1
|
Su H, Li M, Li N, Zhang Y, He Y, Zhang Z, Zhang Y, Gao Q, Xu Z, Tang J. Endothelin-1 potentiated constriction in preeclampsia placental veins: Role of ETAR/ETBR/CaV1.2/CALD1. Placenta 2024; 158:165-174. [PMID: 39476475 DOI: 10.1016/j.placenta.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Placenta plays a vital role in preeclampsia. The present study investigated the role of endothelin-1 (ET-1) and its receptors in preeclampsia placenta. METHOD Placenta samples were collected from normal and preeclampsia pregnancies, with one single fetus. Placental chorionic plate vessel tone was measured with DMT using vasoactive agents with or without antagonists. Role of L-type voltage-dependent calcium channels (CaV1.2) in single smooth muscle cell was detected using whole-cell patch clamp. PCR, Western blot, and ELISA was used to detect molecule expressions. Placental vessel explants and human umbilical vein smooth muscle cell (HUVSMC) were exposed to ET-1 treatment with or without antagonists. Human umbilical vein endothelial cell (HUVEC) and pregnant sheep was exposed to hypoxic condition, simulating preeclampsia. RESULTS ET-1 and IRL1620 mediated stronger contractions in preeclampsia placental veins, despite unchanged ETAR and decreased ETBR expression. Comparing with control, there was higher ET-1 in umbilical plasma, maternal plasma, and placental vessels from preeclampsia. In utero hypoxia increased plasma ET-1 in fetal lambs and ewes. Hypoxia promoted ET-1 production in HUVEC. Role and expression of CaV1.2 was decreased in preeclampsia placental vessels, while high-molecular-weight caldesmon (CALD1), the marker of contractile phenotype of smooth muscle cells, was significantly increased. ET-1 treatment increased CALD1 in placental explants and in HUVSMC via ETAR/ETBR. CONCLUSION The present study firstly demonstrated ET-1 induced greater contraction in preeclampsia placental chorionic plate veins via ETAR/ETBR, instead of via weaker CaV1.2. In utero hypoxia promoted plasma ET-1 in fetal lambs and ewe, similar to that in preeclampsia. ET-1, binding with ETAR/ETBR increased CALD1, which was associated with stronger contraction in preeclampsia. The data provided important information in preeclampsia onset.
Collapse
Affiliation(s)
- Hongyu Su
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, China
| | - Na Li
- Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Yingying Zhang
- Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Yun He
- Department of Gynecology and Obstetrics, Taixing People's Hospital, China
| | - Ze Zhang
- Department of Gynecology and Obstetrics, Taixing People's Hospital, China
| | - Yumeng Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China; Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Jiaqi Tang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China.
| |
Collapse
|
2
|
Zhou J, Hu X, Zhang N, Chu Y, Wang J, Cui X, Zhang Y, Han R, Liu C, Yang S, Li J. Proteomic Analysis Reveals Differential Protein Expression in Placental Tissues of Early-Onset Preeclampsia Patients. J Proteome Res 2024; 23:4433-4442. [PMID: 39287518 DOI: 10.1021/acs.jproteome.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Preeclampsia, a significant cause of maternal and perinatal morbidity and mortality, remains poorly understood, in terms of its pathogenesis. This study aims to uncover novel and effective biomarkers for preeclampsia by conducting a comparative analysis of differential proteins in placentas from early onset preeclampsia (EOPE) and normal pregnancies. Utilizing tandem mass tag (TMT)-based quantitative proteomics, we identified differentially expressed proteins in placental tissues from 15 EOPE patients and 15 normal pregnant women. These proteins were subsequently validated by using parallel reaction monitoring (PRM). Our analysis revealed a total of 59 differentially expressed proteins, with 25 up-regulated and 34 down-regulated proteins in EOPE placental tissues compared to those from normal pregnancies. Validation through PRM confirmed the differential expression of 6 proteins. Our findings suggest these 6 proteins could play crucial roles in the pathogenesis of EOPE, highlighting the potential involvement of the estrogen signaling pathway and dilated cardiomyopathy (DCM) pathway in the development of preeclampsia. The data were deposited with the ProteomeXchange Consortium via the iProX partner repository with the identifier PXD055025.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Xiaoyu Hu
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Zhang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Yijing Chu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Junhuan Wang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Xuena Cui
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Yan Zhang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Rendong Han
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Chong Liu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Shengmei Yang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Jing Li
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| |
Collapse
|
3
|
Lin C, Mazzuca MQ, Khalil RA. Increased uterine arterial tone, stiffness and remodeling with augmented matrix metalloproteinase-1 and -7 in uteroplacental ischemia-induced hypertensive pregnancy. Biochem Pharmacol 2024; 228:116227. [PMID: 38643908 PMCID: PMC11410528 DOI: 10.1016/j.bcp.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Preeclampsia is a pregnancy-related disorder manifested as hypertensive pregnancy (HTN-Preg) and often fetal growth restriction (FGR), but the mechanisms involved are unclear. We have reported enhanced reactivity of systemic vessels in HTN-Preg rats, but the critical changes in the uterine circulation are less clear. We tested whether HTN-Preg involves localized aberrations in uterine arterial tone, stiffness and remodeling by matrix metalloproteinases (MMPs). Blood pressure (BP) and litter size were recorded in normal pregnant (Preg) rats and Preg rats with reduced uteroplacental perfusion pressure (RUPP). Isolated uterine arteries were placed in a pressure myograph for measuring intrinsic and extrinsic tone and arterial stiffness. Arteries were bathed in normal Krebs solution (2.5 mM Ca2+), Ca2+-free (2 mM EGTA) Krebs, treated with sodium nitroprusside (SNP), or endothelium denuded, then pressurized at 10 mmHg steps from 10 to 110 mmHg, and the % change in diameter was analyzed to measure total (active + passive), active Ca2+-dependent myogenic, passive, and endothelium-dependent tone, respectively. BP was higher and the litter size and pup weight were reduced in RUPP vs Preg rats. In normal Krebs, increasing intraluminal pressure caused smaller increments in diameter in arteries of RUPP vs Preg rats, suggesting greater total vascular tone. Arterial incubation in Ca2+-free Krebs, treatment with SNP or endothelium-removal abolished the differences in vascular tone, and subtraction of each of these components from total vascular tone revealed significant active Ca2+-dependent myogenic, passive, and endothelium-dependent tone, respectively, in RUPP vs Preg rats. The total and passive strain-stress curves were shifted leftward in arteries of RUPP vs Preg rats, indicating increased uterine arterial stiffness. Arterial sections showed decreased lumen/total and increased wall/total area, and immunohistochemistry revealed greater MMP-1 and MMP-7 staining particularly in the media, suggesting uterine arterial remodeling by MMPs in RUPP vs Preg rats. The increased uterine arterial active myogenic, passive, and endothelium-dependent tone, arterial stiffness and remodeling by MMPs would further reduce uterine blood flow and exacerbate uteroplacental ischemia, FGR and HTN-Preg.
Collapse
Affiliation(s)
- Chen Lin
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Marc Q Mazzuca
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
4
|
Strangstalien A, Braz CU, Miyamoto A, Marey M, Khatib H. Early transcriptomic changes in peripheral blood 7 days after embryo transfer in dairy cattle. J Dairy Sci 2024; 107:3080-3089. [PMID: 38101734 DOI: 10.3168/jds.2023-24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
A common goal of the dairy industry is to shorten the calving interval to reap several benefits associated with improved fertility. Early pregnancy detection is crucial to shorten this interval, allowing for prompt re-insemination of cows that failed to conceive after the first service. Currently, the industry lacks a method to accurately predict pregnancy within the first 3 wk. The polypeptide cytokine IFN-tau (IFNT) is the primary signal for maternal recognition of pregnancy in ruminants. As IFNT is released from the early conceptus, it initiates a cascade of effects, including upregulation of IFN-stimulated genes (ISG). Expression of ISG can be detected in the peripheral blood. The present study aimed to characterize peripheral transcriptomic changes, including the ISG, as early as d 7 after embryo transfer. A total of 170 Holstein heifers received in vitro-produced embryos. Whole blood was collected from these heifers within 24 h of the embryo transfer (d 0), d 7, and d 14 after embryo transfer. The heifers were divided into 2 groups, pregnant and nonpregnant, based on pregnancy diagnosis on d 28 via ultrasound. Total RNA was extracted from the peripheral blood of pregnant and nonpregnant heifers, pooled and sequenced. Expression analysis on d 7 heifers resulted in 13 significantly differentially expressed genes mostly related to innate immunity. Differential expression analysis comparing pregnant heifers on d 0 to the same heifers on d 14 showed 51 significantly differentially expressed genes. Eight genes were further quantified through reverse-transcription quantitative real-time PCR for biological validation. On d 7 after embryo transfer, mRNA transcriptions of EDN1, CXCL3, CCL4, and IL1A were significantly upregulated in pregnant heifers (n = 14) compared with nonpregnant heifers (n = 14), with respective fold changes of 8.10, 18.12, 29.60, and 29.97. Although on d 14 after embryo transfer, mRNA transcriptions of ISG15, MX2, OASY1, and IFI6 were significantly upregulated in the blood of pregnant heifers (n = 14) compared with the same heifers on d 0, with respective fold changes of 5.09, 2.59, 3.89, and 3.08. These findings demonstrate that several immune-related genes and ISG are activated during the first 2 wk after embryo transfer, which may explain how the maternal immune system accommodates the allogenic conceptus. To further investigate the diagnostic potentials of these genes, future studies are warranted to analyze the specificity and sensitivity of these biomarkers to predict early pregnancy.
