 2013:367245. [PMID: 23365487 PMCID: PMC3556856 DOI: 10.1155/2013/367245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome has been widely associated with an increased risk for acute cardiovascular events. Emerging evidence supports metabolic syndrome as a condition favoring an adverse cardiac remodeling, which might evolve towards heart dysfunction and failure. This pathological remodeling has been described to result from the cardiac adaptive response to clinical mechanical conditions (such as hypertension, dyslipidemia, and hyperglycemia), soluble inflammatory molecules (such as cytokines and chemokines), as well as hormones (such as insulin), characterizing the pathophysiology of metabolic syndrome. Moreover, these cardiac processes (resulting in cardiac hypertrophy and fibrosis) are also associated with the modulation of intracellular signalling pathways within cardiomyocytes. Amongst the different intracellular kinases, mitogen-activated protein kinases (MAPKs) were shown to be involved in heart damage in metabolic syndrome. However, their role remains controversial. In this paper, we will discuss and update evidence on MAPK-mediated mechanisms underlying cardiac adverse remodeling associated with metabolic syndrome.
Collapse
|
16
|
Giugliano G, Sannino A, Brevetti L, Perrino C, Schiattarella GG, Franzone A, Serino F, Ferrone M, Scudiero F, Carbone A, De Paulis M, Izzo R, Amato B, Trimarco B, Esposito G. Ankle/brachial index to everyone. BMC Surg 2012; 12 Suppl 1:S18. [PMID: 23173985 PMCID: PMC3499282 DOI: 10.1186/1471-2482-12-s1-s18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the last years significant attention has been paid in identifying markers of subclinical atherosclerosis or of increased cardiovascular risk. METHOD An abnormal ankle/brachial index (ABI) identifies patients affected by lower extremity peripheral arterial disease, and even more important, represents a powerful predictor of the development of future ischemic cardiovascular events. CONCLUSIONS In our opinion, ABI is a cardiovascular risk prediction tool with very desirable properties that might become a routine measurement in clinical practice.
Collapse
Affiliation(s)
- Giuseppe Giugliano
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Giugliano G, Laurenzano E, Rengo C, De Rosa G, Brevetti L, Sannino A, Perrino C, Chiariotti L, Schiattarella GG, Serino F, Ferrone M, Scudiero F, Carbone A, Sorropago A, Amato B, Trimarco B, Esposito G. Abdominal aortic aneurysm in patients affected by intermittent claudication: prevalence and clinical predictors. BMC Surg 2012; 12 Suppl 1:S17. [PMID: 23173942 PMCID: PMC3499243 DOI: 10.1186/1471-2482-12-s1-s17] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a frequent cause of death among elderly. Patients affected by lower extremity peripheral arterial disease (LE-PAD) seem to be particularly at high risk for AAA. We aimed this study at assessing the prevalence and the clinical predictors of the presence of AAA in a homogeneous cohort of LE-PAD patients affected by intermittent claudication. Methods We performed an abdominal ultrasound in 213 consecutive patients with documented LE-PAD (ankle/brachial index ≤0.90) attending our outpatient clinic for intermittent claudication. For each patient we registered cardiovascular risk factors and comorbidities, and measured neutrophil count. Results The ultrasound was inconclusive in 3 patients (1.4%), thus 210 patients (169 males, 41 females, mean age 65.9 ± 9.8 yr) entered the study. Overall, AAA was present in 19 patients (9.0%), with a not significant higher prevalence in men than in women (10.1% vs 4.9%, p = 0.300). Patients with AAA were older (71.2 ± 7.0 vs 65.4 ± 9.9 years, p = 0.015), were more likely to have hypertension (94.7% vs 71.2%, p = 0.027), and greater neutrophil count (5.5 [4.5 – 6.2] vs 4.1 [3.2 – 5.5] x103/μL, p = 0.010). Importantly, the c-statistic for neutrophil count (0.73, 95% CI 0.60 – 0.86, p =0.010) was higher than that for age (0.67, CI 0.56–0.78, p = 0.017). The prevalence of AAA in claudicant patients with a neutrophil count ≥ 5.1 x103/μL (cut-off identified at ROC analysis) was as high as 29.0%. Conclusions Prevalence of AAA in claudicant patients is much higher than that reported in the general population. Ultrasound screening should be considered in these patients, especially in those with an elevated neutrophil count.
