1
|
Guedes MR, de Noronha SISR, Chírico MTT, da Costa GDC, de Freitas Castro T, de Brito RCF, Vieira LG, Reis TO, Ribeiro MC, Reis AB, Carneiro CM, Bezerra FS, Montano N, da Silva VJD, de Menezes RCA, Chianca-Jr DA, Silva FCDS. Ivabradine restores tonic cardiovascular autonomic control and reduces tachycardia, hypertension and left ventricular inflammation in post-weaning protein malnourished rats. Life Sci 2024; 346:122636. [PMID: 38614307 DOI: 10.1016/j.lfs.2024.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Malnutrition results in autonomic imbalance and heart hypertrophy. Overexpression of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in the left ventricles (LV) is linked to hypertrophied hearts and abnormal myocardium automaticity. Given that ivabradine (IVA) has emerging pleiotropic effects, in addition to the widely known bradycardic response, this study evaluated if IVA treatment could repair the autonomic control and cardiac damages in malnourished rats. AIM Assess the impact of IVA on tonic cardiovascular autonomic control and its relationship with hemodynamics regulation, LV inflammation, and HCN gene expression in post-weaning protein malnutrition condition. MAIN METHODS After weaning, male rats were divided into control (CG; 22 % protein) and malnourished (MG; 6 % protein) groups. At 35 days, groups were subdivided into CG-PBS, CG-IVA, MG-PBS and MG-IVA (PBS 1 ml/kg or IVA 1 mg/kg) received during 8 days. We performed jugular vein cannulation and electrode implant for drug delivery and ECG registration to assess tonic cardiovascular autonomic control; femoral cannulation for blood pressure (BP) and heart rate (HR) assessment; and LV collection to evaluate ventricular remodeling and HCN gene expression investigation. KEY FINDINGS Malnutrition induced BP and HR increases, sympathetic system dominance, and LV remodeling without affecting HCN gene expression. IVA reversed the cardiovascular autonomic imbalance; prevented hypertension and tachycardia; and inhibited the LV inflammatory process and fiber thickening caused by malnutrition. SIGNIFICANCE Our findings suggest that ivabradine protects against malnutrition-mediated cardiovascular damage. Moreover, our results propose these effects were not attributed to HCN expression changes, but rather to IVA pleiotropic effects on autonomic control and inflammation.
Collapse
Affiliation(s)
- Mariana Reis Guedes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Sylvana Izaura Salyba Rendeiro de Noronha
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Máira Tereza Talma Chírico
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Gabriela Dias Carvalho da Costa
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thalles de Freitas Castro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Rory Cristiane Fortes de Brito
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Lucas Gabriel Vieira
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thayane Oliveira Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Marcelo Carlos Ribeiro
- Statistics Department, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Alexandre Barbosa Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Cláudia Martins Carneiro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| | - Valdo José Dias da Silva
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil; Graduate Program in Physiological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Rodrigo Cunha Alvim de Menezes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Fernanda Cacilda Dos Santos Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
2
|
Gallet R, Su JB, Corboz D, Chiaroni PM, Bizé A, Dai J, Panel M, Boucher P, Pallot G, Brehat J, Sambin L, Thery G, Mouri N, de Pommereau A, Denormandie P, Germain S, Lacampagne A, Teiger E, Marbán E, Ghaleh B. Three-vessel coronary infusion of cardiosphere-derived cells for the treatment of heart failure with preserved ejection fraction in a pre-clinical pig model. Basic Res Cardiol 2023; 118:26. [PMID: 37400630 DOI: 10.1007/s00395-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E'septal and E/E'lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.
Collapse
Affiliation(s)
- Romain Gallet
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Jin-Bo Su
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Daphné Corboz
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Paul-Matthieu Chiaroni
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Alain Bizé
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jianping Dai
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Pierre Boucher
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Gaëtan Pallot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Juliette Brehat
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Lucien Sambin
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Guillaume Thery
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Nadir Mouri
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de biochimie-pharmacologie-biologie moléculaire-génétique médicale, Créteil, France
| | - Aurélien de Pommereau
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pierre Denormandie
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Emmanuel Teiger
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Bijan Ghaleh
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
3
|
Zhen Z, Liao SY, Zhu ZY, Sijia S, Au KW, Lai WH, Tsang A, Hai JS, Tse HF. Catheter-Based Splanchnic Denervation for Treatment of Hypertensive Cardiomyopathy. Hypertension 2019; 74:47-55. [DOI: 10.1161/hypertensionaha.118.12601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhe Zhen
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
| | - Song-Yan Liao
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
- Shenzhen Institutes of Research and Innovation, University of Hong Kong (H.-F.T., S.-Y.L.)
| | - Zi-Yi Zhu
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
| | - Sun Sijia
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
| | - Ka-Wing Au
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
| | - Wing-Hon Lai
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
| | - Anita Tsang
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
| | - JoJo S.H. Hai
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
| | - Hung-Fat Tse
- From the Cardiology Division, Department of Medicine, University of Hong Kong (Z.Z., S.-Y.L., Z.-Y.Z., S.S., K.-W.A., W.-H.L., A.T., J.S.H.H., H.-F.T.)