Collapse
Affiliation(s)
- A Strangstalien
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - C U Braz
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - A Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture & Veterinary Medicine, Obihiro 080-8555, Japan
| | - M Marey
- Global Agromedicine Research Center, Obihiro University of Agriculture & Veterinary Medicine, Obihiro 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Behera, 22511, Egypt
| | - H Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
5
|
Wang X, Shields CA, Ekperikpe U, Amaral LM, Williams JM, Cornelius DC. VASCULAR AND RENAL MECHANISMS OF PREECLAMPSIA. CURRENT OPINION IN PHYSIOLOGY 2023; 33:100655. [PMID: 37009057 PMCID: PMC10062189 DOI: 10.1016/j.cophys.2023.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preeclampsia (PE) is a multisystem obstetric disorder that affects 2-10% of pregnancies worldwide and it is a leading cause of maternal and fetal morbidity and mortality. The etiology of PE development is not clearly delineated, but since delivery of the fetus and placenta often leads to symptom resolution in the most cases of PE, it is hypothesized that the placenta is the inciting factor of the disease. Current management strategies for PE focus on treating the maternal symptoms to stabilize the mother in an attempt to prolong the pregnancy. However, the efficacy of this management strategy is limited. Therefore, identification of novel therapeutic targets and strategies is needed. Here, we provide a comprehensive overview of the current state of knowledge regarding mechanisms of vascular and renal pathophysiology during PE and discuss potential therapeutic targets directed at improving maternal vascular and renal function.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology, University of Mississippi Medical Center
| | - Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center
| | - Ubong Ekperikpe
- Department of Pharmacology, University of Mississippi Medical Center
| | - Lorena M Amaral
- Department of Pharmacology, University of Mississippi Medical Center
| | | | - Denise C Cornelius
- Department of Pharmacology, University of Mississippi Medical Center
- Department of Emergency Medicine, University of Mississippi Medical Center
| |
Collapse
|
6
|
Mazzuca MQ, Buyukcelebi K, Lin C, Khalil RA. Increased Ca 2+-dependent intrinsic tone and arterial stiffness in mesenteric microvessels of hypertensive pregnant rats. Biochem Pharmacol 2023; 208:115353. [PMID: 36435203 PMCID: PMC9877182 DOI: 10.1016/j.bcp.2022.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Preeclampsia is a pregnancy-related hypertensive disorder (HTN-Preg) with unclear mechanisms. We have shown increased vascular reactivity to extrinsic vasoconstrictors in HTN-Preg rats. Here, we test whether microvascular intrinsic tone and arterial stiffness could contribute to HTN-Preg, and examined the underlying cellular mechanisms. On gestational day 19, BP was recorded in normal pregnant (Preg) rats and Preg rats with reduced uterine perfusion pressure (RUPP), and mesenteric microvessels were mounted on a pressure myograph for measurement of intrinsic tone, simultaneous changes in [Ca2+]i (fura-2 340/380 ratio), and arterial stiffness. Arteries were incubated in Ca2+-containing and 0 Ca2+ (2 mM EGTA) Krebs, pressurized at 10 to 110 mmHg in 10 mmHg increments, and the % change in vessel diameter from initial diameter at 10 mmHg was analyzed for measurement of total (active + passive) intrinsic tone and passive intrinsic response, respectively. The passive response was then subtracted from the total intrinsic tone to determine the active myogenic tone. The strain-stress relationship was also constructed as a measure of arterial stiffness. BP was higher in RUPP vs Preg rats. In Ca2+-containing Krebs, increases in intraluminal pressure caused smaller increases in diameter and greater increases in [Ca2+]i in microvessels of RUPP vs Preg rats, suggesting increased Ca2+-dependent myogenic tone. In 0 Ca2+ Krebs, increases in pressure also caused less increases in diameter in microvessels of RUPP vs Preg rats, but with no changes in [Ca2+]i, suggesting changes in the structure and mechanics of the arterial wall. The total and passive strain-stress relationship was shifted to the left in microvessels of RUPP vs Preg rats, suggesting increased arterial wall stiffness. Histology and immunohistochemistry showed greater vascular wall thickness and collagen-I staining in RUPP vs Preg rats, supporting changes in the wall architecture and structural proteins. The increased active myogenic tone and underlying increases in Ca2+ signaling as well as the increased passive intrinsic response, arterial stiffness and collagen-I in the mesenteric microvessels could play a role in the regulation of blood flow to the splanchnic region and the increased vascular resistance and BP in HTN-Preg.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Kadir Buyukcelebi
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Chen Lin
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
7
|
Faulkner JL, Wright D, Antonova G, Jaffe IZ, Kennard S, Belin de Chantemèle EJ. Midgestation Leptin Infusion Induces Characteristics of Clinical Preeclampsia in Mice, Which Is Ablated by Endothelial Mineralocorticoid Receptor Deletion. Hypertension 2022; 79:1536-1547. [PMID: 35510543 DOI: 10.1161/hypertensionaha.121.18832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Patients with preeclampsia demonstrate increases in placental leptin production in midgestation, and an associated increase in late gestation plasma leptin levels. The consequences of mid-late gestation increases in leptin production in pregnancy is unknown. Our previous work indicates that leptin infusion induces endothelial dysfunction in nonpregnant female mice via leptin-mediated aldosterone production and endothelial mineralocorticoid receptor (ECMR) activation, which is ablated by ECMR deletion. Therefore, we hypothesized that leptin infusion in mid-gestation of pregnancy induces endothelial dysfunction and hypertension, hallmarks of clinical preeclampsia, which are prevented by ECMR deletion. METHODS Leptin was infused via miniosmotic pump (0.9 mg/kg per day) into timed-pregnant ECMR-intact (WT) and littermate-mice with ECMR deletion (KO) on gestation day (GD)11-18. RESULTS Leptin infusion decreased fetal weight and placental efficiency in WT mice compared with WT+vehicle. Radiotelemetry recording demonstrated that blood pressure increased in leptin-infused WT mice during infusion. Leptin infusion reduced endothelial-dependent relaxation responses to acetylcholine (ACh) in both resistance (second-order mesenteric) and conduit (aorta) vessels in WT pregnant mice. Leptin infusion increased placental ET-1 (endothelin-1) production evidenced by increased PPET-1 (preproendothelin-1) and ECE-1 (endothelin-converting enzyme-1) expressions in WT mice. Adrenal aldosterone synthase (CYP11B2) and angiotensin II type 1 receptor b (AT1Rb) expression increased with leptin infusion in pregnant WT mice. KO pregnant mice demonstrated protection from leptin-induced reductions in pup weight, placental efficiency, increased BP, and endothelial dysfunction. CONCLUSIONS Collectively, these data indicate that leptin infusion in midgestation induces endothelial dysfunction, hypertension, and fetal growth restriction in pregnant mice, which is ablated by ECMR deletion.
Collapse
Affiliation(s)
- Jessica L Faulkner
- Department of Physiology (J.L.F.), Medical College of Georgia at Augusta University
| | - Derrian Wright
- Vascular Biology Center (D.W., G.A., S.K., E.J.B.d.C.), Medical College of Georgia at Augusta University
| | - Galina Antonova
- Vascular Biology Center (D.W., G.A., S.K., E.J.B.d.C.), Medical College of Georgia at Augusta University
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Simone Kennard
- Vascular Biology Center (D.W., G.A., S.K., E.J.B.d.C.), Medical College of Georgia at Augusta University
| | - Eric J Belin de Chantemèle
- Vascular Biology Center (D.W., G.A., S.K., E.J.B.d.C.), Medical College of Georgia at Augusta University.,Department of Cardiology (E.J.B.d.C.), Medical College of Georgia at Augusta University
| |
Collapse
|
8
|
Bakrania BA, George EM, Granger JP. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. Am J Obstet Gynecol 2022; 226:S973-S987. [PMID: 33722383 PMCID: PMC8141071 DOI: 10.1016/j.ajog.2020.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023]
Abstract
Animal models have been critical in investigating the pathogenesis, mediators, and even therapeutic options for a number of diseases, including preeclampsia. Preeclampsia is the leading cause of maternal and fetal morbidity and mortality worldwide. The placenta is thought to play a central role in the pathogenesis of this disease because it releases antiangiogenic and proinflammatory factors into the maternal circulation, resulting in the maternal syndrome. Despite the deleterious effects preeclampsia has been shown to have on the mother and baby during pregnancy and postpartum, there is still no effective treatment for this disease. Although clinical studies in patients are crucial to identify the involvement of pathogenic factors in preeclampsia, there are obvious limitations that prevent detailed investigation of the quantitative importance of time-dependent mechanisms involved in this syndrome. Animal models allow investigators to perform proof-of-concept studies and examine whether certain factors found in women with preeclampsia mediate hypertension and other manifestations of this disease. In this brief review, we summarize some of the more widely studied models used to investigate pathophysiological mechanisms that are thought to be involved in preeclampsia. These include models of placental ischemia, angiogenic imbalance, and maternal immune activation. Infusion of preeclampsia-related factors into animals has been widely studied to understand the specific mediators of this disease. These models have been included, in addition to a number of genetic models involved in overexpression of the renin-angiotensin system, complement activation, and trophoblast differentiation. Together, these models cover multiple mechanisms of preeclampsia from trophoblast dysfunction and impaired placental vascularization to the excess circulating placental factors and clinical manifestation of this disease. Most animal studies have been performed in rats and mice; however, we have also incorporated nonhuman primate models in this review. Preclinical animal models not only have been instrumental in understanding the pathophysiology of preeclampsia but also continue to be important tools in the search for novel therapeutic options for the treatment of this disease.
Collapse
Affiliation(s)
- Bhavisha A Bakrania
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Joey P Granger
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS.
| |
Collapse
|
9
|
Simanjuntak MK, Idris I, Sunarno I, Arifuddin S, Sinrang AW. Mean arterial pressure and the endothelin-1 levels in preeclampsia. GACETA SANITARIA 2021; 35 Suppl 2:S242-S244. [PMID: 34929821 DOI: 10.1016/j.gaceta.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study aims to determine the correlation between Endothelin-1 levels and mean arterial pressure (MAP) with preeclampsia so that their combination can be used as the predictor of PE in early pregnancy. METHOD This study used a cross-sectional study with a case-control design carried out in February to June 2020 in several hospitals and health centers in Makassar city, namely Dr. Wahidin Soedirohusodo General Hospital, Hasanuddin University State University Hospital, health center Bara Baraya, health center Mamajang, and health center Antang. Respondents in this study were divided into 37 pregnant women with preeclampsia and 53 pregnant women with normotension. This study's criteria for respondents were 20-35 years old, single pregnancy with > 20 weeks gestational. Data collected included education, body mass index (BMI), parity, the interval of pregnancy, and gestational age. ET-1 levels were determined using th ET-1 Elisa Kit with the ELISA method, and MAP was collected by measuring blood pressure when pregnant women came to health facilities. RESULTS The mean serum ET-1 levels in the preeclampsia were highest than normotensive with a significant p-value of 0.001 (p<0.05). The MAP in the preeclampsia was highest than normotensive too, with a significant value of p-value 0.001 (p<0.05), and there is a positive correlation between ET-1 and MAP with r=0.34 and p-value 0.001 (p<0.05). CONCLUSION The combination of ET-1 and MAP can be considered as a prognostic factor to detect PE in early pregnancy.
Collapse
Affiliation(s)
| | - Irfan Idris
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | - Sharvianty Arifuddin
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, Indonesia
| | - Andi Wardihan Sinrang
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
10
|
Ren Z, Cui N, Zhu M, Khalil RA. TNFα blockade reverses vascular and uteroplacental matrix metalloproteinases imbalance and collagen accumulation in hypertensive pregnant rats. Biochem Pharmacol 2021; 193:114790. [PMID: 34600915 DOI: 10.1016/j.bcp.2021.114790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Preeclampsia is a pregnancy-related disorder of maternal hypertension-in-pregnancy (HTN-Preg) and often fetal growth restriction (FGR). Placental ischemia could be an initiating event leading to inadequate vascular and uteroplacental remodeling and HTN-Preg; however, the molecular targets are unclear. To test the hypothesis that placental ischemia-induced release of proinflammatory cytokines target vascular and uteroplacental matrix metalloproteinases (MMPs), we tested if infusing TNFα (200 ng/kg/day) in day-14 pregnant (Preg) rats causes MMP imbalance and collagen accumulation, and if infusing TNFα decoy receptor Etanercept (0.4 mg/kg/day) in HTN-Preg rats with reduced uteroplacental perfusion pressure (RUPP) reverses MMP imbalance and collagen accumulation. On gestational day-19, blood pressure (BP) was higher in Preg + TNFα and RUPP vs Preg rats, and restored in RUPP + Etanercept rats. Gelatin zymography and Western blots revealed decreases in MMP-2 and MMP-9 and increases in MMP-1 and MMP-7 in aorta, uterus and placenta of Preg + TNFα and RUPP, that were reversed in RUPP + Etanercept rats. Collagen-I and IV were abundant in Preg + TNFα and RUPP, and were decreased in RUPP + Etanercept rats. The litter size, uterine, placenta, and pup weight were markedly reduced in RUPP, insignificantly reduced in Preg + TNFα, and slightly improved in RUPP + Etanercept rats. Thus TNFα blockade reverses the decreases in vascular and uteroplacental MMP-2 and MMP-9, and the increases in MMP-1, MMP-7 and accumulation of collagen-I and IV induced by placental ischemia and TNFα in HTN-Preg rats. Targeting TNFα using cytokine antagonists, or MMPs using MMP modulators could rectify MMP imbalance and collagen accumulation, restore vascular and uteroplacental remodeling, and improve BP in HTN-Preg and preeclampsia.
Collapse
Affiliation(s)
- Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Cui
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Obesity-associated cardiovascular risk in women: hypertension and heart failure. Clin Sci (Lond) 2021; 135:1523-1544. [PMID: 34160010 DOI: 10.1042/cs20210384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of obesity-associated cardiovascular diseases begins long prior to the presentation of a cardiovascular event. In both men and women, cardiovascular events, and their associated hospitalizations and mortality, are often clinically predisposed by the presentation of a chronic cardiovascular risk factor. Obesity increases the risk of cardiovascular diseases in both sexes, however, the clinical prevalence of obesity, as well as its contribution to crucial cardiovascular risk factors is dependent on sex. The mechanisms via which obesity leads to cardiovascular risk is also discrepant in women between their premenopausal, pregnancy and postmenopausal phases of life. Emerging data indicate that at all reproductive statuses and ages, the presentation of a cardiovascular event in obese women is strongly associated with hypertension and its subsequent chronic risk factor, heart failure with preserved ejection fraction (HFpEF). In addition, emerging evidence indicates that obesity increases the risk of both hypertension and heart failure in pregnancy. This review will summarize clinical and experimental data on the female-specific prevalence and mechanisms of hypertension and heart failure in women across reproductive stages and highlight the particular risks in pregnancy as well as emerging data in a high-risk ethnicity in women of African ancestry (AA).
