1
|
Wei P, Tian K, Liu H, Li K, Alam N, Cheng D, Li M, He X, Guo J, Wang R, Wang W, Bai L, Liu E, Xu B, Li Y, Zhao S. Urotensin II receptor deficiency ameliorates ligation-induced carotid intimal hyperplasia partially through the RhoA-YAP1 pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167170. [PMID: 38631407 DOI: 10.1016/j.bbadis.2024.167170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Intimal hyperplasia (IH) is a common pathological feature of vascular proliferative diseases, such as atherosclerosis and restenosis after angioplasty. Urotensin II (UII) and its receptor (UTR) are widely expressed in cardiovascular tissues. However, it remains unclear whether the UII/UTR system is involved in IH. Right unilateral common carotid artery ligation was performed and maintained for 21 days to induce IH in UTR knockout (UTR-/-) and wild-type (WT) mice. Histological analysis revealed that compared with WT mice, UTR-deficient mice exhibited a decreased neointimal area, angiostenosis and intima-media ratio. Immunostaining revealed fewer smooth muscle cells (SMCs), endothelial cells and macrophages in the lesions of UTR-/- mice than in those of WT mice. Protein interaction analysis suggested that the UTR may affect cell proliferation by regulating YAP and its downstream target genes. In vitro experiments revealed that UII can promote the proliferation and migration of SMCs, and western blotting also revealed that UII increased the protein expression of RhoA, CTGF, Cyclin D1 and PCNA and downregulated p-YAP protein expression, while these effects could be partly reversed by urantide. To evaluate the translational value of UTRs in IH management, WT mice were also treated with two doses of urantide, a UTR antagonist, to confirm the benefit of UTR blockade in IH progression. A high dose of urantide (600 μg/kg/day), rather than a low dose (60 μg/kg/day), successfully improved ligation-induced IH compared with that in mice receiving vehicle. The results of the present study suggested that the UII/UTR system may regulate IH partly through the RhoA-YAP signaling pathway.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cell Proliferation
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Ligation
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Neointima/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- rhoA GTP-Binding Protein/metabolism
- rhoA GTP-Binding Protein/genetics
- Signal Transduction
- Tunica Intima/pathology
- Tunica Intima/metabolism
- Urotensins/metabolism
- Urotensins/genetics
- Urotensins/pharmacology
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Panpan Wei
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kangli Tian
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kexin Li
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Naqash Alam
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Daxin Cheng
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Li
- Department of Vascular Surgery, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xue He
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Guo
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yankui Li
- Department of Vascular Surgery, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Zeng X, Yang Y. Molecular Mechanisms Underlying Vascular Remodeling in Hypertension. Rev Cardiovasc Med 2024; 25:72. [PMID: 39077331 PMCID: PMC11263180 DOI: 10.31083/j.rcm2502072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 07/31/2024] Open
Abstract
Hypertension, a common cardiovascular disease, is primarily characterized by vascular remodeling. Recent extensive research has led to significant progress in understanding its mechanisms. Traditionally, vascular remodeling has been described as a unidirectional process in which blood vessels undergo adaptive remodeling or maladaptive remodeling. Adaptive remodeling involves an increase in vessel diameter in response to increased blood flow, while maladaptive remodeling refers to the narrowing or thickening of blood vessels in response to pathological conditions. However, recent research has revealed that vascular remodeling is much more complex. It is now understood that vascular remodeling is a dynamic interplay between various cellular and molecular events. This interplay process involves different cell types, including endothelial cells, smooth muscle cells, and immune cells, as well as their interactions with the extracellular matrix. Through these interactions, blood vessels undergo intricate and dynamic changes in structure and function in response to various stimuli. Moreover, vascular remodeling involves various factors and mechanisms such as the renin-angiotensin-aldosterone system (RAS), oxidative stress, inflammation, the extracellular matrix (ECM), sympathetic nervous system (SNS) and mechanical stress that impact the arterial wall. These factors may lead to vascular and circulatory system diseases and are primary causes of long-term increases in systemic vascular resistance in hypertensive patients. Additionally, the presence of stem cells in adventitia, media, and intima of blood vessels plays a crucial role in vascular remodeling and disease development. In the future, research will focus on examining the underlying mechanisms contributing to hypertensive vascular remodeling to develop potential solutions for hypertension treatment. This review provides us with a fresh perspective on hypertension and vascular remodeling, undoubtedly sparking further research efforts aimed at uncovering more potent treatments and enhanced preventive and control measures for this disease.
Collapse
Affiliation(s)
- Xinyi Zeng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
3
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
4
|
Lu DYH, Liao JY, Fajar A, Chen JB, Wei Y, Zhang ZH, Zhang Z, Zheng LM, Tan XQ, Zhou XG, Shi XB, Liu Y, Zhang DY. Co-infection of TYLCV and ToCV increases cathepsin B and promotes ToCV transmission by Bemisia tabaci MED. Front Microbiol 2023; 14:1107038. [PMID: 37007483 PMCID: PMC10061087 DOI: 10.3389/fmicb.2023.1107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Tomato disease is an important disease affecting agricultural production, and the combined infection of tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) has gradually expanded in recent years, but no effective control method has been developed to date. Both viruses are transmitted by Bemisia tabaci Mediteranean (MED). Previously, we found that after B. tabaci MED was fed on ToCV-and TYLCV-infected plants, the transmission efficiency of ToCV was significantly higher than that on plants infected only with ToCV. Therefore, we hypothesize that co-infection could enhance the transmission rates of the virus. In this study, transcriptome sequencing was performed to compare the changes of related transcription factors in B. tabaci MED co-infected with ToCV and TYLCV and infected only with ToCV. Hence, transmission experiments were carried out using B. tabaci MED to clarify the role of cathepsin in virus transmission. The gene expression level and enzyme activity of cathepsin B (Cath B) in B. tabaci MED co-infected with ToCV and TYLCV increased compared with those under ToCV infection alone. After the decrease in cathepsin activity in B. tabaci MED or cathepsin B was silenced, its ability to acquire and transmit ToCV was significantly reduced. We verified the hypothesis that the relative expression of cathepsin B was reduced, which helped reduce ToCV transmission by B. tabaci MED. Therefore, it was speculated that cathepsin has profound research significance in the control of B. tabaci MED and the spread of viral diseases.
Collapse
Affiliation(s)
- Ding-Yi-Hui Lu
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Jin-Yu Liao
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Anugerah Fajar
- Department of Entomology, University of Kentucky, Lexington, KY, United States
- Research Center for Biomaterials, Indonesia Institute of Sciences, Cibinong, Indonesia
| | - Jian-Bin Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yan Wei
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Min Zheng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin-Qiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiao-Bin Shi
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| | - Yong Liu
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| | - De-Yong Zhang
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| |
Collapse
|
5
|
Cathepsin K: A Versatile Potential Biomarker and Therapeutic Target for Various Cancers. Curr Oncol 2022; 29:5963-5987. [PMID: 36005209 PMCID: PMC9406569 DOI: 10.3390/curroncol29080471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer, a common malignant disease, is one of the predominant causes of diseases that lead to death. Additionally, cancer is often detected in advanced stages and cannot be radically cured. Consequently, there is an urgent need for reliable and easily detectable markers to identify and monitor cancer onset and progression as early as possible. Our aim was to systematically review the relevant roles of cathepsin K (CTSK) in various possible cancers in existing studies. CTSK, a well-known key enzyme in the bone resorption process and most studied for its roles in the effective degradation of the bone extracellular matrix, is expressed in various organs. Nowadays, CTSK has been involved in various cancers such as prostate cancer, breast cancer, bone cancer, renal carcinoma, lung cancer and other cancers. In addition, CTSK can promote tumor cells proliferation, invasion and migration, and its mechanism may be related to RANK/RANKL, TGF-β, mTOR and the Wnt/β-catenin signaling pathway. Clinically, some progress has been made with the use of cathepsin K inhibitors in the treatment of certain cancers. This paper reviewed our current understanding of the possible roles of CTSK in various cancers and discussed its potential as a biomarker and/or novel molecular target for various cancers.
Collapse
|
6
|
MED1 Deficiency in Macrophages Accelerates Intimal Hyperplasia via ROS Generation and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3010577. [PMID: 34853629 PMCID: PMC8629658 DOI: 10.1155/2021/3010577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/17/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022]
Abstract
Mediator complex subunit 1 (MED1) is a component of the mediator complex and functions as a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Previously, we showed that MED1 in macrophages has a protective effect on atherosclerosis; however, the effect of MED1 on intimal hyperplasia and mechanisms regulating proinflammatory cytokine production after macrophage MED1 deletion are still unknown. In this study, we report that MED1 macrophage-specific knockout (MED1 ΔMac) mice showed aggravated neointimal hyperplasia, vascular smooth muscle cells (VSMCs), and macrophage accumulation in injured arteries. Moreover, MED1 ΔMac mice showed increased proinflammatory cytokine production after an injury to the artery. After lipopolysaccharide (LPS) treatment, MED1 ΔMac macrophages showed increased generation of reactive oxygen species (ROS) and reduced expression of peroxisome proliferative activated receptor gamma coactivator-1α (PGC1α) and antioxidant enzymes, including catalase and glutathione reductase. The overexpression of PGC1α attenuated the effects of MED1 deficiency in macrophages. In vitro, conditioned media from MED1 ΔMac macrophages induced more proliferation and migration of VSMCs. To explore the potential mechanisms by which MED1 affects inflammation, macrophages were treated with BAY11-7082 before LPS treatment, and the results showed that MED1 ΔMac macrophages exhibited increased expression of phosphorylated-p65 and phosphorylated signal transducer and activator of transcription 1 (p-STAT1) compared with the control macrophages, suggesting the enhanced activation of NF-κB and STAT1. In summary, these data showed that MED1 deficiency enhanced inflammation and the proliferation and migration of VSMCs in injured vascular tissue, which may result from the activation of NF-κB and STAT1 due to the accumulation of ROS.