- Shenzhen Institutes of Research and Innovation, University of Hong Kong (H.-F.T., S.-Y.L.)
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, China (H.-F.T.)
- Department of Medicine, Shenzhen Hong Kong University Hospital, The University of Hong Kong, China (H.-F.T.)
| |
Collapse
|
4
|
Concomitant systolic and diastolic alterations during chronic hypertension in pig. J Mol Cell Cardiol 2019; 131:155-163. [PMID: 31051181 DOI: 10.1016/j.yjmcc.2019.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 04/28/2019] [Indexed: 11/23/2022]
Abstract
The mechanical and cellular relationships between systole and diastole during left ventricular (LV) dysfunction remain to be established. LV contraction-relaxation coupling was examined during LV hypertrophy induced by chronic hypertension. Chronically instrumented pigs received angiotensin II infusion for4weeks to induce chronic hypertension (133 ± 7 mmHg vs 98 ± 5 mmHg for mean arterial pressure at Day 28 vs 0, respectively) and LV hypertrophy. LV function was investigated with the instrumentation and echocardiography for LV twist-untwist assessment before and after dobutamine infusion. The cellular mechanisms were investigated by exploring the intracellular Ca2+ handling. At Day 28, pigs exhibited LV hypertrophy with LV diastolic dysfunction (impaired LV isovolumic relaxation, increased LV end-diastolic pressure, decreased and delayed LV untwisting rate) and LV systolic dysfunction (impaired LV isovolumic contraction and twist) although LV ejection fraction was preserved. Isolated cardiomyocytes exhibited altered shortening and lengthening. Interestingly, contraction-relaxation coupling remained preserved both in vivo and in vitro during LV hypertrophy. LV systolic and diastolic dysfunctions were associated to post-translational remodeling and dysfunction of the type 2 cardiac ryanodine receptor/Ca2+ release channel (RyR2), i.e., PKA hyperphosphorylation of RyR2, depletion of calstabin 2 (FKBP12.6), RyR2 leak and hypersensitivity of RyR2 to cytosolic Ca2+ during both contraction and relaxation phases. In conclusion, LV contraction-relaxation coupling remained preserved during chronic hypertension despite LV systolic and diastolic dysfunctions. This implies that LV diastolic dysfunction is accompanied by LV systolic dysfunction. At the cellular level, this is linked to sarcoplasmic reticulum Ca2+ leak through PKA-mediated RyR2 hyperphosphorylation and depletion of its stabilizing partner.
Collapse
|
5
|
Kakehi K, Iwanaga Y, Watanabe H, Sonobe T, Akiyama T, Shimizu S, Yamamoto H, Miyazaki S. Modulation of Sympathetic Activity and Innervation With Chronic Ivabradine and β-Blocker Therapies: Analysis of Hypertensive Rats With Heart Failure. J Cardiovasc Pharmacol Ther 2019; 24:387-396. [PMID: 30786751 DOI: 10.1177/1074248419829168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Whether the reduction of heart rate with ivabradine (IVA) could affect sympathetic activation and cardiac innervation in heart failure (HF) remains unknown. PURPOSE The present study assessed the chronic effects of IVA and β-blocker on the systemic and local sympathetic nervous systems of hypertensive animals with HF. METHODS AND RESULTS The Dahl salt-sensitive rats received chronic IVA, bisoprolol (BIS), or placebo (CTL) therapy. The survival of the animal models with IVA and BIS significantly improved (median; 19.7 in IVA and 19.7 in BIS vs 17.0 weeks in CTL, P < .001). A similar decrease in 24-hour heart rate (mean; 305 in IVA and 329 in BIS vs 388 beats/min in CTL, P < .001) without effect on blood pressure, and an improvement in the left ventricular dysfunction (mean fractional shortening; 56.7% in IVA and 47.8% in BIS vs 39.0% in CTL, P < .001) were observed in the animals with IVA and BIS. However, a negative inotropic effect was only observed in the animals with BIS. Excessive urinary noradrenaline excretion in animals with CTL was only suppressed with the use of IVA (mean; 1.35 μg/d in IVA and 1.95 μg/d in BIS vs 2.27 μg/d in CTL, P = .002). In contrast, atrial noradrenaline and acetylcholine depletion in the animals with CTL improved and the tyrosine hydroxylase expression in the both atria were restored with the use of both IVA and BIS. CONCLUSIONS IVA therapy improved the survival of hypertensive animals with HF. Furthermore, it was associated with the amelioration of systemic sympathetic activation and cardiac sympathetic and parasympathetic nerve innervations. Chronic β-blocker therapy with negative inotropic effects had beneficial effects only on cardiac innervations.