Collapse
|
12
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
13
|
Ou M, Zhao H, Ji G, Zhao X, Zhang Q. Long noncoding RNA MALAT1 contributes to pregnancy-induced hypertension development by enhancing oxidative stress and inflammation through the regulation of the miR-150-5p/ET-1 axis. FASEB J 2020; 34:6070-6085. [PMID: 32246794 DOI: 10.1096/fj.201902280r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/06/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been identified previously in the pathogenesis of hypertension and some gestational diseases. However, the biological functions of MALAT1 in pregnancy-induced hypertension (PIH) are still poorly understood. Herein, we aim to explore the functional relevance of MALAT1 in PIH and to explain the potential underlying mechanisms. We found that the levels of ET-1 and MALAT1 were upregulated and that of miR-150-5p were downregulated in the serum of pregnant women with PIH and the aortic endothelial cells (ECs) of reduced uterine perfusion pressure (RUPP)-induced rat models. In aortic ECs, MALAT1 could competitively bind to miR-150-5p to upregulate the expression of ET-1. The MALAT1/miR-150-5p/ET-1 axis regulated the expression of endothelin B receptor (ETBR) in aortic ECs leading to oxidative stress imbalance and increased the release of proinflammatory cytokines (IL-18 and IL-1β), which concurrently activated the NF-κB pathway to regulate the ETBR expression and to stimulate smooth muscle cell (SMC) contraction. Furthermore, silencing MALAT1 could alleviate the hypertensive symptoms of RUPP-induced rat models. Taken conjointly, the upregulation of MALAT1 can reduce the expression of ET-1 by competitively binding to miR-150-5p, which enhances the expression of ETBR via the activation of the NF-κB pathway in SMCs, thus exacerbating the hypertensive symptoms in the RUPP-induced rat models.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Huidong Zhao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Guoxin Ji
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Xin Zhao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Qian Zhang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, P.R. China
| |
Collapse
|
14
|
Bakrania BA, Hall ME, Shahul S, Granger JP. The Reduced Uterine Perfusion Pressure (RUPP) rat model of preeclampsia exhibits impaired systolic function and global longitudinal strain during pregnancy. Pregnancy Hypertens 2019; 18:169-172. [PMID: 31669926 DOI: 10.1016/j.preghy.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a disorder prevalent in 3-8% of pregnancies, characterized by hypertension, endothelial dysfunction and cardiac dysfunction, including hypertrophy and impaired global longitudinal strain (GLS), which indicates reduced contractility and tissue injury. Despite several clinical studies highlighting impaired cardiac function in these women, the underlying mechanisms have not been studied, in part, due to lack of an appropriate animal model. The Reduced Uterine Perfusion Pressure (RUPP) rat model produces a PE-like phenotype, including adverse cardiac remodeling. However, whether this translates to impaired cardiac function is not known. The aim of this study was to test the hypothesis that placental ischemia in the RUPP rat leads to impaired left ventricular (LV) systolic function and GLS. STUDY DESIGN RUPP (n = 10) rats underwent surgery to induce placental ischemia on gestational day (GD) 14. Sham (n = 10) and RUPP rats had indwelling carotid catheters placed on GD 18, and blood pressure and echocardiography measurements were made on GD 19. RESULTS The RUPP group exhibited increased mean arterial pressure compared to the Sham group (123 ± 3 vs. 97 ± 2 mmHg, P < 0.01). RUPP hearts exhibited impaired LV ejection fraction (60 ± 2 vs. 78 ± 2%, P < 0.01) and GLS (-17.89 ± 0.5 vs. -26.31 ± 2.7%, P = 0.02), in addition to cardiac hypertrophy (0.97 ± 0.04 vs. 0.91 ± 0.02 g, P = 0.02). CONCLUSIONS Cardiac dysfunction and impaired strain are present in RUPP rats during pregnancy. These findings represent an animal model of PE that could be used to understand the mechanisms of cardiac dysfunction in this disease and ultimately, improve or prevent cardiac abnormalities in these patients.
Collapse
Affiliation(s)
- Bhavisha A Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States.
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States; Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sajid Shahul
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, United States
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
15
|
Coffey CG. Issues in the interpretation of serum endothelin levels in preeclampsia. Med Hypotheses 2019; 133:109400. [PMID: 31561133 DOI: 10.1016/j.mehy.2019.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/21/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
In this paper are discussed reasons to suspect that measurements of serum endothelin levels in women with preeclampsia may not provide accurate estimations of the degree of systemic endothelin receptor activation and reasons to suspect that systemic endothelin receptor saturation studies should provide such estimations more accurately.
Collapse
|
16
|
Furuya K, Kumasawa K, Nakamura H, Kimura T. Endothelin-1 profiles in advanced maternal age complicated with hypertensive disorders of pregnancy. Biochem Biophys Res Commun 2019; 516:941-944. [PMID: 31272714 DOI: 10.1016/j.bbrc.2019.06.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 11/27/2022]
Abstract
Recently, advanced maternal age (AMA) has been increasing due to late marriage and assisted reproductive technology. AMA is high-risk pregnancy associated with the life-threatening diseases such as hypertensive disorders of pregnancy (HDP). Recently we have reported novel AMA model mice using aged spontaneous pregnant mice, and found that the phenotypes of AMA model mice reflect the same characteristics as human AMA. We have also demonstrated that atypical angiogenic factors profiles including soluble VEGF-R1 (sFlt-1) and placental growth factor in both AMA pregnant women and AMA model mice. VEGF-endothelin-1 system have been also known as one of HDP-associated factors, however, there has been few reports on the relation between VEGF-endothelin-1 system and AMA. In this study, we investigated the profiles of VEGF-endothelin-1 system using our model mice's samples. As a result, VEGF and endothelin-1 levels were not significantly different between AMA and young individuals. Our results indicated that the mechanisms of hypertension in AMA may differ from those in young individuals from the point of VEGF-endothelin-1 system.
Collapse
Affiliation(s)
- Kiichiro Furuya
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiichi Kumasawa
- Obstetrics and Gynecology, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 1138655, Japan.
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
17
|
Regal JF, Lund JM, Wing CR, Root KM, McCutcheon L, Bemis LT, Gilbert JS, Fleming SD. Interactions between the complement and endothelin systems in normal pregnancy and following placental ischemia. Mol Immunol 2019; 114:10-18. [PMID: 31326653 DOI: 10.1016/j.molimm.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 01/01/2023]
Abstract
Preeclampsia is characterized by new onset hypertension and fetal growth restriction and is associated with aberrant activation of the innate immune complement system and stressed or ischemic placenta. Previous studies have suggested a role for both endothelin and complement system activation products in new onset hypertension in pregnancy, but inter-relationships of the pathways are unclear. We hypothesized that complement activation following placental ischemia stimulates the endothelin pathway to cause hypertension and impair fetal growth. The Reduced Uterine Perfusion Pressure (RUPP) model results in hypertension and fetal growth restriction in a pregnant rat due to placental ischemia caused by mechanical obstruction of blood flow to uterus and placenta. The effect of inhibitor of complement activation soluble Complement Receptor 1 (sCR1) and endothelin A receptor (ETA) antagonist atrasentan on hypertension, fetal weight, complement activation (systemic circulating C3a and local C3 placental deposition) and endothelin [circulating endothelin and message for preproendothelin (PPE), ETA and endothelin B receptor (ETB) in placenta] in the RUPP rat model were determined. Following placental ischemia, sCR1 attenuated hypertension but increased message for PPE and ETA in placenta, suggesting complement activation causes hypertension via an endothelin independent pathway. With ETA antagonism the placental ischemia-induced increase in circulating C3a was unaffected despite inhibition of hypertension, indicating systemic C3a alone is not sufficient. In normal pregnancy, inhibiting complement activation increased plasma endothelin but not placental PPE message. Atrasentan treatment increased fetal weight, circulating endothelin and placental ETA message, and unexpectedly increased local complement activation in placenta (C3 deposition) but not C3a in circulation, suggesting endothelin controls local placental complement activation in normal pregnancy. Atrasentan also significantly decreased message for endogenous complement regulators Crry and CD55 in placenta and kidney in normal pregnancy. Results of our study indicate that complement/endothelin interactions differ in pregnancies complicated with placental ischemia vs normal pregnancy, as well as locally vs systemically. These data clearly illustrate the complex interplay between complement and endothelin indicating that perturbations of either pathway may affect pregnancy outcomes.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jenna M Lund
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Cameron R Wing
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Kate M Root
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Luke McCutcheon
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Lynne T Bemis
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Sherry D Fleming
- Division of Biology, 18 Ackert, Kansas State University, 1717 Claflin Rd, Manhattan, Kansas, 66506, USA.
| |
Collapse
|
18
|
Placental Origins of Preeclampsia: Potential Therapeutic Targets. Curr Med Sci 2019; 39:190-195. [PMID: 31016509 DOI: 10.1007/s11596-019-2018-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/24/2019] [Indexed: 02/06/2023]
Abstract
Preeclampsia (PE) remains a leading cause of maternal and perinatal morbidity and mortality in obstetrics worldwide. No effective treatments to reduce its incidence and severity in clinical practice are currently available. A variety of hypotheses have been generated aiming to explain the origins of PE, notably being the genetic predispositions and placental dysfunction. As regard to placental dysfunction, much progress has been made in basic research and several potential therapeutic targets have been identified. This review will discuss in detail the potential therapeutic targets in PE models including uteroplacental blood flow, oxidative stress, vasoactive factors and inflammation/immune response, and introduce the evolving technologies for placental research nowadays.
Collapse
|
19
|
Fan X, Xu T, Ding H, Li H, Yang Y, He Y, Tang J, Liu Y, Chen X, Chen J, Tao J, Xu Z, Gao Q. DNA methylation-reprogrammed oxytocin receptor underlies insensitivity to oxytocin in pre-eclamptic placental vasculature. J Cell Mol Med 2019; 23:4118-4126. [PMID: 30950195 PMCID: PMC6533468 DOI: 10.1111/jcmm.14299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 12/02/2022] Open
Abstract
Pre‐eclampsia is associated with inadequate placental blood flow and placental ischaemia. Placental vascular tone is essential for maintaining adequate placental blood flow. Oxytocin is increased in placental system at late pregnancy and onset of labour, and presented strongly concentration‐dependent contractions in placental vascular, suggesting that oxytocin could be involved in regulating placental vascular tone and circulation. However, information about the reactivity of oxytocin in pre‐eclamptic placental vasculature is limited. This study used a large number of human placentas to reveal the pathophysiological changes and its underlying mechanisms of oxytocin‐induced vasoconstrictions in placental vessels under pre‐eclamptic condition. Present study found that oxytocin‐induced contractions were significantly decreased in human pre‐eclamptic placental vasculature, associated with a deactivated transcription of oxytocin receptor gene. The deactivated oxytocin receptor gene transcription was ascribed to a relatively higher DNA methylation status of CpG islands in oxytocin receptor gene promoter. This study was first to reveal that a hyper‐methylation of CpG islands in oxytocin receptor gene promoter, leading to a relatively low pattern of oxytocin receptor expression, was responsible for the decreased sensitivity of oxytocin in pre‐eclamptic placental vessels.