Collapse
|
7
|
Zhang S, Li P, Xin M, Jin X, Zhao L, Nan Y, Cheng XW. Dipeptidyl peptidase-4 inhibition prevents lung injury in mice under chronic stress via the modulation of oxidative stress and inflammation. Exp Anim 2021; 70:541-552. [PMID: 34219073 PMCID: PMC8614009 DOI: 10.1538/expanim.21-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to chronic psychosocial stress is a risk factor for various pulmonary diseases. In view of the essential role of dipeptidyl peptidase 4 (DPP4) in animal and human lung pathobiology, we investigated the role of DPP4 in stress-related lung injury in mice. Eight-week-old male mice were randomly divided into a non-stress group and a 2-week immobilization stress group. Non-stress control mice were left undisturbed. The mice subjected to immobilized stress were randomly assigned to the vehicle or the DPP4 inhibitor anagliptin for 2 weeks. Chronic stress reduced subcutaneous and inguinal adipose volumes and increased blood DPP4 levels. The stressed mice showed increased levels in the lungs of genes and/or proteins related to oxidative stress (p67phox, p47phox, p22phox and gp91phox), inflammation (monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), apoptosis (caspase-3, -8, -9), senescence (p16INK4A, p21, and p53) and proteolysis (matrix metalloproteinase-2 to -9, cathepsin S/K, and tissue inhibitor of matrix metalloproteinase-1 and -2), and reduced levels of eNOS, Sirt1, and Bcl-2 proteins; and these effects were reversed by genetic and pharmacological inhibitions of DPP4. We then exposed human umbilical vein endothelial cells in vitro to hydrogen peroxide; anagliptin treatment was also observed to mitigate oxidative and inflammatory molecules in this setting. Anagliptin can improve lung injury in stressed mice, possibly by mitigating vascular inflammation, oxidative stress production, and proteolysis. DPP4 may become a new therapeutic target for chronic psychological stress-related lung disease in humans and animals.
Collapse
Affiliation(s)
- Shengming Zhang
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Ping Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union, Medical College
| | - Minglong Xin
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Xianglan Jin
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Longguo Zhao
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Yongshan Nan
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Xian Wu Cheng
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| |
Collapse
|
8
|
Deficiency of cysteinyl cathepsin K suppresses the development of experimental intimal hyperplasia in response to chronic stress. J Hypertens 2021; 38:1514-1524. [PMID: 32205563 DOI: 10.1097/hjh.0000000000002424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic psychological stress (CPS) is linked to cardiovascular disease initiation and progression. Given that cysteinyl cathepsin K (CatK) participates in vascular remodeling and atherosclerotic plaque growth in several animal models, we investigated the role of CatK in the development of experimental neointimal hyperplasia in response to chronic stress. METHODS AND RESULTS At first, male wild-type (CatK) mice that underwent carotid ligation injury were subjected to chronic immobilization stress. On postoperative and stressed day 14, the results demonstrated that stress accelerated injury-induced neointima hyperplasia. On day 4, stressed mice showed following: increased levels of monocyte chemoattractant protein-1, gp91phox, toll-like receptor-2 (TLR2), TLR4, and CatK mRNAs or/and proteins, oxidative stress production, aorta-derived smooth muscle cell (SMC) migration, and macrophage infiltration as well as targeted intracellular proliferating-related molecules. Stressed mice showed increased matrix metalloproteinase-2 (MMP-2) and MMP-9 mRNA expressions and activities and elastin disruption in the injured carotid arteries. Second, CatK and CatK deficiency (CatK) mice received ligation injury and stress to explore the role of CatK. The stress-induced harmful changes were prevented by CatK. Finally, CatK mice that had undergone ligation surgery were randomly assigned to one of two groups and administered vehicle or CatK inhibitor for 14 days. Pharmacological CatK intervention produced a vascular benefit. CONCLUSION These data indicate that CatK deletion protects against the development of experimental neointimal hyperplasia via the attenuation of inflammatory overaction, oxidative stress production, and VSMC proliferation, suggesting that CatK is a novel therapeutic target for the management of CPS-related restenosis after intravascular intervention therapies.
Collapse
|
9
|
Yu C, Wan Y, Xu W, Jin X, Zhang S, Xin M, Jiang H, Cheng X. Increased Circulating Cathepsin L in Patients with Coronary Artery Disease. Int Heart J 2020; 62:9-15. [PMID: 33390563 DOI: 10.1536/ihj.20-182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cathepsin L (CatL) is a potent collagenase involved in atherosclerotic vascular remodeling and dysfunction in animals and humans. This study investigated the hypothesis that plasma CatL is associated with the prevalence of coronary artery disease (CAD). Between February May 2011 and January 2013, 206 consecutive subjects were enrolled from among patients who underwent coronary angiography and percutaneous coronary intervention treatment. Age-matched subjects (n = 215) served as controls. Plasma CatL and high-sensitive C-reactive protein (hs-CRP) and high-density lipoprotein cholesterol were measured. The patients with CAD had significantly higher plasma CatL levels compared to the controls (1.4 ± 0.4 versus 0.4 ± 0.2 ng/mL, P < 0.001), and the patients with acute coronary syndrome had significantly higher plasma CatL levels compared to those with stable angina pectoris (1.7 ± 0.7 versus 0.8 ± 0.4 ng/mL, P < 0.01). Linear regression analysis showed that overall, the plasma CatL levels were inversely correlated with the high-density lipoprotein levels (r = -0.32, P < 0.01) and positively with hs-CRP levels (r = 0.35, P < 0.01). Multiple logistic regression analyses shows that cathepsin L levels were independent predictors of CAD (add ratio, 1.8; 95% CI, 1.2 to 2.1; P < 0.01). These data demonstrated that increased levels of plasma CatL are closely associated with the presence of CAD and that circulating CatL serves as a useful biomarker for CAD.
Collapse
Affiliation(s)
- Chenglin Yu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Ying Wan
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Wenhu Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Xiongjie Jin
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Shengming Zhang
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Minglong Xin
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Jiaxing University Medical College
| | - Xianwu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital.,Department of Physiology and Pathophysiology, Jiaxing University Medical College
| |
Collapse
|
10
|
Douglas SA, Haase K, Kamm RD, Platt MO. Cysteine cathepsins are altered by flow within an engineered in vitro microvascular niche. APL Bioeng 2020; 4:046102. [PMID: 33195960 PMCID: PMC7644274 DOI: 10.1063/5.0023342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Throughout the process of vascular growth and remodeling, the extracellular matrix (ECM) concurrently undergoes significant changes due to proteolytic activity—regulated by both endothelial and surrounding stromal cells. The role of matrix metalloproteinases has been well-studied in the context of vascular remodeling, but other proteases, such as cysteine cathepsins, could also facilitate ECM remodeling. To investigate cathepsin-mediated proteolysis in vascular ECM remodeling, and to understand the role of shear flow in this process, in vitro microvessels were cultured in previously designed microfluidic chips and assessed by immunostaining, zymography, and western blotting. Primary human vessels (HUVECs and fibroblasts) were conditioned by continuous fluid flow and/or small molecule inhibitors to probe cathepsin expression and activity. Luminal flow (in contrast to static culture) decreases the activity of cathepsins in microvessel systems, despite a total protein increase, due to a concurrent increase in the endogenous inhibitor cystatin C. Observations also demonstrate that cathepsins mostly co-localize with fibroblasts, and that fibrin (the hydrogel substrate) may stabilize cathepsin activity in the system. Inhibitor studies suggest that control over cathepsin-mediated ECM remodeling could contribute to improved maintenance of in vitro microvascular networks; however, further investigation is required. Understanding the role of cathepsin activity in in vitro microvessels and other engineered tissues will be important for future regenerative medicine applications.
Collapse
Affiliation(s)
- Simone A Douglas
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
11
|
Cathepsin K Deficiency Impaired Ischemia-Induced Neovascularization in Aged Mice. Stem Cells Int 2020; 2020:6938620. [PMID: 32676120 PMCID: PMC7346230 DOI: 10.1155/2020/6938620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Aging is a major risk factor for cardiovascular disease. Cysteine protease cathepsin K (CatK) has been implicated in the process of angiogenesis, but the exact roles of individual CatK in vessel formation during aging are poorly understood. Methods and Results To study the putative role of CatK in ischemia-induced angiogenesis, we applied a hindlimb ischemia model to aged wild-type (CatK+/+) and CatK-deficient (CatK−/−) mice. A serial laser Doppler blood-flow analysis revealed that the recovery of the ischemic/normal blood-flow ratio in the aged CatK−/−mice was impaired throughout the follow-up period. On postoperative day 14, CatK deficiency had also impaired capillary formation. CatK deficiency reduced the levels of cleaved Notch1, phospho-Akt, and/or vascular endothelial growth factor (VEGF) proteins in the ischemic muscles and bone marrow-derived c-Kit+ cells. A flow cytometry analysis revealed that CatK deficiency reduced the numbers of endothelial progenitor cell (EPC)-like CD31+/c-Kit+ cells in the peripheral blood as well as the ischemic vasculature. In vitro experiments, CatK−/− impaired bone-derived c-Kit+ cellular functions (migration, invasion, proliferation, and tubulogenesis) in aged mice. Our findings demonstrated that aging impaired the ischemia-induced angiogenesis associated with the reductions of the production and mobilization of CD31+/c-Kit+ cells in mice. Conclusions These findings established that the impairment of ischemia-induced neovascularization in aged CatK−/− mice is due, at least in part, to the reduction of EPC mobilization and the homing of the cells into vasculature that is associated with the impairment of Notch1 signaling activation at advanced ages.