Collapse
Affiliation(s)
- Kazuyoshi Kakehi
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yoshitaka Iwanaga
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Heitaro Watanabe
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Takashi Sonobe
- 2 Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tsuyoshi Akiyama
- 2 Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuji Shimizu
- 3 Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiromi Yamamoto
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Shunichi Miyazaki
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
6
|
Simko F, Baka T, Poglitsch M, Repova K, Aziriova S, Krajcirovicova K, Zorad S, Adamcova M, Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int J Mol Sci 2018; 19:E3017. [PMID: 30282928 PMCID: PMC6212851 DOI: 10.3390/ijms19103017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
Ivabradine, the selective inhibitor of the If current in the sinoatrial node, exerts cardiovascular protection by its bradycardic effect and potentially pleiotropic actions. However, there is a shortage of data regarding ivabradine's interaction with the renin-angiotensin-aldosterone system (RAAS). This study investigated whether ivabradine is able to protect a hypertensive heart in the model of L-NAME-induced hypertension and to interfere with the RAAS. Four groups (n = 10/group) of adult male Wistar rats were treated as follows for four weeks: control, ivabradine (10 mg/kg/day), L-NAME (40 mg/kg/day), and L-NAME plus ivabradine. L-NAME administration increased systolic blood pressure (SBP) and left ventricular (LV) weight, enhanced hydroxyproline concentration in the LV, and deteriorated the systolic and diastolic LV function. Ivabradine reduced heart rate (HR) and SBP, and improved the LV function. The serum concentrations of angiotensin Ang 1⁻8 (Ang II), Ang 1⁻5, Ang 1⁻7, Ang 1⁻10, Ang 2⁻8, and Ang 3⁻8 were decreased in the L-NAME group and ivabradine did not modify them. The serum concentration of aldosterone and the aldosterone/Ang II ratio were enhanced by L-NAME and ivabradine reduced these changes. We conclude that ivabradine improved the LV function of the hypertensive heart in L-NAME-induced hypertension. The protective effect of ivabradine might have been associated with the reduction of the aldosterone level.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia.
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | | | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Michaela Adamcova
- Department of Physiology, School of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic.
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- Institute of Normal and Pathological Physiology, Center for Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia.
| |
Collapse
|
7
|
Ivabradine improves left ventricular twist and untwist during chronic hypertension. Int J Cardiol 2018; 252:175-180. [PMID: 29196088 DOI: 10.1016/j.ijcard.2017.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Left ventricular (LV) dysfunction develops during LV hypertrophy and particularly during tachycardia. Thus we investigated the effects of heart rate (HR) reduction with ivabradine, an If-channel blocker, on LV twist and untwist which represents myocardial deformation occurring during the overall systole and diastole and therefore provide valuable evaluation of global LV systolic and diastolic function. METHODS Eight chronically instrumented pigs receiving continuous angiotensin II infusion during 28days to induce chronic hypertension and LV hypertrophy. Measurements were performed at Days 0 and 28 after stopping angiotensin II infusion in the presence and absence of ivabradine. RESULTS At Day 0, reducing HR from 75±3 to 55±2beats/min with ivabradine did not affect LV twist but slowed LV untwist along with an increase in LV end-diastolic pressure. At Day 28, LV posterior and septal wall thickness as well as the estimated LV mass increased, indicating LV hypertrophy. LV twist and untwist were significantly reduced by 33±4% from 16±1° and 32±6% from -154±9°/s, respectively, showing global LV systolic and diastolic dysfunction. In this context, ivabradine decreased HR by 25% from 86±5beats/min and significantly improved LV twist from 11±1 to 14±1° and LV untwist from -104±8 to -146±5°/s. CONCLUSIONS Administration of ivabradine during chronic hypertension and LV hypertrophy improved LV twist and untwist. This further supports the beneficial effect of this drug on both LV systolic and diastolic function during the development of LV hypertrophy.