Collapse
Affiliation(s)
- Xiaorong Fan
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Hongmei Ding
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Huan Li
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Yuxian Yang
- Department of Obstetrics and Gynecology, Affiliated Suzhou Hospital of Nanjing University of Chinese Medicine, Suzhou, China
| | - Yun He
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Jie Chen
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Jianying Tao
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital, Suzhou, China
| | - Zhice Xu
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, Sacramento, California
| | - Qinqin Gao
- Institute for Fetology and Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Armaly Z, Jadaon JE, Jabbour A, Abassi ZA. Preeclampsia: Novel Mechanisms and Potential Therapeutic Approaches. Front Physiol 2018; 9:973. [PMID: 30090069 PMCID: PMC6068263 DOI: 10.3389/fphys.2018.00973] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Preeclampsia is a serious complication of pregnancy where it affects 5–8% of all pregnancies. It increases the morbidity and mortality of both the fetus and pregnant woman, especially in developing countries. It deleteriously affects several vital organs, including the kidneys, liver, brain, and lung. Although, the pathogenesis of preeclampsia has not yet been fully understood, growing evidence suggests that aberrations in the angiogenic factors levels and coagulopathy are responsible for the clinical manifestations of the disease. The common nominator of tissue damage of all these target organs is endothelial injury, which impedes their normal function. At the renal level, glomerular endothelial injury leads to the development of maternal proteinuria. Actually, peripheral vasoconstriction secondary to maternal systemic inflammation and endothelial cell activation is sufficient for the development of preeclampsia-induced hypertension. Similarly, preeclampsia can cause hepatic and neurologic dysfunction due to vascular damage and/or hypertension. Obviously, preeclampsia adversely affects various organs, however it is not yet clear whether pre-eclampsia per se adversely affects various organs or whether it exposes underlying genetic predispositions to cardiovascular disease that manifest in later life. The current review summarizes recent development in the pathogenesis of preeclampsia with special focus on novel diagnostic biomarkers and their relevance to potential therapeutic options for this disease state. Specifically, the review highlights the renal manifestations of the disease with emphasis on the involvement of angiogenic factors in vascular injury and on how restoration of the angiogenic balance affects renal and cardiovascular outcome of Preeclamptic women.
Collapse
Affiliation(s)
- Zaher Armaly
- Department of Nephrology, EMMS Nazareth Hospital, Galilee Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Jimmy E Jadaon
- Department of Obstetrics and Gynecology, EMMS Nazareth Hospital, Galilee Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel.,Laboratory Medicine, EMMS Nazareth Hospital, Galilee Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Adel Jabbour
- Laboratory Medicine, EMMS Nazareth Hospital, Galilee Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Zaid A Abassi
- Department of Physiology, The Ruth and Burce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Campus, Haifa, Israel
| |
Collapse
|
21
|
Care AS, Bourque SL, Morton JS, Hjartarson EP, Robertson SA, Davidge ST. Reduction in Regulatory T Cells in Early Pregnancy Causes Uterine Artery Dysfunction in Mice. Hypertension 2018; 72:177-187. [PMID: 29785960 DOI: 10.1161/hypertensionaha.118.10858] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/30/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
Abstract
Preeclampsia, fetal growth restriction, and miscarriage remain important causes of maternal and perinatal morbidity and mortality. These complications are associated with reduced numbers of a specialized T lymphocyte subset called regulatory T cells (Treg cells) in the maternal circulation, decidua, and placenta. Treg cells suppress inflammation and prevent maternal immunity toward the fetus, which expresses foreign paternal alloantigens. Treg cells are demonstrated to contribute to vascular homeostasis, but whether Treg cells influence the vascular adaptations essential for a healthy pregnancy is unknown. Thus, using a mouse model of Treg-cell depletion, we investigated the hypothesis that depletion of Treg cells would cause increased inflammation and aberrant uterine artery function. Here, we show that Treg-cell depletion resulted in increased embryo resorption and increased production of proinflammatory cytokines. Mean arterial pressure exhibited greater modulation by NO in Treg cell-deficient mice because the L-NG-nitroarginine methyl ester-induced increase in mean arterial pressure was 46% greater compared with Treg cell-replete mice. Uterine artery function, which is essential for the supply of nutrients to the placenta and fetus, demonstrated dysregulated hemodynamics after Treg-cell depletion. This was evidenced by increased uterine artery resistance and pulsatility indices and enhanced conversion of bET-1 (big endothelin-1) to the active and potent vasoconstrictor, ET-1 (endothelin-1). These data demonstrate an essential role for Treg cells in modulating uterine artery function during pregnancy and implicate Treg-cell control of maternal vascular function as a key mechanism underlying normal fetal and placental development.
Collapse
Affiliation(s)
- Alison S Care
- From the Robinson Research Institute, Adelaide Health and Medical Sciences, University of Adelaide, South Australia, Australia (A.S.C., S.A.R.) .,Department of Obstetrics and Gynecology (A.S.C., J.S.M., E.P.H., S.T.D.).,Women and Children's Health Research Institute, Edmonton, Canada (A.S.C., S.L.B., J.S.M., E.P.H., S.T.D.)
| | - Stephane L Bourque
- Department of Anesthesiology and Pain Medicine (S.L.B.), University of Alberta, Edmonton, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology (A.S.C., J.S.M., E.P.H., S.T.D.).,Women and Children's Health Research Institute, Edmonton, Canada (A.S.C., S.L.B., J.S.M., E.P.H., S.T.D.)
| | - Emma P Hjartarson
- Department of Obstetrics and Gynecology (A.S.C., J.S.M., E.P.H., S.T.D.).,Women and Children's Health Research Institute, Edmonton, Canada (A.S.C., S.L.B., J.S.M., E.P.H., S.T.D.)
| | - Sarah A Robertson
- From the Robinson Research Institute, Adelaide Health and Medical Sciences, University of Adelaide, South Australia, Australia (A.S.C., S.A.R.)
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology (A.S.C., J.S.M., E.P.H., S.T.D.).,Women and Children's Health Research Institute, Edmonton, Canada (A.S.C., S.L.B., J.S.M., E.P.H., S.T.D.)
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Preeclampsia (PE) is a disorder of pregnancy typically characterized by new-onset hypertension and proteinuria after gestational week 20. Although preeclampsia is one of the leading causes of maternal and perinatal morbidity and death worldwide, the mechanisms of the pathogenesis of the disorder remain unclear and treatment options are limited. Placental ischemic events and the release of placental factors appear to play a critical role in the pathophysiology. These factors contribute to a generalized systemic vascular endothelial dysfunction and result in increased systemic vascular resistance and hypertension. RECENT FINDINGS There is increasing evidence to suggest that endothelin-1 (ET-1) in the maternal vascular endothelium is a critical final common pathway, whereby placental ischemic factors cause cardiovascular and renal dysfunction in the mother. Multiple studies report increased levels of ET-1 in PE. A number of experimental models of PE are also associated with elevated tissue levels of prepro-ET-1 mRNA. Moreover, experimental models of PE (placental ischemia, sFlt-1 excess, TNF-α excess, and AT1-AA infusion) have proven to be responsive to ET type A receptor antagonism. Recent studies also suggest that abnormalities in ET type B receptor signaling may also play a role in PE. Although numerous studies highlight the importance of the ET system in the pathogenesis of PE, further work is needed to determine whether ET receptor antagonists could provide an effective therapy for the management of this disease.
Collapse
|
23
|
Li F, Kakoki M, Smid M, Boggess K, Wilder J, Hiller S, Bounajim C, Parnell SE, Sulik KK, Smithies O, Maeda-Smithies N. Causative Effects of Genetically Determined High Maternal/Fetal Endothelin-1 on Preeclampsia-Like Conditions in Mice. Hypertension 2018; 71:894-903. [PMID: 29610266 DOI: 10.1161/hypertensionaha.117.10849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Endothelin-1 (ET-1) is implicated in the pathophysiology of preeclampsia. An association between an EDN1 gene polymorphism with high ET-1 and preeclampsia was reported in humans, but their cause and effect relationships have not been defined. We examined the pregnancy effects in mice with a modified Edn1 allele that increases mRNA stability and thus ET-1 production. Heterozygous Edn1H/+ females showed no obvious abnormalities before pregnancy, but when mated with wild-type (WT) males developed a full spectrum of preeclampsia-like phenotypes, including increased systolic blood pressure, proteinuria, glomerular endotheliosis, and intrauterine fetal growth restriction. At 7.5 days post-coitus, the embryos from Edn1H/+ dams, regardless of their Edn1 genotype, lagged 12 hours in development compared with embryos from WT dams, had disoriented ectoplacental cones, and retained high E-cadherin expression. In contrast, WT females mated with Edn1H/+ males, which also carried half of the fetuses with Edn1H/+ genotype, showed a mild systolic blood pressure increase only. These WT dams had 2× higher plasma soluble fms-like tyrosine kinase-1 than WT dams mated with WT males. In human first trimester trophoblast cells, pharmacological doses of ET-1 increased the cellular sFlt1 transcripts and protein secretion via both type A and B ET-1 receptors. Our data demonstrate that high maternal ET-1 production causes preeclampsia-like phenotypes during pregnancy, affecting both initial stage of trophoblast differentiation/invasion and maternal peripheral vasculature during late gestation. High fetal ET-1 production, however, could cause increased soluble fms-like tyrosine kinase-1 in the maternal circulation and contribute to blood pressure elevation.
Collapse
Affiliation(s)
- Feng Li
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.).
| | - Masao Kakoki
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Marcela Smid
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kim Boggess
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Jennifer Wilder
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Sylvia Hiller
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Carol Bounajim
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Scott E Parnell
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kathleen K Sulik
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Oliver Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Nobuyo Maeda-Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| |
Collapse
|
24
|
Ren Z, Cui N, Zhu M, Khalil RA. Placental growth factor reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1 and MMP-7 and collagen types I and IV in hypertensive pregnancy. Am J Physiol Heart Circ Physiol 2018; 315:H33-H47. [PMID: 29569955 DOI: 10.1152/ajpheart.00045.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preeclampsia is a complication of pregnancy manifested as maternal hypertension (HTN) and fetal intrauterine growth restriction, with unclear mechanisms. Placental ischemia increases antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) relative to angiogenic placental growth factor (PlGF); however, the molecular targets are unclear. To test the hypothesis that placental ischemia-induced changes in sFlt-1 and PlGF target vascular and uteroplacental matrix metalloproteinases (MMPs), we tested whether raising the sFlt-1-to-PlGF ratio by infusing sFlt-1 (10 µg·kg-1·day-1) in pregnant (Preg) rats increases blood pressure (BP) and alters MMPs and whether correcting sFlt-1/PlGF by infusing PlGF (20 µg·kg-1·day-1) in Preg rats with reduced uterine perfusion pressure (RUPP) improves BP and reverses the changes in MMPs. On gestational day 19, BP was higher and the litter size and uterine, placenta, and pup weight were less in Preg + sFlt-1 and RUPP than Preg rats and restored in RUPP + PlGF versus RUPP rats. Gelatin and casein zymography and Western blots revealed decreases in MMP-2 and MMP-9 and increases in MMP-1 and MMP-7 in the aorta, uterine artery, uterus, and placenta of Preg + sFlt-1 and RUPP versus Preg rats, which were reversed in RUPP + PlGF versus RUPP rats. Collagen types I and IV were more abundant in Preg + sFlt-1 and RUPP versus Preg rats and were reversed in RUPP + PlGF versus RUPP rats. Thus, PlGF reverses decreased vascular and uteroplacental MMP-2 and MMP-9 and increased MMP-1, MMP-7, and collagen types I and IV induced by placental ischemia and sFlt-1 in HTN in pregnancy. Angiogenic factors and MMP modulators could rectify changes in MMPs and collagen, restore vascular and uteroplacental remodeling, and improve HTN and intrauterine growth restriction in preeclampsia. NEW & NOTEWORTHY Understanding the mechanisms of preeclampsia could help in its prevention and management. This study shows that correcting soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) imbalance by infusing PlGF reverses the decreases in vascular and uteroplacental matrix metalloproteinase (MMP)-2 and MMP-9 and the increases in MMP-1, MMP-7, and collagen types I and IV induced by placental ischemia and antiangiogenic sFlt-1 in hypertension in pregnancy. Angiogenic factors and MMP modulators could rectify changes in vascular and uteroplacental MMPs and collagen content and ameliorate hypertension and intrauterine growth restriction in preeclampsia.