Collapse
|
12
|
Hu L, Huang Z, Ishii H, Wu H, Suzuki S, Inoue A, Kim W, Jiang H, Li X, Zhu E, Piao L, Zhao G, Lei Y, Okumura K, Shi GP, Murohara T, Kuzuya M, Cheng XW. PLF-1 (Proliferin-1) Modulates Smooth Muscle Cell Proliferation and Development of Experimental Intimal Hyperplasia. J Am Heart Assoc 2019; 8:e005886. [PMID: 31838975 PMCID: PMC6951060 DOI: 10.1161/jaha.117.005886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Although apoptosis and cell proliferation have been extensively investigated in atherosclerosis and restenosis postinjury, the communication between these 2 cellular events has not been evaluated. Here, we report an inextricable communicative link between apoptosis and smooth muscle cell proliferation in the promotion of vascular remodeling postinjury. Methods and Results Cathepsin K-mediated caspase-8 maturation is a key initial step for oxidative stress-induced smooth muscle cell apoptosis. Apoptotic cells generate a potential growth-stimulating signal to facilitate cellular mass changes in response to injury. One downstream mediator that cathepsin K regulates is PLF-1 (proliferin-1), which can potently stimulate growth of surviving neighboring smooth muscle cells through activation of PI3K/Akt/p38MAPK (phosphatidylinositol 3-kinase/protein kinase B/p38 mitogen-activated protein kinase)-dependent and -independent mTOR (mammalian target of rapamycin) signaling cascades. We observed that cathepsin K deficiency substantially mitigated neointimal hyperplasia by reduction of Toll-like receptor-2/caspase-8-mediated PLF-1 expression. Interestingly, PLF-1 blocking, with its neutralizing antibody, suppressed neointima formation and remodeling in response to injury in wild-type mice. Contrarily, administration of recombinant mouse PLF-1 accelerated injury-induced vascular actions. Conclusions This is the first study detailing PLF-1 as a communicator between apoptosis and proliferation during injury-related vascular remodeling and neointimal hyperplasia. These data suggested that apoptosis-driven expression of PLF-1 is thus a novel target for treatment of apoptosis-based hyperproliferative disorders.
Collapse
Affiliation(s)
- Lina Hu
- Department of Public Health Guilin Medical College Guilin Guangxi China.,Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Zhe Huang
- Department of Neurology Occupational and Environmental Health Kitakyushu Hukuoka Japan
| | - Hideki Ishii
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hongxian Wu
- Department of Cardiology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Susumu Suzuki
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Aiko Inoue
- Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| | - Weon Kim
- Division of Cardiology Department of Internal Medicine Kyung Hee University Seoul South Korea
| | - Haiying Jiang
- Department of Physiology and Pathophysiology Yanbian University School of Medicine Yanji Jinlin China
| | - Xiang Li
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Enbo Zhu
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Limei Piao
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guangxian Zhao
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Yanna Lei
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Kenji Okumura
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guo-Ping Shi
- Department of Cardiovascular Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| | - Toyoaki Murohara
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masafumi Kuzuya
- Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| | - Xian Wu Cheng
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Division of Cardiology Department of Internal Medicine Kyung Hee University Seoul South Korea.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| |
Collapse
|
13
|
Xin M, Jin X, Cui X, Jin C, Piao L, Wan Y, Xu S, Zhang S, Yue X, Wang H, Nan Y, Cheng X. Dipeptidyl peptidase-4 inhibition prevents vascular aging in mice under chronic stress: Modulation of oxidative stress and inflammation. Chem Biol Interact 2019; 314:108842. [DOI: 10.1016/j.cbi.2019.108842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022]
|
14
|
Xu W, Yu C, Piao L, Inoue A, Wang H, Meng X, Li X, Cui L, Umegaki H, Shi GP, Murohara T, Kuzuya M, Cheng XW. Cathepsin S-Mediated Negative Regulation of Wnt5a/SC35 Activation Contributes to Ischemia-Induced Neovascularization in Aged Mice. Circ J 2019; 83:2537-2546. [DOI: 10.1253/circj.cj-19-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Wenhu Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Aiko Inoue
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xiangkun Meng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Xiang Li
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Lan Cui
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Hiroyuki Umegaki
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| |
Collapse
|
15
|
Wang H, Meng X, Piao L, Inoue A, Xu W, Yu C, Nakamura K, Hu L, Sasaki T, Wu H, Unno K, Umegaki H, Murohara T, Shi GP, Kuzuya M, Cheng XW. Cathepsin S Deficiency Mitigated Chronic Stress-Related Neointimal Hyperplasia in Mice. J Am Heart Assoc 2019; 8:e011994. [PMID: 31296090 PMCID: PMC6662117 DOI: 10.1161/jaha.119.011994] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Exposure to chronic psychosocial stress is a risk factor for atherosclerosis-based cardiovascular disease. We previously demonstrated the increased expressions of cathepsin S (CatS) in atherosclerotic lesions. Whether CatS participates directly in stress-related neointimal hyperplasia has been unknown. Methods and Results Male wild-type and CatS-deficient mice that underwent carotid ligation injury were subjected to chronic immobilization stress for morphological and biochemical studies at specific times. On day 14 after stress/surgery, stress enhanced the neointima formation. At the early time points, the stressed mice had increased plaque elastin disruption, cell proliferation, macrophage accumulation, mRNA and/or protein levels of vascular cell adhesion molecule-1, angiotensin II type 1 receptor, monocyte chemoattractant protein-1, gp91phox, stromal cell-derived factor-1, C-X-C chemokine receptor-4, toll-like receptor-2, toll-like receptor-4, SC 35, galectin-3, and CatS as well as targeted intracellular proliferating-related molecules (mammalian target of rapamycin, phosphorylated protein kinase B, and p-glycogen synthase kinase-3α/β). Stress also increased the plaque matrix metalloproteinase-9 and matrix metalloproteinase-2 mRNA expressions and activities and aorta-derived smooth muscle cell migration and proliferation. The genetic or pharmacological inhibition of CatS by its specific inhibitor (Z- FL -COCHO) ameliorated the stressed arterial targeted molecular and morphological changes and stressed aorta-derived smooth muscle cell migration. Both the genetic and pharmacological interventions had no effect on increased blood pressure in stressed mice. Conclusions These results demonstrate an essential role of CatS in chronic stress-related neointimal hyperplasia in response to injury, possibly via the reduction of toll-like receptor-2/toll-like receptor-4-mediated inflammation, immune action, and smooth muscle cell proliferation, suggesting that CatS will be a novel therapeutic target for stress-related atherosclerosis-based cardiovascular disease.
Collapse
Affiliation(s)
- Hailong Wang
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xiangkun Meng
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Limei Piao
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Aiko Inoue
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Wenhu Xu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Chenglin Yu
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Kae Nakamura
- 4 Department of Obstetrics and Gynecology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Lina Hu
- 5 Department of Public Health Guilin Medical College Guangxi China
| | - Takeshi Sasaki
- 6 Department of Anatomy and Neuroscience Hamamatsu University School of Medicine Hamamatsu Japan
| | - Hongxian Wu
- 7 Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Kazumasa Unno
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hiroyuki Umegaki
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Murohara
- 8 Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guo-Ping Shi
- 9 Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Masafumi Kuzuya
- 2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,3 Institute of Innovation for Future Society Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xian Wu Cheng
- 1 Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,2 Department of Community Health and Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
16
|
Duan L, Liang C, Li X, Huang Z, Liu S, Wu N, Jia D. Lycopene restores the effect of ischemic postconditioning on myocardial ischemia‑reperfusion injury in hypercholesterolemic rats. Int J Mol Med 2019; 43:2451-2461. [PMID: 31017253 PMCID: PMC6488174 DOI: 10.3892/ijmm.2019.4166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/10/2019] [Indexed: 12/02/2022] Open
Abstract
Ischemic postconditioning (IPoC) has been demonstrated to prevent myocardial ischemia-reperfusion injury (MIRI), but its cardioprotective effect is abrogated by hypercholesterolemia. The aim of the present study was to determine whether lycopene (LP), a type of carotenoid, can restore the cardioprotective effect of IPoC in hypercholesterolemic rats. Male Wistar rats were fed a cholesterol-enriched diet for 12 weeks to establish a hypercholesterolemic model. The rat hearts were isolated and subjected to 30 min ischemia and 60 min reperfusion using a Langendorff apparatus. LP was administered to the rats intraperitoneally for 5 consecutive days prior to ischemia and reperfusion. Myocardial pathological changes, infarct size and cell apoptosis were measured by hematoxylin and eosin, triphenyltetrazolium chloride and TUNEL staining, respectively. The changes in endoplasmic reticulum (ER) stress markers, the reperfusion injury salvage kinase (RISK) pathway and mitochondrial apoptosis-related proteins were detected by western blotting. Overall, the results demonstrated that low-dose LP in combination with IPoC ameliorated myocardial histopathological changes, reduced the infarct size and release of cardiac enzymes, and decreased cardiomyocyte apoptosis in hypercholesterolemic rats, but no beneficial effects were achieved by the same dose of LP or IPoC treatment were used alone. Furthermore, the combination of LP and IPoC inhibited the expression of glucose-regulated protein 78 and C/EBP homologous protein, increased the phosphorylation levels of AKT, ERK1/2 and glycogen synthase kinase-3β, repressed mitochondrial permeability transition pore opening, and reduced the expression of cytochrome c, cleaved caspase-9 and cleaved caspase-3. Collectively, these findings demonstrated that LP can restore the cardioprotective effects of IPoC on MIRI in hypercholesterolemic rats, and this restoration by LP was mediated by inhibition of ER stress and reactivation of the RISK pathway in hypercholesterolemic rat myocardium.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Changbin Liang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuying Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zijun Huang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Wu
- Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
Guo X, Fang ZM, Wei X, Huo B, Yi X, Cheng C, Chen J, Zhu XH, Bokha AOKA, Jiang DS. HDAC6 is associated with the formation of aortic dissection in human. Mol Med 2019; 25:10. [PMID: 30925865 PMCID: PMC6441237 DOI: 10.1186/s10020-019-0080-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathological features of aortic dissection (AD) include vascular smooth muscle cell (VSMC) loss, elastic fiber fraction, and inflammatory responses in the aorta. However, little is known about the post-translational modification mechanisms responsible for these biological processes. METHODS A total of 72 aorta samples, used for protein detection, were collected from 36 coronary artery disease (CAD, served as the control) patients and 36 type A AD (TAAD) patients. Chromatin immunoprecipitation (ChIP)-PCR was used to identify the genes regulated by H3K23ac, and tubastatin A, an inhibitor of HDAC6, was utilized to clarify the downstream mechanisms regulated by HDAC6. RESULTS We found that the protein level of histone deacetylase HDAC6 was reduced in the aortas of patients suffering from TAAD and that the protein levels of H4K12ac, and H3K23ac significantly increased, while H3K18ac, H4K8ac, and H4K5ac dramatically decreased when compared with CAD patients. Although H3K23ac, H3K18ac, and H4K8ac increased in the human VSMCs after treatment with the HDAC6 inhibitor tubastatin A, only H3K23ac showed the same results in human tissues. Notably, the results of ChIP-PCR demonstrated that H3K23ac was enriched in extracellular matrix (ECM)-related genes, including Col1A2, Col3A1, CTGF, POSTN, MMP2, TIMP2, and ACTA2, in the aortic samples of TAAD patients. In addition, our results showed that HDAC6 regulates H4K20me2 and p-MEK1/2 in the pathological process of TAAD. CONCLUSIONS These results indicate that HDAC6 is involved in human TAAD formation by regulating H3K23ac, H4K20me2 and p-MEK1/2, thus, providing a strategy for the treatment of TAAD by targeting protein post-translational modifications (PTMs), chiefly histone PTMs.