Collapse
|
8
|
Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J Diabetes 2018; 9:1-24. [PMID: 29359025 PMCID: PMC5763036 DOI: 10.4239/wjd.v9.i1.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/09/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiac autonomic neuropathy (CAN) is a serious complication of diabetes mellitus (DM) that is strongly associated with approximately five-fold increased risk of cardiovascular mortality. CAN manifests in a spectrum of things, ranging from resting tachycardia and fixed heart rate (HR) to development of "silent" myocardial infarction. Clinical correlates or risk markers for CAN are age, DM duration, glycemic control, hypertension, and dyslipidemia (DLP), development of other microvascular complications. Established risk factors for CAN are poor glycemic control in type 1 DM and a combination of hypertension, DLP, obesity, and unsatisfactory glycemic control in type 2 DM. Symptomatic manifestations of CAN include sinus tachycardia, exercise intolerance, orthostatic hypotension (OH), abnormal blood pressure (BP) regulation, dizziness, presyncope and syncope, intraoperative cardiovascular instability, asymptomatic myocardial ischemia and infarction. Methods of CAN assessment in clinical practice include assessment of symptoms and signs, cardiovascular reflex tests based on HR and BP, short-term electrocardiography (ECG), QT interval prolongation, HR variability (24 h, classic 24 h Holter ECG), ambulatory BP monitoring, HR turbulence, baroreflex sensitivity, muscle sympathetic nerve activity, catecholamine assessment and cardiovascular sympathetic tests, heart sympathetic imaging. Although it is common complication, the significance of CAN has not been fully appreciated and there are no unified treatment algorithms for today. Treatment is based on early diagnosis, life style changes, optimization of glycemic control and management of cardiovascular risk factors. Pathogenetic treatment of CAN includes: Balanced diet and physical activity; optimization of glycemic control; treatment of DLP; antioxidants, first of all α-lipoic acid (ALA), aldose reductase inhibitors, acetyl-L-carnitine; vitamins, first of all fat-soluble vitamin B1; correction of vascular endothelial dysfunction; prevention and treatment of thrombosis; in severe cases-treatment of OH. The promising methods include prescription of prostacyclin analogues, thromboxane A2 blockers and drugs that contribute into strengthening and/or normalization of Na+, K+-ATPase (phosphodiesterase inhibitor), ALA, dihomo-γ-linolenic acid (DGLA), ω-3 polyunsaturated fatty acids (ω-3 PUFAs), and the simultaneous prescription of ALA, ω-3 PUFAs and DGLA, but the future investigations are needed. Development of OH is associated with severe or advanced CAN and prescription of nonpharmacological and pharmacological, in the foreground midodrine and fludrocortisone acetate, treatment methods are necessary.
Collapse
Affiliation(s)
- Victoria A Serhiyenko
- Department of Endocrinology, Lviv National Medical University Named by Danylo Halitsky, Lviv 79010, Ukraine
| | - Alexandr A Serhiyenko
- Department of Endocrinology, Lviv National Medical University Named by Danylo Halitsky, Lviv 79010, Ukraine
| |
Collapse
|
9
|
Müller-Werdan U, Stöckl G, Werdan K. Advances in the management of heart failure: the role of ivabradine. Vasc Health Risk Manag 2016; 12:453-470. [PMID: 27895488 PMCID: PMC5118024 DOI: 10.2147/vhrm.s90383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A high resting heart rate (≥70–75 b.p.m.) is a risk factor for patients with heart failure (HF) with reduced ejection fraction (EF), probably in the sense of accelerated atherosclerosis, with an increased morbidity and mortality. Beta-blockers not only reduce heart rate but also have negative inotropic and blood pressure-lowering effects, and therefore, in many patients, they cannot be given in the recommended dose. Ivabradine specifically inhibits the pacemaker current (funny current, If) of the sinoatrial node cells, resulting in therapeutic heart rate lowering without any negative inotropic and blood pressure-lowering effect. According to the European Society of Cardiology guidelines, ivabradine should be considered to reduce the risk of HF hospitalization and cardiovascular death in symptomatic patients with a reduced left ventricular EF ≤35% and sinus rhythm ≥70 b.p.m. despite treatment with an evidence-based dose of beta-blocker or a dose below the recommended dose (recommendation class “IIa” = weight of evidence/opinion is in favor of usefulness/efficacy: “should be considered”; level of evidence “B” = data derived from a single randomized clinical trial or large nonrandomized studies). Using a heart rate cutoff of ≥ 75 b.p.m., as licensed by the European Medicines Agency, treatment with ivabradine 5–7.5 mg b.i.d. reduces cardiovascular mortality by 17%, HF mortality by 39% and HF hospitalization rate by 30%. A high resting heart rate is not only a risk factor in HF with reduced EF but also at least a risk marker in HF with preserved EF, in acute HF and also in special forms of HF. In this review, we discuss the proven role of ivabradine in the validated indication “HF with reduced EF” together with interesting preliminary findings, and the potential role of ivabradine in further, specific forms of HF.