Collapse
Affiliation(s)
- Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Ning Cui
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
25
|
Docheva N, Romero R, Chaemsaithong P, Tarca AL, Bhatti G, Pacora P, Panaitescu B, Chaiyasit N, Chaiworapongsa T, Maymon E, Hassan SS, Erez O. The profiles of soluble adhesion molecules in the "great obstetrical syndromes" . J Matern Fetal Neonatal Med 2018; 32:2113-2136. [PMID: 29320948 DOI: 10.1080/14767058.2018.1427058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to determine the profiles of maternal plasma soluble adhesion molecules in patients with preeclampsia, small-for-gestational-age (SGA) fetuses, acute pyelonephritis, preterm labor with intact membranes (PTL), preterm prelabor rupture of the membranes (preterm PROM), and fetal death. MATERIALS AND METHODS A cross-sectional study was conducted to determine maternal plasma concentrations of sE-selectin, sL-selectin, and sP-selectin as well as sICAM-1, sVCAM-1, and sPECAM-1 in patients with (1) an uncomplicated pregnancy (control, n = 100); (2) preeclampsia (n = 94); (3) SGA fetuses (in women without preeclampsia/hypertension, n = 45); (4) acute pyelonephritis (n = 25); (5) PTL (n = 53); (6) preterm PROM (n = 24); and (7) fetal death (n = 34). Concentrations of soluble adhesion molecules and inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-8) were determined with sensitive and specific enzyme-linked immunoassays. RESULTS In comparison to women with a normal pregnancy, (1) women with preeclampsia had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1, and a lower concentration of sL-selectin (all p values < .001); (2) patients with SGA fetuses had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1 (all p values < .05); (3) patients with a fetal death had higher median concentrations of sE-selectin and sP-selectin (all p values < .05); (4) patients with acute pyelonephritis had higher median plasma concentrations of sE-selectin, sICAM-1, and sVCAM-1 (all p values < .001); (5) patients with preeclampsia and acute pyelonephritis, plasma concentrations of sVCAM-1, sE-selectin, and sP-selectin correlated with those of the proinflammatory cytokines TNF-α and interleukin (IL)-8 (all p values < .05); (6) patients with PTL had a higher median concentration of sP-selectin and a lower median concentration of VCAM-1 (all p values < .05); and (7) women with preterm PROM had lower median concentrations of sL-selectin and sVCAM-1 (all p values < .05). CONCLUSIONS The results of this study show that endothelial cell activation/dysfunction reflected by the plasma concentration of sE-selectin is not specific to preeclampsia but is present in pregnancies complicated by SGA fetuses, acute pyelonephritis, and fetal death. Collectively, we report that each obstetrical syndrome appears to have a stereotypical profile of soluble adhesion molecules in the peripheral circulation.
Collapse
Affiliation(s)
- Nikolina Docheva
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Roberto Romero
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA.,d Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA.,e Center for Molecular Medicine and Genetics , Wayne State University , Detroit , MI , USA
| | - Piya Chaemsaithong
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Adi L Tarca
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Gaurav Bhatti
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Percy Pacora
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Bogdan Panaitescu
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Noppadol Chaiyasit
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Tinnakorn Chaiworapongsa
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Eli Maymon
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,f Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Sonia S Hassan
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,g Department of Physiology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Offer Erez
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,f Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| |
Collapse
|
26
|
Marins LR, Anizelli LB, Romanowski MD, Sarquis AL. How does preeclampsia affect neonates? Highlights in the disease's immunity. J Matern Fetal Neonatal Med 2017; 32:1205-1212. [PMID: 29113524 DOI: 10.1080/14767058.2017.1401996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Preeclampsia (PE) is the primary obstetrical cause in one of the four perinatal deaths. Although the etiology and pathogenesis of preeclampsia is not fully known, a proinflammatory immune state prevails and can disrupt fetal hematopoiesis. Some of the effects on the newborn include neonatal thrombocytopenia, neutropenia, a reduction in T regulatory cells, and an increased cytotoxic natural killer cell profile. METHODS Electronic databases were searched, and defined criteria were applied to select articles for review. The review covered literature on the effects on neonatal due to maternal preeclampsia, fetal outcomes, and new treatments in research aimed at reducing morbidity and mortality of the disease. DISCUSSION The cytotoxic environment present in PE affects the development of fetal cell lineages. Neutropenia is observed in 50% of neonates and is correlated with mortality, although its treatment is not well-established. The enhancement in erythropoietin and the hypoxic setting present in the disease can also lead to thrombocytopenia. Per partum management includes platelet transfusion in order to avoid severe complications such as intraventricular hemorrhage. Regarding other cell lines, a cytotoxic profile is observed to be reflecting the milieu present in the mothers' bloodstream. This disruption alters the immune system response into a proinflammatory profile and can be correlated to neonatal necrotizing enterocolitis. An antiangiogenic environment is also part of the preeclampsia presentation and can be responsible for the enhancement of bronchopulmonary dysplasia observed in this population. Meanwhile, the reduction in angiogenic factors, such as vascular endothelial growth factor (VEGF), can be a protective mechanism for retinopathy of prematurity. Studies of the long-term effects of these observations are lacking, but lower neurodevelopmental scores and a higher cardiovascular risk are noted. New treatments in research propose a prevention of the disease during gestation in order to reduce the effects more efficiently in the fetus. Phosphodiesterase inhibitors, endothelin 1 receptor antagonists and manipulation of heme oxygenase-1 enzyme pathway are possible therapeutic alternatives. This review summarizes the current understanding of how preeclampsia affects neonates. As a conclusion, further studies are needed to build up a guideline to manage those effects. A research agenda is proposed.
Collapse
Affiliation(s)
- Lina R Marins
- a Department of Child and Adolescent Health , Universidade Federal do Paraná , Curitiba , Brazil
| | - Leonardo B Anizelli
- a Department of Child and Adolescent Health , Universidade Federal do Paraná , Curitiba , Brazil
| | - Mariana D Romanowski
- b Department of Gynecology and Obstetrics , Universidade Federal do Paraná , Curitiba , Brazil
| | - Ana L Sarquis
- a Department of Child and Adolescent Health , Universidade Federal do Paraná , Curitiba , Brazil
| |
Collapse
|
27
|
Angiogenic imbalance and diminished matrix metalloproteinase-2 and -9 underlie regional decreases in uteroplacental vascularization and feto-placental growth in hypertensive pregnancy. Biochem Pharmacol 2017; 146:101-116. [PMID: 28912068 DOI: 10.1016/j.bcp.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a form of hypertension-in-pregnancy (HTN-Preg) with unclear mechanism. Generalized reduction of uterine perfusion pressure (RUPP) could be an initiating event leading to uteroplacental ischemia, angiogenic imbalance, and HTN-Preg. Additional regional differences in uteroplacental blood flow could further affect the pregnancy outcome and increase the risk of preeclampsia in twin or multiple pregnancy, but the mechanisms involved are unclear. To test the hypothesis that regional differences in angiogenic balance and matrix metalloproteinases (MMPs) underlie regional uteroplacental vascularization and feto-placental development, we compared fetal and placental growth, and placental and myoendometrial vascularization in the proximal, middle and distal regions of the uterus (in relation to the iliac bifurcation) in normal pregnant (Preg) and RUPP rats. Maternal blood pressure and plasma anti-angiogenic soluble fms-like tyrosine kinase-1 (sFlt-1)/placenta growth factor (PIGF) ratio were higher, and average placentae number, placenta weight, litter size, and pup weight were less in RUPP than Preg rats. The placenta and pup number and weight were reduced, while the number and diameter of placental and adjacent myoendometrial arteries, and MMP-2 and MMP-9 levels/activity were increased, and sFlt-1/PlGF ratio was decreased in distal vs proximal uterus of Preg rats. In RUPP rats, the placenta and pup number and weight, the number and diameter of placental and myoendometrial arteries, and MMP-2 and -9 levels/activity were decreased, and sFlt-1/PlGF ratio was increased in distal vs proximal uterus. Treatment with sFlt-1 or RUPP placenta extract decreased MMP-2 and MMP-9 in distal segments of Preg uterus, and treatment with PIGF or Preg placenta extract restored MMP levels in distal segments of RUPP uterus. Thus, in addition to the general reduction in placental and fetal growth during uteroplacental ischemia, localized angiogenic imbalance and diminished MMP-2 and MMP-9 could cause further decrease in placental and myoendometrial vascularization and placental and fetal growth in distal vs proximal uterus of HTN-Preg rats. Regional differences in uteroplacental perfusion, angiogenic balance and MMPs could be a factor in the incidence of preeclampsia in multiple pregnancy.
Collapse
|
28
|
Kain V, Halade GV. Metabolic and Biochemical Stressors in Diabetic Cardiomyopathy. Front Cardiovasc Med 2017; 4:31. [PMID: 28620607 PMCID: PMC5449449 DOI: 10.3389/fcvm.2017.00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic syndrome and is widespread in US population and worldwide. Despite of the heterogeneous and distinct features of DCM, the clinical relevance of DCM is now becoming established. DCM progresses to pathological cardiac remodeling with the higher risk of heart attack and subsequent heart failure in diabetic patients. In this review, we emphasize lipid substrate quality and the phenotypic, metabolic, and biochemical stressors of DCM in the rodent and human pathophysiology. We discuss lipoxygenase signaling in the inflammatory pathway with multiple contributing and confounding factors leading to DCM. Additionally, emerging biochemical pathways are emphasized to make progress toward therapeutic advancement to treat DCM.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
29
|
Huang A, Wu H, Iriyama T, Zhang Y, Sun K, Song A, Liu H, Peng Z, Tang L, Lee M, Huang Y, Ni X, Kellems RE, Xia Y. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia. Hypertension 2017; 70:209-218. [PMID: 28507174 DOI: 10.1161/hypertensionaha.117.09536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 12/20/2022]
Abstract
Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia.
Collapse
Affiliation(s)
- Aji Huang
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Hongyu Wu
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Takayuki Iriyama
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Yujin Zhang
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Kaiqi Sun
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Anren Song
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Hong Liu
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Zhangzhe Peng
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Lili Tang
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Minjung Lee
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Yun Huang
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Xin Ni
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Rodney E Kellems
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.)
| | - Yang Xia
- From the Xiangya Hospital, Central South University, Changsha, China (A.H., Z.P., L.T., Y.X.); Department of Biochemistry and Molecular Biology, McGovern Medical School (A.H., H.W., T.I., Y.Z., K.S., A.S., H.L., Z.P., R.E.K., Y.X.) and Graduate School of Biomedical Sciences (K.S., H.L., R.E.K., Y.X.), University of Texas at Houston; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Japan (T.I.); Institute of Biosciences and Technology, Texas A&M University, Houston (M.L., Y.H.); and Department of Physiology, The Second Military Medical School, Shanghai, China (X.N.).
| |
Collapse
|
30
|
The Endothelin Type A Receptor as a Potential Therapeutic Target in Preeclampsia. Int J Mol Sci 2017; 18:ijms18030522. [PMID: 28264495 PMCID: PMC5372538 DOI: 10.3390/ijms18030522] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 01/14/2023] Open
Abstract
Preeclampsia (PE) is a disorder of pregnancy typically characterized by new onset hypertension after gestational week 20 and proteinuria. Although PE is one of the leading causes of maternal and perinatal morbidity and death worldwide, the mechanisms of the pathogenesis of the disease remain unclear and treatment options are limited. However, there is increasing evidence to suggest that endothelin-1 (ET-1) plays a critical role in the pathophysiology of PE. Multiple studies report that ET-1 is increased in PE and some studies report a positive correlation between ET-1 and the severity of symptoms. A number of experimental models of PE are also associated with elevated tissue levels of prepro ET-1 mRNA. Moreover, experimental models of PE (placental ischemia, sFlt-1 infusion, Tumor necrosis factor (TNF) -α infusion, and Angiotensin II type 1 receptor autoantibody (AT1-AA) infusion) have proven to be susceptible to Endothelin Type A (ETA) receptor antagonism. While the results are promising, further work is needed to determine whether ET antagonists could provide an effective therapy for the management of preeclampsia.