Collapse
Affiliation(s)
- Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | | | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,NHC Key Laboratory of Organ Transplantation, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
18
|
Wun K, Theriault BR, Pierre JF, Chen EB, Leone VA, Harris KG, Xiong L, Jiang Q, Spedale M, Eskandari OM, Chang EB, Ho KJ. Microbiota control acute arterial inflammation and neointimal hyperplasia development after arterial injury. PLoS One 2018; 13:e0208426. [PMID: 30521585 PMCID: PMC6283560 DOI: 10.1371/journal.pone.0208426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The microbiome has a functional role in a number of inflammatory processes and disease states. While neointimal hyperplasia development has been linked to inflammation, a direct role of the microbiota in neointimal hyperplasia has not yet been established. Germ-free (GF) mice are an invaluable model for studying causative links between commensal organisms and the host. We hypothesized that GF mice would exhibit altered neointimal hyperplasia following carotid ligation compared to conventionally raised (CONV-R) mice. METHODS Twenty-week-old male C57BL/6 GF mice underwent left carotid ligation under sterile conditions. Maintenance of sterility was assessed by cultivation and 16S rRNA qPCR of stool. Neointimal hyperplasia was assessed by morphometric and histologic analysis of arterial sections after 28 days. Local arterial cell proliferation and inflammation was assessed by immunofluorescence for Ki67 and inflammatory cell markers at five days. Systemic inflammation was assessed by multiplex immunoassays of serum. CONV-R mice treated in the same manner served as the control cohort. GF and CONV-R mice were compared using standard statistical methods. RESULTS All GF mice remained sterile during the entire study period. Twenty-eight days after carotid ligation, CONV-R mice had significantly more neointimal hyperplasia development compared to GF mice, as assessed by intima area, media area, intima+media area, and intima area/(intima+media) area. The collagen content of the neointimal lesions appeared qualitatively similar on Masson's trichrome staining. There was significantly reduced Ki67 immunoreactivity in the media and adventitia of GF carotid arteries 5 days after ligation. GF mice also had increased arterial infiltration of anti-inflammatory M2 macrophages compared to CONV-R mouse arteries and a reduced proportion of mature neutrophils. GF mice had significantly reduced serum IFN-γ-inducible protein (IP)-10 and MIP-2 5 days after carotid ligation, suggesting a reduced systemic inflammatory response. CONCLUSIONS GF mice have attenuated neointimal hyperplasia development compared to CONV-R mice, which is likely related to altered kinetics of wound healing and acute inflammation. Recognizing the role of commensals in the regulation of arterial remodeling will provide a deeper understanding of the pathophysiology of restenosis and support strategies to treat or reduce restenosis risk by manipulating microbiota.
Collapse
Affiliation(s)
- Kelly Wun
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Betty R. Theriault
- Department of Surgery and Animal Resources Center, University of Chicago, Chicago, IL, United States of America
| | - Joseph F. Pierre
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Edmund B. Chen
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Vanessa A. Leone
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Katharine G. Harris
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Liqun Xiong
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Melanie Spedale
- Department of Surgery and Animal Resources Center, University of Chicago, Chicago, IL, United States of America
| | - Owen M. Eskandari
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Eugene B. Chang
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Karen J. Ho
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
19
|
Li CC, Qiu XT, Sun Q, Zhou JP, Yang HJ, Wu WZ, He LF, Tang CE, Zhang GG, Bai YP. Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K. J Cell Mol Med 2018; 23:1164-1173. [PMID: 30450725 PMCID: PMC6349160 DOI: 10.1111/jcmm.14016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.
Collapse
Affiliation(s)
- Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Peng Zhou
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Jun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wan-Zhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Fang He
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can-E Tang
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Araujo TF, Cordeiro AV, Vasconcelos DAA, Vitzel KF, Silva VRR. The role of cathepsin B in autophagy during obesity: A systematic review. Life Sci 2018; 209:274-281. [PMID: 30107168 DOI: 10.1016/j.lfs.2018.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022]
Abstract
White adipose tissue (WAT) regulates energy homeostasis by releasing adipokines and modulating cell maintenance. Nutrient excess affects adipocyte hypertrophy directly in WAT by increasing excessively the activity of autophagy systems, generating proinflammatory markers and increasing infiltration of macrophages, causing metabolic diseases such as obesity and diabetes. Evidences suggest that cathepsin B (CTSB), a papain-like cysteine peptidase protein, can modulate autophagy processes in adipocytes. This review will focus on the role of CTSB in autophagy under conditions of obesity.
Collapse
Affiliation(s)
- Thaís F Araujo
- University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | - Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | | |
Collapse
|
21
|
Douglas SA, Lamothe SE, Singleton TS, Averett RD, Platt MO. Human cathepsins K, L, and S: Related proteases, but unique fibrinolytic activity. Biochim Biophys Acta Gen Subj 2018; 1862:1925-1932. [PMID: 29944896 DOI: 10.1016/j.bbagen.2018.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Fibrin formation and dissolution are attributed to cascades of protease activation concluding with thrombin activation, and plasmin proteolysis for fibrin breakdown. Cysteine cathepsins are powerful proteases secreted by endothelial cells and others during cardiovascular disease and diabetes. Their fibrinolytic activity and putative role in hemostasis has not been well described. METHODS Fibrin gels were polymerized and incubated with recombinant human cathepsins (cat) K, L, or S, or plasmin, for dose-dependent and time-dependent studies. Dissolution of fibrin gels was imaged. SDS-PAGE was used to resolve cleaved fragments released from fibrin gels and remnant insoluble fibrin gel that was solubilized prior to electrophoresis to assess fibrin α, β, and γ polypeptide hydrolysis by cathepsins. Multiplex cathepsin zymography determined active amounts of cathepsins remaining. RESULTS There was significant loss of α and β fibrin polypeptides after incubation with cathepsins, with catS completely dissolving fibrin gel by 24 h. Binding to fibrin stabilized catL active time; it associated with cleaved fibrin fragments of multiple sizes. This was not observed for catK or S. CatS also remained active for longer times during fibrin incubation, but its association/binding did not withstand SDS-PAGE preparation. CONCLUSIONS Human cathepsins K, L, and S are fibrinolytic, and specifically can degrade the α and β fibrin polypeptide chains, generating fragments unique from plasmin. GENERAL SIGNIFICANCE Demonstration of cathepsins K, L, and S fibrinolytic activity leads to further investigation of contributory roles in disrupting vascular hemostasis, or breakdown of fibrin-based engineered vascular constructs where non-plasmin mediated fibrinolysis must be considered.
Collapse
Affiliation(s)
- Simone A Douglas
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| | - Sarah E Lamothe
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| | - Tatiyanna S Singleton
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| | - Rodney D Averett
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, USA.