Collapse
Affiliation(s)
- Giuseppe Giugliano
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, Federico II University, via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee J, Ahn S, Oh S, Weir B, Park T. SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment. BMC SYSTEMS BIOLOGY 2012; 5 Suppl 2:S11. [PMID: 22784568 PMCID: PMC3287477 DOI: 10.1186/1752-0509-5-s2-s11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The current genome-wide association (GWA) analysis mainly focuses on the single genetic variant, which may not reveal some the genetic variants that have small individual effects but large joint effects. Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated due to the linkage disequilibrium (LD) among SNPs. METHODS We propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which handles correlation adequately among association measures of SNPs, and minimizes computing effort by the parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs. Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge. This two-step summarization makes the within-set association measures to be independent from each other, and therefore the central limit theorem can be adequately applied for the parametric model. RESULTS & CONCLUSIONS We applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE reduced many false positives notably while requiring much less computational efforts than other permutation-based gene set approaches.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea
| | | | | | | | | |
Collapse
|
19
|
Aceros H, Farah G, Cobos-Puc L, Stabile AM, Noiseux N, Mukaddam-Daher S. Moxonidine improves cardiac structure and performance in SHR through inhibition of cytokines, p38 MAPK and Akt. Br J Pharmacol 2012; 164:946-57. [PMID: 21426316 DOI: 10.1111/j.1476-5381.2011.01355.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Regression of left ventricular hypertrophy by moxonidine, a centrally acting sympatholytic imidazoline compound, results from a sustained reduction of DNA synthesis and transient stimulation of DNA fragmentation. Because apoptosis of cardiomyocytes may lead to contractile dysfunction, we investigated in spontaneously hypertensive rats (SHR), time- and dose-dependent effects of in vivo moxonidine treatment on cardiac structure and function as well as on the inflammatory process and signalling proteins involved in cardiac cell survival/death. EXPERIMENTAL APPROACH 12 week old SHR received moxonidine at 0, 100 and 400 µg·kg(-1)·h(-1) , s.c., for 1 and 4 weeks. Cardiac function was evaluated by echocardiography; plasma cytokines were measured by elisa and hearts were collected for histological assessment of fibrosis and measurement of cardiac proteins by Western blotting. Direct effects of moxonidine on cardiac cell death and underlying mechanisms were investigated in vitro by flow cytometry and Western blotting. KEY RESULTS After 4 weeks, the sub-hypotensive dose of moxonidine (100 µg) reduced heart rate and improved global cardiac performance, reduced collagen deposition, regressed left ventricular hypertrophy, inhibited Akt and p38 MAPK phosphorylation, and attenuated circulating and cardiac cytokines. The 400 µg dose resulted in similar effects but of a greater magnitude, associated with blood pressure reduction. In vitro, moxonidine inhibited norepinephrine-induced neonatal cardiomyocyte mortality but increased fibroblast mortality, through I(1)-receptor activation and differential effects on downstream Akt and p38 MAPK. CONCLUSIONS AND IMPLICATIONS While the antihypertensive action of centrally acting imidazoline compounds is appreciated, new cardiac-selective I(1)-receptor agonists may confer additional benefit.
Collapse
Affiliation(s)
- H Aceros
- Centre Hospitalier de L'Université de Montréal Research Center, Québec, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Mitogen-activated protein kinases activation in T lymphocytes of patients with acute coronary syndromes. Basic Res Cardiol 2011; 106:667-79. [DOI: 10.1007/s00395-011-0172-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 02/17/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
21
|
EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy. Basic Res Cardiol 2011; 106:577-89. [DOI: 10.1007/s00395-011-0163-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 12/20/2022]
|
22
|
Mitogen-Activated Protein Kinases as Biomarkers of Hypertension or Cardiac Pressure Overload. Hypertension 2010; 55:23-5. [DOI: 10.1161/hypertensionaha.109.141960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|