Collapse
|
31
|
Majali-Martinez A, Velicky P, Pollheimer J, Knöfler M, Yung HW, Burton GJ, Tabrizi-Wizsy NG, Lang U, Hiden U, Desoye G, Dieber-Rotheneder M. Endothelin-1 down-regulates matrix metalloproteinase 14 and 15 expression in human first trimester trophoblasts via endothelin receptor type B. Hum Reprod 2016; 32:46-54. [PMID: 27864359 PMCID: PMC5165079 DOI: 10.1093/humrep/dew295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION Does endothelin-1 (ET-1) regulate matrix metalloproteinase (MMP) 14 and 15 production and invasion of human first trimester trophoblasts? SUMMARY ANSWER ET-1 in pathophysiological concentrations down-regulates MMP14 and MMP15 expression via endothelin receptor (ETR) type B and decreases trophoblast migration and invasion. WHAT IS KNOWN ALREADY MMP14 and MMP15 are involved in trophoblast invasion. Impairment of invasion has been linked to pregnancy complications such as pre-eclampsia (PE). ET-1 is up-regulated in PE. STUDY DESIGN, SIZE, DURATION In vitro study using primary human trophoblasts from 50 first trimester placentas (gestational week 7-12). PARTICIPANTS/MATERIALS, SETTING, METHODS Trophoblasts were cultured in the absence or presence of 10-100 nM ET-1. MMP14 and MMP15 mRNA and protein were quantified by RT-qPCR and Western blotting, respectively. Selective antagonists for ETRA (BQ-123) or ETRB (BQ-788) were used to identify ETR subtypes involved. Functional ET-1 effects were tested in first trimester chorionic villous explants and transwell invasion assays. The roles of tumor necrosis factor (TNF)-α (25 ng/ml) and oxygen (1%) in ET-1 regulation of MMP14 and 15 expression were assessed by Western blotting. MAIN RESULTS AND THE ROLE OF CHANCE ET-1 down-regulated MMP14 and MMP15 mRNA (-21% and -26%, respectively, P < 0.05) and protein levels (-18% and -22%, respectively, P < 0.05). This effect was mediated via ETRB. ET-1 decreased trophoblast outgrowth in placental explants (-24%, P < 0.05) and trophoblast invasion (-26%, P ≤ 0.01). TNF-α enhanced ET-1 mediated MMP15 down-regulation (by 10%, P < 0.05), whereas hypoxia abolished the effect of ET-1 on both MMPs. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Only primary trophoblasts were used in this study. Since trophoblast yield from first trimester placental material is limited, further aspects of MMP14 and 15 regulation could not be characterized. Other anti-invasive factors may be altered by ET-1 in trophoblasts and, thus, contribute to the reduced invasion, but have not been investigated. Oxygen levels similar to those found in the decidua (5-8% O2) were not analyzed in this study. WIDER IMPLICATIONS OF THE FINDINGS ET-1 modifies placental function already during the first trimester of pregnancy, the time-window when the placental changes implicated in PE occur. Thus, our results improve the understanding of the placental mechanisms underlying trophoblast invasion and PE. STUDY FUNDING/COMPETING INTERESTS The study was funded by the Oesterreichische Nationalbank (Anniversary Fund, project number: 14796) and the Herzfelder'sche Familienstiftung (to J.P.; number: 00685). AMM received funding from the Austrian Science Fund FWF (W1241) and the Medical University Graz through the PhD Program Molecular Fundamentals of Inflammation (DK-MOLIN). The authors have no conflict of interest.
Collapse
Affiliation(s)
- Alejandro Majali-Martinez
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Philipp Velicky
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3 EG, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3 EG, UK
| | - Nassim Ghaffari Tabrizi-Wizsy
- Institute of Pathophysiology and Immunology, SFL Chicken CAM Lab, Medical University of Graz, Heinrichstrasse 31a, Graz 8010, Austria
| | - Uwe Lang
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| | - Martina Dieber-Rotheneder
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| |
Collapse
|
32
|
Zhu M, Ren Z, Possomato-Vieira JS, Khalil RA. Restoring placental growth factor-soluble fms-like tyrosine kinase-1 balance reverses vascular hyper-reactivity and hypertension in pregnancy. Am J Physiol Regul Integr Comp Physiol 2016; 311:R505-21. [PMID: 27280428 PMCID: PMC5142222 DOI: 10.1152/ajpregu.00137.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/03/2016] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) is a pregnancy-related hypertensive disorder (HTN-Preg) with unclear mechanism. An imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) and angiogenic placental growth factor (PlGF) has been observed in PE, but the vascular targets and signaling pathways involved are unclear. We assessed the extent of sFlt-1/PlGF imbalance and vascular dysfunction in a rat model of HTN-Preg produced by reduction of uteroplacental perfusion pressure (RUPP), and tested whether inducing a comparable sFlt-1/PlGF imbalance by infusing sFlt-1 (10 μg·kg(-1)·day(-1)) in day 14 pregnant (Preg) rats cause similar increases in blood pressure (BP) and vascular reactivity. Using these guiding measurements, we then tested whether restoring sFlt-1/PlGF balance by infusing PIGF (20 μg·kg(-1)·day(-1)) in RUPP rats would improve BP and vascular function. On gestational day 19, BP was in Preg+sFlt-1 and RUPP > Preg, and in RUPP+PlGF < RUPP rats. Plasma sFlt-1/PlGF ratio was increased in Preg+sFlt-1, and RUPP and was reduced in RUPP+PlGF rats. In isolated endothelium-intact aorta, carotid, mesenteric, and renal artery, phenylephrine (Phe)- and high KCl-induced contraction was in Preg+sFlt-1 and RUPP > Preg, and in RUPP+PlGF < RUPP. The differences in vascular reactivity to Phe and KCl between groups were less apparent in vessels treated with the nitric oxide synthase (NOS) inhibitor l-NAME or guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or endothelium-denuded, suggesting changes in endothelial NO-cGMP pathway. In Phe precontracted vessels, ACh-induced relaxation was in Preg+sFlt-1 and RUPP < Preg, and in RUPP+PlGF > RUPP, and was blocked by N(ω)-nitro-l-arginine methyl ester (l-NAME) or ODQ treatment or endothelium removal. Western blots revealed that aortic total endothelial NOS (eNOS) and activated phosphorylated-eNOS were in Preg+sFlt-1 and RUPP < Preg and in RUPP+PlGF > RUPP. ACh-induced vascular nitrate/nitrite production was in Preg+sFlt-1 and RUPP < Preg, and in RUPP+PlGF > RUPP. Vascular relaxation to the exogenous NO donor sodium nitroprusside was not different among groups. Thus, a tilt in the angiogenic balance toward anti-angiogenic sFlt-1 is associated with decreased vascular relaxation and increased vasoconstriction and BP. Restoring the angiogenic/antiangiogenic balance using PlGF enhances endothelial NO-cGMP vascular relaxation and decreases vasoconstriction and BP in HTN-Preg rats and could offer a new approach in the management of PE.
Collapse
Affiliation(s)
- Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - José S Possomato-Vieira
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Galaviz-Hernandez C, Arámbula-Meraz E, Medina-Bastidas D, Sosa-Macías M, Lazalde-Ramos BP, Ortega-Chávez M, Hernandez-García L. The paternal polymorphism rs5370 in the EDN1 gene decreases the risk of preeclampsia. Pregnancy Hypertens 2016; 6:327-332. [PMID: 27939477 DOI: 10.1016/j.preghy.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate whether the maternal, paternal or the combined maternal/paternal contribution of SNP rs5370 of the EDN1 gene is associated with preeclampsia and drove its expression in placenta. STUDY DESIGN This case-control study included 61 preeclamptic patients and their partners and 49 healthy pregnant women and their partners. The population was sub-divided into three groups: women-only, men-only and combined (women/men). The analysis included genotyping of rs5370 in mothers and fathers and evaluating the expression profile of the EDN1 gene in placenta. Comparisons of categorical variables were performed using chi-square and/or Fisher's exact tests. The intergroup comparisons were analysed with the Mann-Whitney U test. The association between the polymorphism and the disease was evaluated through multivariate regression analysis. Spearman's correlation was performed to test the relationship between pre-gestational history and clinical features of the affected patients with EDN1 gene expression. RESULTS The analysis of paternal risk factors associated with preeclampsia revealed no differences between groups. A negative association between SNP rs5370 and preeclampsia was found in men group (OR 0.42; CI 95% 0.18-0.94, p=0.034) but not in women or combined groups. The adjustment for paternal protective factors increased the observed negative association, and the opposite was observed in the presence of paternal risk factors. The expression of the EDN1 gene in the placenta was significantly higher in the group of cases and was not associated with the rs5370 polymorphism. CONCLUSION The paternal rs5370 polymorphism decreases the risk for preeclampsia and is not associated with placental expression of the EDN1 gene.
Collapse
Affiliation(s)
| | - Eliakym Arámbula-Meraz
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, 80040 Culiacán Rosales, Sinaloa, Mexico
| | - Diana Medina-Bastidas
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, 80040 Culiacán Rosales, Sinaloa, Mexico
| | | | - Blanca P Lazalde-Ramos
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Mexico
| | | | | |
Collapse
|
34
|
Li Y, Wang Y, Ding X, Duan B, Li L, Wang X. Serum Levels of TNF-α and IL-6 Are Associated With Pregnancy-Induced Hypertension. Reprod Sci 2016; 23:1402-8. [DOI: 10.1177/1933719116641760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yuan Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Zibo Central Hospital, Zibo, Shandong, China
| | - Yanyun Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | | | - Bide Duan
- Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xietong Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
35
|
Gillis EE, Mooney JN, Garrett MR, Granger JP, Sasser JM. Sildenafil Treatment Ameliorates the Maternal Syndrome of Preeclampsia and Rescues Fetal Growth in the Dahl Salt-Sensitive Rat. Hypertension 2016; 67:647-53. [PMID: 26729752 DOI: 10.1161/hypertensionaha.115.06071] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/08/2015] [Indexed: 11/16/2022]
Abstract
Preeclampsia, a hypertensive disorder of pregnancy, is detrimental to both mother and fetus. There is currently no effective treatment, but sildenafil, a phosphodiesterase-5 inhibitor, has been proposed as a potential therapy to reduce blood pressure and improve uteroplacental perfusion in preeclamptic patients. We hypothesized that sildenafil would improve the maternal syndrome and fetal outcomes in the Dahl S rat model of superimposed preeclampsia. Dahl S rats were mated, and half received sildenafil (50 mg/kg per day, via food) from day 10 through day 20 of pregnancy. The untreated Dahl S rats had a significant rise in blood pressure and a 2-fold increase in urinary protein excretion from baseline to late pregnancy; however, sildenafil-treated Dahl S rats exhibited ≈40 mm Hg drops in blood pressure with no rise in protein excretion. Sildenafil also increased creatinine clearance and reduced nephrinuria and glomerulomegaly. Sildenafil treatment reduced the uterine artery resistance index during late pregnancy in the Dahl S rat and improved fetal outcomes (survival, weight, and litter size). In addition, 19% of all pups were resorbed in untreated rats, with no incidence of resorptions observed in the treated group. Furthermore, tumor necrosis factor-α, endothelin-1, and oxidative stress, which are characteristically increased in women with preeclampsia and in experimental models of the disease, were reduced in treated rats. These data suggest that sildenafil improves the maternal syndrome of preeclampsia and blood flow to the fetoplacental unit, providing preclinical evidence to support the hypothesis that phosphodiesterase type 5 inhibition may be an important therapeutic target for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Ellen E Gillis
- From the Departments of Pharmacology and Toxicology (E.E.G., J.N.M., M.R.G., J.M.S.), Medicine (M.R.G.), and Physiology and Biophysics (J.P.G.), University of Mississippi Medical Center, Jackson
| | - Jennifer N Mooney
- From the Departments of Pharmacology and Toxicology (E.E.G., J.N.M., M.R.G., J.M.S.), Medicine (M.R.G.), and Physiology and Biophysics (J.P.G.), University of Mississippi Medical Center, Jackson
| | - Michael R Garrett
- From the Departments of Pharmacology and Toxicology (E.E.G., J.N.M., M.R.G., J.M.S.), Medicine (M.R.G.), and Physiology and Biophysics (J.P.G.), University of Mississippi Medical Center, Jackson
| | - Joey P Granger
- From the Departments of Pharmacology and Toxicology (E.E.G., J.N.M., M.R.G., J.M.S.), Medicine (M.R.G.), and Physiology and Biophysics (J.P.G.), University of Mississippi Medical Center, Jackson
| | - Jennifer M Sasser
- From the Departments of Pharmacology and Toxicology (E.E.G., J.N.M., M.R.G., J.M.S.), Medicine (M.R.G.), and Physiology and Biophysics (J.P.G.), University of Mississippi Medical Center, Jackson.
| |
Collapse
|
36
|
Abstract
Our understanding of hypertension during pregnancy and, in particular, preeclampsia has changed dramatically over the last decade. During the last year (2014–2015), several articles published in Hypertension have provided important insights into the pathogenesis of preeclampsia and its related complications.1–38 In addition, Hypertension also published some key research communications that translated important basic science observations into the clinic. Some of these articles are briefly discussed, highlighting their significance to our understanding of the mechanism of the disease, to predict the disease and to treat or prevent hypertension during pregnancy and other preeclampsia-related complications.