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA.
| |
Collapse
|
22
|
α-Solanine reverses pulmonary vascular remodeling and vascular angiogenesis in experimental pulmonary artery hypertension. J Hypertens 2018; 35:2419-2435. [PMID: 28704260 DOI: 10.1097/hjh.0000000000001475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Similar to cancer, pulmonary arterial hypertension (PAH) is characterized by vascular remodeling, which leads to obliteration of the small pulmonary arteriole, with marked proliferation of pulmonary artery smooth muscle cells (PASMC) and/or endothelial cells dysfunction. Aberrant expression of tumor suppressor genes is closely associated with susceptibility to PAH. We hypothesized that α-solanine, a glycoalkaloid found in members of the nightshade family known to have antitumor activity in different cancers, reverses experimental PAH by activating the tumor suppressor-axis inhibition protein 2 (AXIN2). METHODS AND RESULTS We investigated the effects of α-solanine on PASMC proliferation and apoptosis by using 5-ethynyl-2'-deoxyuridine proliferation assay, proliferating cell nuclear antigen and Ki67 staining, TUNEL and Anexine V assays. Scratch wound healing and tube formation assays were also used to study migration of endothelial cells. In vitro, we demonstrated, using cultured human PASMC from PAH patients, that α-solanine reversed dysfunctional AXIN2, β-catenin and bone morphogenetic protein receptor type-2 signaling, whereas restored [Ca]i, IL-6 and IL-8, contributing to the decrease of PAH-PASMC proliferation and resistance to apoptosis. Meanwhile, α-solanine inhibits proliferation, migration and tube formation of PAH-pulmonary artery endothelial cells by inhibiting Akt/GSK-3α activation. In vivo, α-solanine administration decreases distal pulmonary arteries remodeling, mean pulmonary arteries pressure and right ventricular hypertrophy in both monocrotaline-induced and Sugen/hypoxia-induced PAH in mice. CONCLUSION This study demonstrates that AXIN2/β-catenin axis and Akt pathway can be therapeutically targeted by α-solanine in PAH. α-Solanine could be used as a new therapeutic strategy for the treatment of PAH.
Collapse
|
23
|
Jing X, Yin W, Tian H, Chen M, Yao X, Zhu W, Guo F, Ye Y. Icariin doped bioactive glasses seeded with rat adipose-derived stem cells to promote bone repair via enhanced osteogenic and angiogenic activities. Life Sci 2018; 202:52-60. [PMID: 29471105 DOI: 10.1016/j.lfs.2018.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 12/29/2022]
Abstract
AIMS Cell communication between mesenchymal stem cells and blood vessel cells are crucial for bone repair. We have previously shown that the phyto-molecule icariin significantly promoted osteogenic differentiation of rat adipose-derived stem cells (ASCs). In the present study, we aimed to investigate the relationship between icariin induced osteogenic differentiation of ASCs and angiogenesis of rat endothelial progenitor cells (EPCs). Besides, we used icariin doped 45S5 Bioglass seeded with ASCs to promote bone healing in rat calvarial bone defect models. MAIN METHODS The conditioned medium from undifferentiated ASCs (ASCs-CM) and icariin induced ASCs (Icariin-ASCs-CM) was obtained and the vascular endothelial growth factor (VEGF) protein secretion level was measured. The angiogenic capacity and molecular mechanism of ASC-CM and Icariin-ASCs-CM on rat EPCs was analyzed. Rat calvarial bone defect models were established and treated with scaffolds implantation. Micro-CT imaging, histological and immunohistological staining were performed on the isolated specimens at 12 weeks post-surgery. KEY FINDINGS VEGF protein expression was significantly increased after icariin treatment with the highest expression in the 10-7 M icariin group. Icariin-ASCs-CM obviously increased the angiogenesis of rat EPCs and this capacity was inhibited by a VEGF/VEGF receptor-specific binding inhibitor bevacizumab. Results of the in vivo investigations showed that all scaffolds promoted bone healing compared to the Control group. Icariin significantly improved the healing capacity of 45S5 Bioglass seeded with ASCs. SIGNIFICANCE Implantation of Icariin/45S5 Bioglass seeded with rat ASCs could obviously promote both osteogenesis and angiogenesis and therefore represents an ideal candidate bone substitutes for bone repair and regeneration.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weifeng Yin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongtao Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mengcun Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xudong Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
24
|
Ogasawara S, Cheng XW, Inoue A, Hu L, Piao L, Yu C, Goto H, Xu W, Zhao G, Lei Y, Yang G, Kimura K, Umegaki H, Shi GP, Kuzuya M. Cathepsin K activity controls cardiotoxin-induced skeletal muscle repair in mice. J Cachexia Sarcopenia Muscle 2018; 9:160-175. [PMID: 29058826 PMCID: PMC5803616 DOI: 10.1002/jcsm.12248] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cathepsin K (CatK) is a widely expressed cysteine protease that has gained attention because of its enzymatic and non-enzymatic functions in signalling. Here, we examined whether CatK-deficiency (CatK-/- ) would mitigate injury-related skeletal muscle remodelling and fibrosis in mice, with a special focus on inflammation and muscle cell apoptosis. METHODS Cardiotoxin (CTX, 20 μM/200 μL) was injected into the left gastrocnemius muscle of male wild-type (CatK+/+ ) and CatK-/- mice, and the mice were processed for morphological and biochemical studies. RESULTS On post-injection Day 14, CatK deletion ameliorated muscle interstitial fibrosis and remodelling and performance. At an early time point (Day 3), CatK-/- reduced the lesion macrophage and leucocyte contents and cell apoptosis, the mRNA levels of monocyte chemoattractant protein-1, toll-like receptor-2 and toll-like receptor-4, and the gelatinolytic activity related to matrix metalloproteinase-2/-9. CatK deletion also restored the protein levels of caspase-3 and cleaved caspase-8 and the ratio of the BAX to the Bcl-2. Moreover, CatK deficiency protected muscle fibre laminin and desmin disorder in response to CTX injury. These beneficial muscle effects were mimicked by CatK-specific inhibitor treatment. In vitro experiments demonstrated that pharmacological CatK inhibition reduced the apoptosis of C2C12 mouse myoblasts and the levels of BAX and caspase-3 proteins induced by CTX. CONCLUSIONS These results demonstrate that CatK plays an essential role in skeletal muscle loss and fibrosis in response to CTX injury, possibly via a reduction of inflammation and cell apoptosis, suggesting a novel therapeutic strategy for the control of skeletal muscle diseases by regulating CatK activity.
Collapse
Affiliation(s)
- Shinyu Ogasawara
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China.,Department of Internal Medicine, Kyung Hee University, Seoul, 130-702, Korea
| | - Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Public Health, Guilin Medical College, Guilin, 541004, Guangxi, China
| | - Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Chenglin Yu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Hiroki Goto
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Wenhu Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Guangxian Zhao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Yanna Lei
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Guang Yang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanji, 133000, Jilin, China
| | - Kaoru Kimura
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Hiroyuki Umegaki
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 20115, USA
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University, Nagoya, 464-0814, Aichiken, Japan
| |
Collapse
|
25
|
[Molecular mechanism of sarcopenia]. Nihon Ronen Igakkai Zasshi 2018; 55:13-24. [PMID: 29503355 DOI: 10.3143/geriatrics.55.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
26
|
|
27
|
Wu H, Du Q, Dai Q, Ge J, Cheng X. Cysteine Protease Cathepsins in Atherosclerotic Cardiovascular Diseases. J Atheroscler Thromb 2017; 25:111-123. [PMID: 28978867 PMCID: PMC5827079 DOI: 10.5551/jat.rv17016] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is an inflammatory disease characterized by extensive arterial wall matrix protein degradation. Cysteine protease cathepsins play a pivotal role in extracellular matrix (ECM) remodeling and have been implicated in the development and progression of atherosclerosis-based cardiovascular diseases. An imbalance in expression between cathepsins (such as cathepsins S, K, L, C) and their inhibitor cystatin C may favor proteolysis of ECM in the pathogenesis of cardiovascular disease such as atherosclerosis, aneurysm formation, restenosis, and neovascularization. New insights into cathepsin functions have been made possible by the generation of knock-out mice and by the application of specific inhibitors. Inflammatory cytokines regulate the expression and activities of cathepsins in cultured vascular cells and macrophages. In addition, evaluations of the possibility of cathepsins as a diagnostic tool revealed that the circulating levels of cathepsin S, K, and L, and their endogenous inhibitor cystatin C could be promising biomarkers in the diagnosis of coronary artery disease, aneurysm, adiposity, peripheral arterial disease, and coronary artery calcification. In this review, we summarize the available information regarding the mechanistic contributions of cathepsins to ASCVD.