Collapse
Affiliation(s)
- S Ananth Karumanchi
- From the Beth Israel Deaconess Medical Center, Boston, MA (S.A.K.); and Department of Physiology and Biophysics and the Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS (J.P.G.)
| | - Joey P Granger
- From the Beth Israel Deaconess Medical Center, Boston, MA (S.A.K.); and Department of Physiology and Biophysics and the Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS (J.P.G.).
| |
Collapse
|
37
|
George EM, Stout JM, Stec DE, Granger JP. Heme oxygenase induction attenuates TNF-α-induced hypertension in pregnant rodents. Front Pharmacol 2015; 6:165. [PMID: 26347650 PMCID: PMC4538306 DOI: 10.3389/fphar.2015.00165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Abstract
Pre-eclampsia is a hypertensive disorder of pregnancy initiated by placental insufficiency and chronic ischemia. In response, several pathways activated in the placenta are responsible for the maternal syndrome, including increased production of the anti-angiogenic protein, sFlt-1, and inflammatory cytokines, especially tumor necrosis factor-alpha (TNF-α). Previous studies have demonstrated that heme oxygenase (HO) induction can block TNF-α pathways in vitro and attenuate placental ischemia-induced sFlt-1 in vivo. Here, we investigated whether HO-1 induction could attenuate TNF-α-induced hypertension in pregnant rats. In response to TNF-α infusion (100 ng/day i.p.), maternal mean arterial pressure (MAP) increased vs. control animals (104 ± 3 vs. 119 ± 3 mmHg). HO-1 induction had no effect in control animals, but significantly decreased MAP in TNF-α-infused animals (108 ± 2 mmHg). Placental vascular endothelial growth factor (VEGF) was decreased in response to TNF-α infusion (92 ± 4 vs. 76 ± 2 pg/mg). Placental sFlt-1 was increased by TNF-α infusion (758 ± 45 vs. 936 ± 46 pg/mg, p < 0.05), which trended to normalization by HO-1 induction (779 ± 98 pg/mg). In contrast, HO-1 induction had no significant effect on placental VEGF in TNF-α-infused animals. Taken together, these data suggest that one of the key mechanisms by which HO exerts cytoprotective actions in the placenta during inflammation due to chronic ischemia is through suppression of sFlt-1. Further work elucidating the bioactive metabolites of HO-1 in innate inflammatory responses to placental ischemia is warranted.
Collapse
Affiliation(s)
- Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, MS, USA ; Department of Biochemistry, University of Mississippi Medical Center , Jackson, MS, USA
| | - Jacob M Stout
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, MS, USA
| | - David E Stec
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, MS, USA
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, MS, USA
| |
Collapse
|
38
|
Sasser JM, Murphy SR, Granger JP. Emerging drugs for preeclampsia--the endothelium as a target. Expert Opin Emerg Drugs 2015; 20:527-30. [PMID: 26138471 DOI: 10.1517/14728214.2015.1062875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Preeclampsia, the development of new onset hypertension and proteinuria during pregnancy, affects ∼ 3 - 8% of all pregnancies and is a leading cause of maternal and perinatal morbidity and mortality. Despite the potentially devastating effects of this disease on the mother and the baby and the recent advances in understanding some of the pathological mechanisms responsible for the progression of preeclampsia, there are still few therapies available to manage the disease. The maternal syndrome of preeclampsia is characterized by systemic endothelial dysfunction; therefore, agents that improve endothelial function may hold promise to alleviate the symptoms of preeclampsia, delay the necessity for preterm delivery and improve neonatal outcomes. This brief review will focus on two therapies that are already approved for use in the US for other indications: PDE-5 inhibition to preserve nitric oxide - cGMP signaling to promote vasodilation and inhibition of the endothelin type A receptor to reduce vascular contraction.
Collapse
Affiliation(s)
- Jennifer M Sasser
- a 1 University of Mississippi Medical Center, Department of Pharmacology and Toxicology , 2500 North State Street, Jackson, MS 39216, USA +1 601 984 1629 ; +1 601 984 1637 ;
| | - Sydney R Murphy
- a 1 University of Mississippi Medical Center, Department of Pharmacology and Toxicology , 2500 North State Street, Jackson, MS 39216, USA +1 601 984 1629 ; +1 601 984 1637 ;
| | - Joey P Granger
- b 2 University of Mississippi Medical Center, Department of Physiology and Biophysics , 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
39
|
Wallace K, Morris R, Kyle PB, Cornelius D, Darby M, Scott J, Moseley J, Chatman K, Lamarca B. Hypertension, inflammation and T lymphocytes are increased in a rat model of HELLP syndrome. Hypertens Pregnancy 2015; 33:41-54. [PMID: 24380504 DOI: 10.3109/10641955.2013.835820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE An animal model of hemolysis, elevated liver enzymes, low platelet count (HELLP) was used to determine if T lymphocytes accompany hypertension and increased inflammatory cytokines. METHODS sFlt-1 (4.7 µg/kg/day) and sEndoglin (7 µg/kg/day) were infused into normal pregnant rats (HELLP rats) for 8 days. RESULTS HELLP was associated with increased mean arterial pressure (p = 0.0001), hemolysis (p = 0.044), elevated liver enzymes (p = 0.027), and reduced platelets (p = 0.035). HELLP rats had increased plasma levels of TNFα (p = 0.039), IL-6 (p = 0.038) and IL-17 (p = 0.04). CD4(+) and CD8(+) T lymphocytes were increased. CONCLUSION These data support the hypothesis that T cells are associated with hypertension and inflammation.
Collapse
|
40
|
Cardiovascular effects of aerobic exercise training in formerly preeclamptic women and healthy parous control subjects. Am J Obstet Gynecol 2014; 211:516.e1-516.e11. [PMID: 24769012 DOI: 10.1016/j.ajog.2014.04.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Women who have had preeclampsia demonstrate higher prevalence of metabolic syndrome (MetS), impaired vascular function, and increased sympathetic activity and are at increased risk of cardiovascular disease. The aim of this study was to assess the effects of 12 weeks of exercise training (70-80% maximum volume of oxygen utilization) in women who had had preeclampsia on physical fitness, components of MetS, vasculature, and autonomic functions compared with healthy control subjects. STUDY DESIGN Our prospective case-control study included 24 normotensive women who had had preeclampsia and 20 control subjects who were matched for age and postpartum interval (all 6-12 months after delivery). Before and after training, we measured all components of MetS (ie, BP, lipids, glucose/insulin, and albuminuria), carotid intima media thickness (IMT) and brachial and superficial femoral artery endothelial function that used flow-mediated dilation (FMD). Autonomic activity was quantified with power spectral analysis (low-frequency/high-frequency power [LF/HF] ratio). RESULTS At baseline, women who had had preeclampsia demonstrated higher values of most components of MetS. Compared with the control subjects, women who had had preeclampsia had increased IMT (580 ± 92 μm vs 477 ± 65 μm, respectively), impaired endothelial function (FMD brachial artery, 5.3% ± 2.2% vs 10.8% ± 3.5%, respectively; FMD superficial femoral artery, 4.9% ± 2.1% vs 8.7% ± 3.2%, respectively) and increased LF/HF power ratio (2.2 ± 1.0 vs 1.3 ± 0.4, respectively; all P < .05). In both groups, exercise training decreased values of most components of MetS and IMT, improved FMD, and concurrently reduced LF/HF. Despite these improvements, vascular and autonomic variables did not normalize by 12 weeks of training in women who had had preeclampsia. CONCLUSION This study demonstrates that exercise training in women who had had preeclampsia and control subjects improves components of MetS, endothelial function, vascular wall thickness, and autonomic control. Nonetheless, trained women who had had preeclampsia only reached a cardiovascular status that is comparable with sedentary healthy control subjects.
Collapse
|
41
|
Alexander BT, Henry Dasinger J, Intapad S. Effect of low birth weight on women's health. Clin Ther 2014; 36:1913-1923. [PMID: 25064626 DOI: 10.1016/j.clinthera.2014.06.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/19/2014] [Indexed: 01/13/2023]
Abstract
PURPOSE The theory of the developmental origins of health and disease hypothesizes that low birth weight (≤5.5 lb) indicative of poor fetal growth is associated with an increased risk of chronic, noncommunicable disease in later life, including hypertension, type 2 diabetes mellitus, and osteoporosis. Whether women are at greater risk than men is not clear. Experimental studies that mimic the cause of slow fetal growth are being used to examine the underlying mechanisms that link a poor fetal environment with later chronic disease and investigate how sex and age affect programmed risk. Thus, the aims of this review are to summarize the current literature related to the effect of low birth weight on women's health and provide insight into potential mechanisms that program increased risk of chronic disease across the lifespan. METHODS A search of PubMed was performed with the keywords low birth weight, women's health, female, and sex differences; additional terms included blood pressure, hypertension, renal, cardiovascular, obesity, glucose intolerance, type 2 diabetes, osteoporosis, bone health, reproductive senescence, menopause, and aging. FINDINGS The major chronic diseases associated with low birth weight include high blood pressure and cardiovascular disease, impaired glucose homeostasis and type 2 diabetes, impaired bone mass and osteoporosis, and early reproductive aging. IMPLICATIONS Low birth weight increases the risk of chronic disease in men and women. Low birth weight is also associated with increased risk of early menopause. Further studies are needed to fully address the effect of sex and age on the developmental programming of adult health and disease in women across their lifespan.
Collapse
Affiliation(s)
- Barbara T Alexander
- Department of Physiology and Biophysics and the Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi.
| | - John Henry Dasinger
- Department of Physiology and Biophysics and the Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Suttira Intapad
- Department of Physiology and Biophysics and the Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
42
|
Chaiworapongsa T, Romero R, Whitten A, Tarca AL, Bhatti G, Draghici S, Chaemsaithong P, Miranda J, Kim CJ, Hassan SS. Differences and similarities in the transcriptional profile of peripheral whole blood in early and late-onset preeclampsia: insights into the molecular basis of the phenotype of preeclampsiaa. J Perinat Med 2013; 41:485-504. [PMID: 23793063 PMCID: PMC4164302 DOI: 10.1515/jpm-2013-0082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/15/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Preeclampsia (PE) can be sub-divided into early- and late-onset phenotypes. The pathogenesis of these two phenotypes has not been elucidated. To gain insight into the mechanisms of disease, the transcriptional profiles of whole blood from women with early- and late-onset PE were examined. METHODS A cross-sectional study was conducted to include women with: i) early-onset PE (diagnosed prior to 34 weeks, n=25); ii) late-onset PE (after 34 weeks, n=47); and iii) uncomplicated pregnancy (n=61). Microarray analysis of mRNA expression in peripheral whole blood was undertaken using Affymetrix microarrays. Differential gene expression was evaluated using a moderated t-test (false discovery rate <0.1 and fold change >1.5), adjusting for maternal white blood cell count and gestational age. Validation by real-time qRT-PCR was performed in a larger sample size [early PE (n=31), late PE (n=72) and controls (n=99)] in all differentially expressed genes. Gene ontology analysis and pathway analysis were performed. RESULTS i) 43 and 28 genes were differentially expressed in early- and late-onset PE compared to the control group, respectively; ii) qRT-PCR confirmed the microarray results for early and late-onset PE in 77% (33/43) and 71% (20/28) of genes, respectively; iii) 20 genes that are involved in coagulation (SERPINI2), immune regulation (VSIG4, CD24), developmental process (H19) and inflammation (S100A10) were differentially expressed in early-onset PE alone. In contrast, only seven genes that encoded proteins involved in innate immunity (LTF, ELANE) and cell-to-cell recognition in the nervous system (CNTNAP3) were differentially expressed in late-onset PE alone. Thirteen genes that encode proteins involved in host defense (DEFA4, BPI, CTSG, LCN2), tight junctions in blood-brain barrier (EMP1) and liver regeneration (ECT2) were differentially expressed in both early- and late-onset PE. CONCLUSION Early- and late-onset PE are characterized by a common signature in the transcriptional profile of whole blood. A small set of genes were differentially regulated in early- and late-onset PE. Future studies of the biological function, expression timetable and protein expression of these genes may provide insight into the pathophysiology of PE.