Collapse
Affiliation(s)
- Hongxian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Qiuna Du
- Department of Nephrology, Tongji Hospital, Tongji University
| | - Qiuyan Dai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University, Graduate School of Medicine.,Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Leng YP, Ma YS, Li XG, Chen RF, Zeng PY, Li XH, Qiu CF, Li YP, Zhang Z, Chen AF. l-Homocysteine-induced cathepsin V mediates the vascular endothelial inflammation in hyperhomocysteinaemia. Br J Pharmacol 2017. [PMID: 28631302 DOI: 10.1111/bph.13920] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Vascular inflammation, including the expression of inflammatory cytokines in endothelial cells, plays a critical role in hyperhomocysteinaemia-associated vascular diseases. Cathepsin V, specifically expressed in humans, is involved in vascular diseases through its elastolytic and collagenolytic activities. The aim of this study was to determine the effects of cathepsin V on l-homocysteine-induced vascular inflammation. EXPERIMENTAL APPROACH A high methionine diet-induced hyperhomocysteinaemic mouse model was used to assess cathepsin V expression and vascular inflammation. Cultures of HUVECs were challenged with l-homocysteine and the cathepsin L/V inhibitor SID to assess the pro-inflammatory effects of cathepsin V. Transfection and antisense techniques were utilized to investigate the effects of cathepsin V on the dual-specificity protein phosphatases (DUSPs) and MAPK pathways. KEY RESULTS Cathepsin L (human cathepsin V homologous) was increased in the thoracic aorta endothelial cells of hyperhomocysteinaemic mice; l-homocysteine promoted cathepsin V expression in HUVECs. SID suppressed the activity of cathepsin V and reversed the up-regulation of inflammatory cytokines (IL-6, IL-8 and TNF-α), adhesion and chemotaxis of leukocytes and vascular inflammation induced by l-homocysteine in vivo and in vitro. Increased cathepsin V promoted the degradation of DUSP6 and DUSP7, phosphorylation and subsequent nuclear translocation of ERK1/2, phosphorylation of STAT1 and expression of IL-6, IL-8 and TNF-α. CONCLUSIONS AND IMPLICATIONS This study has identified a novel mechanism, which shows that l-homocysteine-induced upregulation of cathepsin V mediates vascular endothelial inflammation under high homocysteine condition partly via ERK1/2 /STAT1 pathway. This mechanism could represent a potential therapeutic target in hyperaemia-associated vascular diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yi-Ping Leng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ye-Shuo Ma
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Gang Li
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Rui-Fang Chen
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Centre for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ping-Yu Zeng
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Centre for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Hui Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Cheng-Feng Qiu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Pei Li
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Zhang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Centre for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
29
|
Yang G, Lei Y, Inoue A, Piao L, Hu L, Jiang H, Sasaki T, Wu H, Xu W, Yu C, Zhao G, Ogasawara S, Okumura K, Kuzuya M, Cheng XW. Exenatide mitigated diet-induced vascular aging and atherosclerotic plaque growth in ApoE-deficient mice under chronic stress. Atherosclerosis 2017; 264:1-10. [PMID: 28734203 DOI: 10.1016/j.atherosclerosis.2017.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Exposure to psychosocial stress is a risk factor for cardiovascular disorders. Because the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonist prevents cardiovascular injury, we investigated the beneficial effects and mechanism of the GLP-1 analogue exenatide on stress-related vascular senescence and atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat (HF) diet. METHODS ApoE-/- mice fed the HF diet were assigned to non-stressed and immobilized-stress groups for 12 weeks. Mice fed the HF diet were divided into 2 groups and administered vehicle or exenatide for 12 weeks under stress conditions. RESULTS Chronic stress enhanced vascular endothelial senescence and atherosclerotic plaque growth. The stress increased the levels of plasma depeptidyl peptidase-4 activity and decreased the levels of plasma GLP-1 and both plasma and adipose adiponectin (APN). As compared with the mice subjected to stress alone, the exenatide-treated mice had decreased plaque microvessel density, macrophage accumulation, broken elastin, and enhanced plaque collagen volume, and lowered levels of peroxisome proliferator-activated receptor-α, gp91phox osteopontin, C-X-C chemokine receptor-4, toll-like receptor-2 (TLR2), TLR4, and cathepsins K, L, and S mRNAs and/or proteins. Exenatide reduced aortic matrix metalloproteinase-9 (MMP-9) and MMP-2 gene expression and activities. Exenatide also stimulated APN expression of preadipocytes and inhibited ox-low density lipoprotein-induced foam cell formation of monocytes in stressed mice. CONCLUSIONS These results indicate that the exenatide-mediated beneficial vascular actions are likely attributable, at least in part, to the enhancement of APN production and the attenuation of plaque oxidative stress, inflammation, and proteolysis in ApoE-/- mice under chronic stress.
Collapse
Affiliation(s)
- Guang Yang
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Yanna Lei
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 4668550, Japan
| | - Limei Piao
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, Guangxi P. R., 541004, China
| | - Haiying Jiang
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 4313192, Japan
| | - Hongxian Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenhu Xu
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Chenglin Yu
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Guangxian Zhao
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China
| | - Shinyu Ogasawara
- Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan
| | - Kenji Okumura
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Masafumi Kuzuya
- Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 4668550, Japan
| | - Xian-Wu Cheng
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, Jilin PR., 13000, China; Institute of Innovation for Future Society, Nagoya University, Nagoya, 4668550, Japan; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 4668550, Japan; Department of Internal Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
30
|
Inoue A, Cheng XW, Huang Z, Hu L, Kikuchi R, Jiang H, Piao L, Sasaki T, Itakura K, Wu H, Zhao G, Lei Y, Yang G, Zhu E, Li X, Sato K, Koike T, Kuzuya M. Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice. J Cachexia Sarcopenia Muscle 2017; 8:370-385. [PMID: 27897419 PMCID: PMC5476856 DOI: 10.1002/jcsm.12166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Exercise train (ET) stimulates muscle response in pathological conditions, including aging. The molecular mechanisms by which exercise improves impaired adiponectin/adiponectin receptor 1 (AdipoR1)-related muscle actions associated with aging are poorly understood. Here we observed that in a senescence-accelerated mouse prone 10 (SAMP10) model, long-term ET modulated muscle-regenerative actions. METHODS 25-week-old male SAMP10 mice were randomly assigned to the control and the ET (45 min/time, 3/week) groups for 4 months. Mice that were maintained in a sedentary condition served controls. RESULTS ET ameliorated aging-related muscle changes in microstructure, mitochondria, and performance. The amounts of proteins or mRNAs for p-AMPKα, p-Akt, p-ERK1/2, p-mTOR, Bcl-XL, p-FoxO3, peroxisome proliferators-activated receptor-γ coactivator, adiponectin receptor1 (adpoR1), and cytochrome c oxidase-IV, and the numbers of CD34+ /integrin-α7+ muscle stem cells (MuSCs) and proliferating cells in the muscles and bone-marrow were enhanced by ET, whereas the levels of p-GSK-3α and gp91phox proteins and apoptotic cells were reduced by ET. The ET also resulted in increased levels of plasma adiponectin and the numbers of bone-marrow (BM)-derived circulating CD34+ /integrin-α7+ MuSCs and their functions. Integrin-α7+ MuSCs of exercised mice had improved changes of those beneficial molecules. These ET-mediated aged muscle benefits were diminished by adiponectin and AdipoR1 blocking as well as AMPK inhibition. Finally, recombinant mouse adiponectin enhanced AMPK and mTOR phosphorylations in BM-derived integrin-α7+ cells. CONCLUSIONS These findings suggest that ET can improve aging-related impairments of BM-derived MuSC regenerative capacity and muscle metabolic alterations via an AMPK-dependent mechanism that is mediated by an adiponectin/AdipoR1 axis in SAMP10 mice.
Collapse
Affiliation(s)
- Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China.,Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Fukuoka, Japan
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, 466-8550, Aichiken, Japan
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, 133000, Jilin PR., China
| | - Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Shizuokaken, Japan
| | - Kohji Itakura
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Hongxian Wu
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Guangxian Zhao
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Yanna Lei
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Guang Yang
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Enbo Zhu
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Xiang Li
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Shizuokaken, Japan
| | - Teruhiko Koike
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| |
Collapse
|
31
|
Lei Y, Yang G, Hu L, Piao L, Inoue A, Jiang H, Sasaki T, Zhao G, Yisireyili M, Yu C, Xu W, Takeshita K, Okumura K, Kuzuya M, Cheng XW. Increased dipeptidyl peptidase-4 accelerates diet-related vascular aging and atherosclerosis in ApoE-deficient mice under chronic stress. Int J Cardiol 2017; 243:413-420. [PMID: 28549747 DOI: 10.1016/j.ijcard.2017.05.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Exposure to psychosocial stress is a risk factor for cardiovascular disease. Given that dipeptidyl peptidase-4 (DPP4) regulates several intracellular signaling pathways associated with glucagon-like peptide-1 (GLP-1) metabolism, we investigated the role of DPP4 in stress-related vascular senescence and atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. METHODS AND RESULTS ApoE-/- mice fed a high-fat (HF) diet were randomly assigned to one of non-stress and immobilized stress groups for 12weeks. Chronic stress accelerated vascular senescence and atherosclerotic plaque growth at the aortic roots. Stressed mice had increased levels of plasma DPP4 and decreased levels of plasma GLP-1 and adiponectin (APN) and adipose APN expression. Stress increased plaque macrophage infiltration, neovessel density, and elastin fragmentation, lessened the plaque collagen content, and increased the levels of toll-like receptor-2 (TLR2), TLR4, C-X-C chemokine receptor-4, cathepsins S and K, osteopontin, peroxisome proliferator-activated receptor-α, p16INK4A, p21, and gp91phox mRNAs and/or proteins. Stressed aortas had also increased matrix metalloproteinase-2 (MMP-2) and MMP-9 activities. DPP4 inhibition with anagliptin reversed stress-related atherosclerotic lesion formation, and this benefit was abrogated by APN blocking. In vitro, the GLP-1 receptor agonist exenatide stimulated APN expression in 3T3-L1 cells. CONCLUSIONS These results indicate that the DPP4 inhibition-mediated benefits are likely attributable, at least in part, to attenuation of plaque inflammation, oxidative stress and proteolysis associated with GLP-1-mediated APN production in ApoE-/- mice under stress. Thus, DPP4 will be a novel therapeutic target for the treatment of stress-related cardiovascular disease.
Collapse
Affiliation(s)
- Yanna Lei
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China
| | - Guang Yang
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin 541004, Guangxi, PR China
| | - Limei Piao
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Aiko Inoue
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133000, Jilin, PR China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu 4313192, Shizuokaken, Japan
| | - Guangxian Zhao
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China
| | - Maimaiti Yisireyili
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan; Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Chenglin Yu
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China
| | - Wenhu Xu
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan; Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Kenji Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan; Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Masafumi Kuzuya
- Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan
| | - Xian Wu Cheng
- Department of ICU and Cardiology, Yanbian University Hospital, Yanji 133000, Jilin, PR China; Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, South Korea; Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan.
| | | |
Collapse
|
32
|
Zhao G, Cheng XW, Piao L, Hu L, Lei Y, Yang G, Inoue A, Ogasawara S, Wu H, Hao CN, Okumura K, Kuzuya M. The Soluble VEGF Receptor sFlt-1 Contributes to Impaired Neovascularization in Aged Mice. Aging Dis 2017; 8:287-300. [PMID: 28580185 PMCID: PMC5440109 DOI: 10.14336/ad.2016.0920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 11/05/2022] Open
Abstract
The mechanism by which angiogenesis declines with aging is not fully understood. Soluble vascular endothelial growth factor receptor 1 (VEGFR1) form (sFlt1) contributes to endothelial dysfunction in pathological conditions. However, the roles of sFlt1 in ischemia-induced neovascularizationof aged animals have not been investigated. To study aging-related sFlt1 change and its impact on ischemia-induced neovascularization, a hindlimb ischemia model was applied to young and aged mice. Blood flow imaging assay revealed that the blood flow recovery remained impaired throughout the follow-up period. At day 14, immunostaining showed lesser capillary formation in the aged mice. An ELISA showed that the aged mice had increased plasma sFlt-1 levels at indicated time points after surgery. On operative day 4, the aged ischemic muscles had decreased levels of p-VEGFR2 and p-Akt and increased levels of sFlt-1, Wnt5a, and SC35 genes or/and protein as well as increased numbers of inflammatory cells (macrophages and leucocytes) and matrix metalloproteinase-9 activity. Immnunofluorescence showed that Flt-1 was co-localized with CD11b+ macrophages of aged ischemic muscles. Hypoxia stimulated sFlt1 expression in CD11b+ cells of aged bone-marrow (BM), and this effect was diminished by siWnt5a. The cultured medium of aged mice BM-derived CD11b+ cells suppressed human endothelial cell (EC) and endothelial progenitor cell (EPC) angiogenic actions induced by VEGF, and these decreases were improved by treatment with siWnt5a-conditioned medium. Thus, aging appears to decline neovascularization in response to ischemic stress via the VEGFR2/Akt signaling inactivation in ECs and ECPs that is mediated by Wnt5a/SC35 axis activated macrophages-derived sFlt1 production in advanced age.
Collapse
Affiliation(s)
- Guangxian Zhao
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Xian W Cheng
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China.,7Institute for Future Society, NAGOYA STREAM, Nagoya University, Nagoya, Aichiken 4668550, Japan.,8Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul 130701, Republic of Korea
| | - Limei Piao
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China.,2Department of Health Care & Geriatrics, Nagoya University Graduate School of Medicine, Aichiken 4668550, Japan
| | - Lina Hu
- 3Department of Public Health, Guilin Medical College, Guilin, Guangxi 541004, China
| | - Yanna Lei
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Guang Yang
- 1Department of Cardiology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Aiko Inoue
- 2Department of Health Care & Geriatrics, Nagoya University Graduate School of Medicine, Aichiken 4668550, Japan
| | - Shinyu Ogasawara
- 2Department of Health Care & Geriatrics, Nagoya University Graduate School of Medicine, Aichiken 4668550, Japan
| | - Hongxian Wu
- 4Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20160527, China
| | - Chang-Ning Hao
- 5Department of vascular surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200126, China
| | - Kenji Okumura
- 6Department of Cardiology, Tohno Kosei Hospital, Mizunai, Japan
| | - Masafumi Kuzuya
- 3Department of Public Health, Guilin Medical College, Guilin, Guangxi 541004, China.,7Institute for Future Society, NAGOYA STREAM, Nagoya University, Nagoya, Aichiken 4668550, Japan
| |
Collapse
|
33
|
Weiss-Sadan T, Gotsman I, Blum G. Cysteine proteases in atherosclerosis. FEBS J 2017; 284:1455-1472. [PMID: 28207191 DOI: 10.1111/febs.14043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/04/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Atherosclerosis predisposes patients to cardiovascular diseases, such as myocardial infarction and stroke. Instigation of vascular injury is triggered by retention of lipids and inflammatory cells in the vascular endothelium. Whereas these vascular lesions develop in young adults and are mostly considered harmless, over time persistent inflammatory and remodeling processes will ultimately damage the arterial wall and cause a thrombotic event due to exposure of tissue factors into the lumen. Evidence from human tissues and preclinical animal models has clearly established the role of cathepsin cysteine proteases in the development and progression of vascular lesions. Hence, understanding the function of cathepsins in atherosclerosis is important for developing novel therapeutic strategies and advanced point of care diagnostics. In this review we will describe the roles of cysteine cathepsins in different cellular process that become dysfunctional in atherosclerosis, such as lipid metabolism, inflammation and apoptosis, and how they contribute to arterial remodeling and atherogenesis. Finally, we will explore new horizons in protease molecular imaging, which may potentially become a surrogate marker to identify future cardiovascular events.
Collapse
Affiliation(s)
- Tommy Weiss-Sadan
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Israel Gotsman
- Heart Institute, Hadassah University Hospital, Jerusalem, Israel
| | - Galia Blum
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
34
|
Wu H, Cheng XW, Hu L, Takeshita K, Hu C, Du Q, Li X, Zhu E, Huang Z, Yisireyili M, Zhao G, Piao L, Inoue A, Jiang H, Lei Y, Zhang X, Liu S, Dai Q, Kuzuya M, Shi GP, Murohara T. Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K-Akt/p-HDAC6 Signaling Pathway. Arterioscler Thromb Vasc Biol 2016; 36:1549-57. [PMID: 27365406 PMCID: PMC4961274 DOI: 10.1161/atvbaha.115.307110] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/20/2016] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. Approach and Results— Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. Conclusions— This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are involved in neointimal lesion formation.
Collapse
Affiliation(s)
- Hongxian Wu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Xian Wu Cheng
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.).
| | - Lina Hu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Kyosuke Takeshita
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Chen Hu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Qiuna Du
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Xiang Li
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Enbo Zhu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Zhe Huang
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Maimaiti Yisireyili
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Guangxian Zhao
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Limei Piao
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Aiko Inoue
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Haiying Jiang
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Yanna Lei
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Xiaohong Zhang
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Shaowen Liu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Qiuyan Dai
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Masafumi Kuzuya
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Guo-Ping Shi
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| | - Toyoaki Murohara
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.W., Q. Du, S.L., Q. Dai); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (H.W., X.W.C., K.T., M.Y., T.M.); Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL (C.H., X.Z.); Department of Cardiology, Yanbian University Hospital, Yanji, China (X.W.C., X.L., E.Z., G.Z., L.P., Y.L.); Department of and Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan (X.W.C., L.H., A.I., M.K.); Department of Neurology, University of Occupational and Environmental Health, Fukuoka, Japan (Z.H.); Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, China (H.J.); Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea (X.W.C); and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (G.P.S.)
| |
Collapse
|
35
|
Liu CL, Wang Y, Liao M, Santos MM, Fernandes C, Sukhova GK, Zhang JY, Cheng X, Yang C, Huang X, Levy B, Libby P, Wu G, Shi GP. Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice. Transl Res 2016; 171:1-16. [PMID: 26898714 PMCID: PMC4833597 DOI: 10.1016/j.trsl.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe(-/-)) mice with a Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4(+) T cells, lesion SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI occurred before, after, or at the same time as atherogenesis. Antiasthmatic medication can efficiently mitigate atherosclerotic lesion pathology.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Yi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA; Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyang Liao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Marcela M Santos
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Cleverson Fernandes
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Cheng
- Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaozhu Huang
- Department of Medicine, University of California, San Francisco, Calif, USA
| | - Bruce Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | - Gongxiong Wu
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Mass, USA; Department of Cardiovascular, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease, Guangzhou 510182, Guangdong Province, China.
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA.
| |
Collapse
|
36
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
37
|
Sata M. Cuff-Induced Neointimal Formation in Mouse Models. MOUSE MODELS OF VASCULAR DISEASES 2016. [PMCID: PMC7122099 DOI: 10.1007/978-4-431-55813-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic heart failure caused by atherosclerosis is a major cause of death worldwide. Although remarkable technological advances have been made in the treatment of coronary heart disease, there is as yet no treatment that can sufficiently suppress the progression of atherosclerosis, including neointimal thickening. Therefore, a precise understanding of the mechanism of neointimal hyperplasia will provide the development of new technologies. Both ApoE-KO and LDLR-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. Although these mice are effective tools for the investigation of atherosclerosis, development of a progressive atherosclerotic lesion takes a long time, resulting in increase of both the costs and the space needed for the research. Thus, it is necessary to develop simpler tools that would allow easy evaluation of atherosclerosis in mouse models. In this review, we discuss our experience in generating mouse models of cuff-induced injury of the femoral artery and attempt to provide a better understanding of cuff-induced neointimal formation.
Collapse
|
38
|
Panwar P, Lamour G, Mackenzie NCW, Yang H, Ko F, Li H, Brömme D. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications. J Biol Chem 2015. [PMID: 26224630 DOI: 10.1074/jbc.m115.644310] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging.
Collapse
Affiliation(s)
- Preety Panwar
- From the Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Center for Blood Research
| | - Guillaume Lamour
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Neil C W Mackenzie
- From the Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Center for Blood Research
| | | | - Frank Ko
- Department of Mechanical Engineering, and
| | - Hongbin Li
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Dieter Brömme
- From the Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Center for Blood Research, the Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia 6T 1Z3 and
| |
Collapse
|
39
|
Liang J, Kang D, Wang Y, Yu Y, Fan J, Takashi E. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats. PLoS One 2015; 10:e0117106. [PMID: 25671581 PMCID: PMC4324962 DOI: 10.1371/journal.pone.0117106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C) control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.