Collapse
Affiliation(s)
| | - Roberto Romero
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA
| | - Amy Whitten
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Jezid Miranda
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Chong Jai Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD, NIH, DHHS, Detroit, MI, and Bethesda, Maryland, USA,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
43
|
Miranda J, Romero R, Korzeniewski SJ, Schwartz AG, Chaemsaithong P, Stampalija T, Yeo L, Dong Z, Hassan SS, Chrousos GP, Gold P, Chaiworapongsa T. The anti-aging factor α-klotho during human pregnancy and its expression in pregnancies complicated by small-for-gestational-age neonates and/or preeclampsia. J Matern Fetal Neonatal Med 2013; 27:449-57. [PMID: 23808483 DOI: 10.3109/14767058.2013.818652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE α-klotho, a protein with anti-aging properties, has been involved in important biological processes, such as calcium/phosphate metabolism, resistance to oxidative stress, and nitric oxide production in the endothelium. Recent studies have suggested a role of α-klotho in endocrine regulation of mineral metabolism and postnatal growth in infants. Yet, the role of α-klotho during pregnancy remains largely unknown. The aim of this study was to determine whether maternal plasma concentration of α-klotho changes during pregnancy and evaluate its expression in pregnancies complicated by small for gestational age (SGA) and/or preeclampsia (PE). STUDY DESIGN This cross-sectional study included patients in the following groups: (1) non pregnant women (n = 37); (2) uncomplicated pregnancy (n = 130); (3) PE without an SGA neonate (PE; n = 58); (4) PE with an SGA neonate (PE and SGA; n = 52); and (5) SGA neonate without PE (SGA; n = 52). Plasma concentrations of α-klotho were determined by ELISA. RESULTS The median plasma α-klotho concentration was higher in pregnant than in non-pregnant women. Among women with an uncomplicated pregnancy, the median plasma concentration of α-klotho increased as a function of gestational age (Spearman Rho = 0.2; p = 0.006). The median (interquartile range) plasma concentration of α-klotho in women with PE and SGA [947.6 (762-2013) pg/mL] and SGA without PE [1000 (585-1567) pg/mL] were 21% and 17% lower than that observed in women with an uncomplicated pregnancy [1206.6 (894-2012) pg/mL], (p = 0.005 and p = 0.02), respectively. Additionally, there were no significant differences in the median plasma concentration of α-klotho between uncomplicated pregnancies and women with PE without an SGA neonate (p = 0.5). CONCLUSION Maternal plasma concentration of α-klotho was higher during pregnancy than in a non-pregnant state. Moreover, the median maternal plasma concentration of α-klotho was lower in mothers who delivered an SGA neonate than in those with an uncomplicated pregnancy regardless of the presence or absence of PE.
Collapse
Affiliation(s)
- Jezid Miranda
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda , MD and Detroit, MI , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chaemsaithong P, Chaiworapongsa T, Romero R, Korzeniewski SJ, Stampalija T, Than NG, Dong Z, Miranda J, Yeo L, Hassan SS. Maternal plasma soluble TRAIL is decreased in preeclampsia. J Matern Fetal Neonatal Med 2013; 27:217-27. [PMID: 23688319 DOI: 10.3109/14767058.2013.806906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is characterized by systemic intravascular inflammation. Women who develop PE are at an increased risk for cardiovascular disease in later life. Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) has anti-atherosclerotic effects in endothelial cells and can mediate neutrophil apoptosis. Low soluble TRAIL (sTRAIL) and high C-reactive protein (CRP) concentrations are associated with an increased risk of future cardiovascular disease in non-pregnant individuals. The aim of this study was to determine whether maternal plasma concentrations of sTRAIL and CRP differ between women with PE and those with uncomplicated pregnancies. METHOD This cross-sectional study included women with an uncomplicated pregnancy (n = 93) and those with PE (n = 52). Maternal plasma concentrations of sTRAIL and CRP concentrations were determined by ELISA. RESULTS 1) The median plasma sTRAIL concentration (pg/mL) was significantly lower and the median plasma CRP concentration was significantly higher in women with PE than in those with an uncomplicated pregnancy (25.55 versus 29.17; p = 0.03 and 8.0 versus 4.1; p = 0.001, respectively); 2) the median plasma concentration sTRAIL/CRP ratio was two-fold lower in women with PE than in those with an uncomplicated pregnancy (p < 0.001); and 3) women with plasma sTRAIL and CRP ratio in the lowest quartile were 8 times more likely to have PE than women with concentrations in the upper three quartiles (OR 8.9; 95% CI: 2.8-27.8). CONCLUSION Maternal plasma sTRAIL concentrations are lower (while those of CRP are higher) in women with PE than in those with uncomplicated pregnancies. These findings are consistent with the evidence of intravascular inflammation in this disorder.
Collapse
Affiliation(s)
- Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS , Bethesda, MD, and Detroit, MI , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Functional integrity of endothelial cells is an indicator and a prerequisite for vascular health and counteracts the development of atherosclerosis. This concept of 'endothelial therapy' was developed in the late 1990s as an approach to preserve or restore endothelial cell health given that 'the knowledge of the mechanisms involved in 'endothelial dysfunction' allows us to interfere specifically with pathogenic pathways at very early time points and to slow down the progression of disease'. In the present review, the principles underlying endothelial cell health will be discussed as well as the role of endothelial therapy as a preventive measure to reduce the prevalence of coronary artery disease or to delay disease progression in patients with chronic coronary artery disease. This article also highlights the importance of active participation, the need to reduce the number of future patients in view of the rising prevalence of childhood obesity, and the potential of endothelial therapy to improve survival, reduce disability and health costs, and to improve overall quality of life in patients at risk for or already diagnosed with coronary artery disease. The preventive and therapeutic approaches and considerations described herein can be applied by physicians, patients, parents, educators, health agencies, and political decision makers to help reducing the global cardiovascular disease burden in the decades to come.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, LTK Y44 G22, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
46
|
Stampalija T, Chaiworapongsa T, Romero R, Chaemsaithong P, Korzeniewski SJ, Schwartz AG, Ferrazzi EM, Dong Z, Hassan SS. Maternal plasma concentrations of sST2 and angiogenic/anti-angiogenic factors in preeclampsia. J Matern Fetal Neonatal Med 2013; 26:1359-70. [PMID: 23488689 DOI: 10.3109/14767058.2013.784256] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Angiogenic/anti-angiogenic factors have emerged as one of the promising biomarkers for the prediction of preeclampsia. Since not all patients with preeclampsia can be identified by these analytes, the search for additional biomarkers continues. The soluble form of ST2 (sST2), a protein capable of binding to interleukin (IL)-33 and thus contributing to a Th1-biased immune response, has been reported to be elevated in maternal plasma of women with preeclampsia. The aims of this study were to examine: (1) differences in maternal plasma concentrations of sST2 and IL-33 between women diagnosed with preeclampsia and those having uncomplicated pregnancies; (2) the relationship between sST2, umbilical and uterine artery Doppler velocimetry, and the severity of preeclampsia; and (3) the performance of sST2 and angiogenic/anti-angiogenic factors in identifying patients with preeclampsia at the time of diagnosis. METHODS This cross-sectional study included women with preeclampsia (n = 106) and women with an uncomplicated pregnancy (n = 131). Plasma concentrations of sST2, IL-33, soluble vascular endothelial growth factor receptor (sVEGFR)-1, soluble endoglin (sEng) and placental growth factor (PlGF) were determined by enzyme linked immune sorbent assay. Area under the receiver operating characteristic curve (AUC) for the identification of preeclampsia was examined for each analyte. RESULTS (1) Patients with preeclampsia had a higher mean plasma concentrations of sST2 than those with an uncomplicated pregnancy (p < 0.0001), while no significant difference in the mean plasma concentration of IL-33 between the two groups was observed; (2) the magnitude of this difference was greater in early-onset, compared to late-onset disease, and in severe compared to mild preeclampsia; (3) sST2 plasma concentrations did not correlate with the results of uterine or umbilical artery Doppler velocimetry (p = 0.7 and p = 1, respectively) among women with preeclampsia; (4) sST2 correlated positively with plasma concentrations of sVEGFR1-1 and sEng (Spearman's Rho = 0.72 and 0.63; each p < 0.0001), and negatively with PlGF (Spearman's Rho = -0.56, p < 0.0001); and (5) while the AUC achieved by sST2 and angiogenic/anti-angiogenic factors in identifying women with preeclampsia at the time of diagnosis were non-significantly different prior to term (<37 weeks of gestation), thereafter the AUC achieved by sST2 was significantly less than that achieved by angiogenic/anti-angiogenic factors. CONCLUSIONS Preeclampsia is associated with increased maternal plasma concentrations of sST2. The findings that sST2 concentrations do not correlate with uterine or umbilical artery Doppler velocimetry in women with preeclampsia suggest that elevated maternal plasma sST2 concentrations in preeclampsia are not related to the increased impedance to flow in the utero-placental circulation. The performance of sST2 in identifying preeclampsia at the time of diagnosis prior to 37 weeks of gestation was comparable to that of angiogenic/anti-angiogenic factors. It remains to be elucidated if an elevation of maternal plasma sST2 concentrations in pregnancy is specific to preeclampsia.
Collapse
|
47
|
Wallace K, Martin JN, Tam Tam K, Wallukat G, Dechend R, Lamarca B, Owens MY. Seeking the mechanism(s) of action for corticosteroids in HELLP syndrome: SMASH study. Am J Obstet Gynecol 2013; 208:380.e1-8. [PMID: 23380266 DOI: 10.1016/j.ajog.2013.01.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/07/2013] [Accepted: 01/29/2013] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Administration of dexamethasone to the hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome patients (10 mg intravenously [IV] every 12 hours) shortens the disease course and reduces maternal morbidity in patients treated at the University of Mississippi Medical Center (UMMC), associated with this severe form of preeclampsia. However, the pathophysiological mechanisms involved with this intervention remain unclear. OBJECTIVE We sought to investigate the potential role of IV dexamethasone to restore the imbalance among antiangiogenic and inflammatory factors known to be significantly elevated in women with HELLP syndrome. STUDY DESIGN This was a single-center prospective study of women diagnosed with HELLP syndrome who were treated for IV dexamethasone at UMMC. Blood was drawn prior to dexamethasone administration and again 12 and 24 hours after the initial dexamethasone administration. Enzyme-linked immune assays were used to measure circulating inflammatory cytokines and antiangiogenic factors. A repeated-measures analysis of variance was used to analyze the data collected before, after, and during dexamethasone administration. RESULTS Seventeen women with HELLP syndrome were enrolled in this study. Dexamethasone significantly decreased evidence of hemolysis (P = .002) and liver enzymes (P = .003), and significantly increased platelets (P = .0001) within 24 hours of administration. Circulating interleukin-6 levels after 24 hours were decreased (P < .001); soluble fms-like tyrosine kinase-1 and soluble endoglin were also significantly decreased by 24 hours after dexamethasone administration (P < .002 and P < .004, respectively). There were no significant differences in circulating levels of placental growth factor (P = .886) due to dexamethasone administration. Angiotensin II receptor autoantibody levels were unchanged by dexamethasone administration. CONCLUSION We conclude that 1 important mechanism of dexamethasone administration is to blunt the release of both antiangiogenic and inflammatory factors suggested to play role in the pathophysiology of HELLP syndrome.
Collapse
Affiliation(s)
- Kedra Wallace
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Joshua S Speed
- Department of Medicine, Georgia Regents University, Section of Experimental Medicine, CB2200, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | | |
Collapse
|
49
|
Mechanism of hypertension and proteinuria during angiogenesis inhibition. J Hypertens 2013; 31:444-54; discussion 454. [DOI: 10.1097/hjh.0b013e32835c1d1b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Struijker-Boudier HA, Blacher J, Lévy BI, Safar ME. Introduction to the Eighth International Workshop on Structure and Function of the Vascular System. Hypertension 2012; 60:504-6. [PMID: 22733465 DOI: 10.1161/hypertensionaha.112.198150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|