Collapse
Affiliation(s)
- Jingyan Liang
- School of Medicine, Yangzhou University, Yangzhou, China
- Basic Medicine and Nosography, Nagano College of Nursing, Komagane, Japan
| | - Dedong Kang
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Yingge Wang
- School of Medicine, Yangzhou University, Yangzhou, China
- Basic Medicine and Nosography, Nagano College of Nursing, Komagane, Japan
| | - Ying Yu
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
- * E-mail: (JF); (ET)
| | - En Takashi
- Basic Medicine and Nosography, Nagano College of Nursing, Komagane, Japan
- * E-mail: (JF); (ET)
| |
Collapse
|
40
|
Li X, Cheng XW, Hu L, Wu H, Hao CN, Jiang H, Zhu E, Huang Z, Inoue A, Sasaki T, Du Q, Takeshita K, Okumura K, Murohara T, Kuzuya M. Cathepsin S activity controls ischemia-induced neovascularization in mice. Int J Cardiol 2015; 183:198-208. [PMID: 25668148 DOI: 10.1016/j.ijcard.2015.01.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/11/2014] [Accepted: 01/25/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Evidence from human and animal studies has demonstrated elevated levels of the cysteine protease cathepsin S (CatS) in hypoxic atherosclerotic lesions. We hypothesized that silencing of CatS gene would suppress ischemia-induced angiogenic action. METHODS AND RESULTS Left femoral artery ligation-induced ischemia in mice showed the increased expression and activity of CatS in the ischemic muscle. The CatS-deficiency (CatS(-/-)) mice showed impaired functional recovery following hindlimb ischemia and reduced levels of peroxisome proliferator-activated receptor-γ (PPAR-γ), phospho-Akt (p-Akt), p-endothelial nitric oxide synthase, p-extracellular signal-regulated kinase1/2 (Erk1/2), p-p38 mitogen-activated protein kinase, and vascular endothelial growth factor (VEGF) proteins, as well as reduced levels of matrix metalloproteinase-9 and macrophage infiltration in the ischemic muscles. In vitro, CatS silencing reduced the levels of these targeted essential molecules for angiogenesis and vasculogenesis. Together, the results indicated that the effects of CatS knockdown led to defective endothelial cell invasion, proliferation, and tube formation. This notion was reinforced by the finding that CatS inhibition led to a decreased PPAR-γ level and VEGF/Erk1/2 signaling activation in response to ischemia. CatS(-/-) resulted in decreased circulating EPC-like CD31(+)/c-Kit(+) cells, accompanied by the reduction of the cellular levels of PPAR-γ, p-Akt, and VEGF induced by ischemic stress. Transplantation of bone-marrow-derived mononuclear cells from CatS(+/+) mice restored neovascularization in CatS(-/-) mice. CONCLUSIONS CatS activity controls ischemia-induced neovascularization partially via the modulation of PPAR-γ and VEGF/Akt signaling activation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cardiology, Yanbian University Hospital, China
| | - Xian Wu Cheng
- Department of Cardiology, Yanbian University Hospital, China; Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan.
| | - Lina Hu
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan
| | - Hongxian Wu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Chang-Ning Hao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Haiying Jiang
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan; Department of Physiology, Yanbian University School of Medicine, China
| | - Enbo Zhu
- Department of Cardiology, Yanbian University Hospital, China
| | - Zhe Huang
- Department of Neurology, Nagoya University Graduate School of Medicine, Japan
| | - Aiko Inoue
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan
| | - Takeshi Sasaki
- Department of Anatomy, Hamamatsu University School of Medicine, Japan
| | - Qiuna Du
- Department of Nephrology, Nagoya University Graduate School of Medicine, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Kenji Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
41
|
D'Amico A, Ragusa R, Caruso R, Prescimone T, Nonini S, Cabiati M, Del Ry S, Trivella MG, Giannessi D, Caselli C. Uncovering the cathepsin system in heart failure patients submitted to Left Ventricular Assist Device (LVAD) implantation. J Transl Med 2014; 12:350. [PMID: 25496327 PMCID: PMC4274696 DOI: 10.1186/s12967-014-0350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022] Open
Abstract
Background In end-stage heart failure (HF), the implantation of a left ventricular assist device (LVAD) is able to induce reverse remodeling. Cellular proteases, such as cathepsins, are involved in the progression of HF. The aim of this study was to evaluate the role of cathepsin system in HF patients supported by LVAD, in order to determine their involvement in cardiac remodeling. Methods The expression of cysteine (CatB, CatK, CatL, CatS) and serine cathepsin (CatG), and relative inhibitors (Cystatin B, C and SerpinA3, respectively) was determined in cardiac biopsies of 22 patients submitted to LVAD (pre-LVAD) and compared with: 1) control stable chronic HF patients on medical therapy at the moment of heart transplantation without prior LVAD (HT, n = 7); 2) patients supported by LVAD at the moment of transplantation (post-LVAD, n = 6). Results The expression of cathepsins and their inhibitors was significantly higher in pre-LVAD compared to the HT group and LVAD induced a further increase in the cathepsin system. Significant positive correlations were observed between cardiac expression of cathepsins and their inhibitors as well as inflammatory cytokines. In the pre-LVAD group, a relationship of cathepsins with dilatative etiology and length of hospitalization was found. Conclusions A parallel activation of cathepsins and their inhibitors was observed after LVAD support. The possible clinical importance of these modifications is confirmed by their relation with patients’ outcome. A better discovery of these pathways could add more insights into the cardiac remodeling during HF.
Collapse
Affiliation(s)
- Andrea D'Amico
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56100, Pisa, Italy.
| | - Rosetta Ragusa
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Raffaele Caruso
- Cardiovascular Department, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Niguarda Cà Granda Hospital, 20162, Milan, Italy.
| | - Tommaso Prescimone
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Sandra Nonini
- Cardiovascular Department, Niguarda Ca' Granda Hospital, 20162, Milan, Italy.
| | - Manuela Cabiati
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Silvia Del Ry
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Maria Giovanna Trivella
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Daniela Giannessi
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| | - Chiara Caselli
- Laboratory of Cardiovascular Biochemistry, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca - Via Moruzzi, 1, 56100, Pisa, Italy.
| |
Collapse
|
42
|
Wu H, Cheng XW, Hu L, Hao CN, Hayashi M, Takeshita K, Hamrah MS, Shi GP, Kuzuya M, Murohara T. Renin inhibition reduces atherosclerotic plaque neovessel formation and regresses advanced atherosclerotic plaques. Atherosclerosis 2014; 237:739-47. [PMID: 25463114 DOI: 10.1016/j.atherosclerosis.2014.10.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The interaction between the renin-angiotensin system and toll-like receptors (TLRs) in the pathogenesis of advanced atherosclerotic plaques is not well understood. We studied the effects of the renin inhibitor aliskiren on the progression of advanced atherosclerotic plaque in apolipoprotein E-deficient (ApoE(-/-)) mice with a special focus on plaque neovessel formation. METHODS AND RESULTS Four-wk-old ApoE(-/-) mice were fed a high-fat diet for 8 wks, and the mice were randomly assigned to one of three groups and administered a vehicle, hydralazine, or aliskiren for an additional 12 wks. Aliskiren reduced the atherosclerotic plaque area and plaque neovessel density. It increased the plaque collagen and elastin contents, and reduced plasma angiotensin II levels and plaque macrophage infiltration and cathepsin S (CatS) protein. Aliskiren also decreased the levels of AT1R, gp91phox, TLR2, monocyte chemotactic protein-1, and CatS mRNAs in the aortic roots. Hydralazine had no beneficial vascular effects, although its administration resulted in the same degree of blood pressure reduction as aliskiren. CatS deficiency mimicked the aliskiren-mediated vasculoprotective effect in the ApoE(-/-) mice, but aliskiren showed no further benefits in ApoE(-/-) CatS(-/-) mice. In vitro, TLR2 silencing reduced CatS expression induced by angiotensin II. Moreover, aliskiren or the inhibition of CatS impaired the endothelial cell angiogenic action in vitro or/and ex vivo. CONCLUSION Renin inhibition appears to inhibit advanced plaque neovessel formation in ApoE(-/-) mice and to decrease the vascular inflammatory action and extracellular matrix degradation, partly by reducing AT1R/TLR2-mediated CatS activation and activity, thus regressing advanced atherosclerosis.
Collapse
Affiliation(s)
- Hongxian Wu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology, Yanbian University Hospital, Yanji, China.
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chang-Ning Hao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mutsuharu Hayashi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
43
|
Kim EJ, Choi YK, Han YH, Kim HJ, Lee IK, Lee MO. RORα suppresses proliferation of vascular smooth muscle cells through activation of AMP-activated protein kinase. Int J Cardiol 2014; 175:515-21. [DOI: 10.1016/j.ijcard.2014.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/05/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
|
44
|
Cheng XW, Sasaki T, Kuzuya M. The role of cysteinyl cathepsins in venous disorders. Thromb Haemost 2014; 112:216-8. [PMID: 24553831 DOI: 10.1160/th13-10-0889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/31/2014] [Indexed: 11/05/2022]
Affiliation(s)
- X W Cheng
- Xian Wu Cheng, MD, PhD, FAHA, Associate Professor of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan, Tel.: +81 52 744 2364, Fax: +81 52 744 2371, E-mail: or
| | | | | |
Collapse
|