Collapse
Affiliation(s)
| | - Georg Stöckl
- Department of Medical Affairs, Servier Deutschland GmbH, Munich
| | - Karl Werdan
- Department of Medicine III, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
10
|
|
11
|
Melka J, Rienzo M, Bizé A, Jozwiak M, Sambin L, Hittinger L, Su JB, Berdeaux A, Ghaleh B. Improvement of left ventricular filling by ivabradine during chronic hypertension: involvement of contraction-relaxation coupling. Basic Res Cardiol 2016; 111:30. [PMID: 27040115 DOI: 10.1007/s00395-016-0550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
Abstract
Chronic hypertension is associated with left ventricular (LV) hypertrophy and LV diastolic dysfunction with impaired isovolumic relaxation and abnormal LV filling. Increased heart rate (HR) worsens these alterations. We investigated whether the I f channel blocker ivabradine exerts beneficial effects on LV filling dynamic. In this setting, we also evaluated the relationship between LV filling and isovolumic contraction as a consequence of contraction-relaxation coupling. Therefore, hypertension was induced by a continuous infusion of angiotensin II during 28 days in 10 chronically instrumented pigs. LV function was investigated after stopping angiotensin II infusion to offset the changes in loading conditions. In the normal heart, LV relaxation filling, LV early filling, LV peak early filling rate were positively correlated to HR. In contrast, these parameters were significantly reduced at day 28 vs. day 0 (18, 42, and 26 %, respectively) despite the increase in HR (108 ± 6 beats/min vs. 73 ± 2 beats/min, respectively). These abnormalities were corrected by acute administration of ivabradine (1 mg/kg, iv). Ivabradine still exerted these effects when HR was controlled at 150 beats/min by atrial pacing. Interestingly, LV relaxation filling, LV early filling and LV peak early filling were strongly correlated with both isovolumic contraction and relaxation. In conclusion, ivabradine improves LV filling during chronic hypertension. The mechanism involves LV contraction-relaxation coupling through normalization of isovolumic contraction and relaxation as well as HR-independent mechanisms.
Collapse
Affiliation(s)
- Jonathan Melka
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
| | - Mario Rienzo
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
- AP-HP, Hôpital Européen Georges Pompidou, Service d'Anesthésie-Réanimation Chirurgicale, 75015, Paris, France
| | - Alain Bizé
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
| | - Mathieu Jozwiak
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
| | - Lucien Sambin
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
| | - Luc Hittinger
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
- AP-HP, Groupe Hospitalier Henri Mondor, Fédération de Cardiologie, 94000, Créteil, France
| | - Jin Bo Su
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
| | - Alain Berdeaux
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France
- AP-HP, Groupe Hospitalier Henri Mondor, Fédération de Cardiologie, 94000, Créteil, France
| | - Bijan Ghaleh
- Faculté de Médecine, Inserm, U955, Equipe 03, 8 rue du Général Sarrail, 94000, Créteil, France.
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, 94000, Créteil, France.
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, 94000, Maisons-Alfort, France.
| |
Collapse
|
12
|
Heusch G, Kleinbongard P. Ivabradine: Cardioprotection By and Beyond Heart Rate Reduction. Drugs 2016; 76:733-40. [DOI: 10.1007/s40265-016-0567-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Abstract
Elevated resting heart rate has been linked to poor outcomes in patients with chronic systolic heart failure. Blockade of funny current channel with ivabradine reduces heart rate without inotropic effects. Ivabradine was recently approved by US Food and Drug Administration for patients with stable, symptomatic chronic heart failure (HF) with left ventricular ejection fraction (LVEF) ≤35 %, who are in sinus rhythm with resting heart rate (HR) ≥ 70 bpm and either are on maximally tolerated doses of beta-blockers, or have a contraindication to beta-blockers. This article will review and evaluate the data supporting the use of ivabradine in patients with HF and explore its mechanisms and physiologic effects.
Collapse
Affiliation(s)
- Gabriela Orasanu
- Advanced Heart Failure and Transplantation Center, Harrington Heart & Vascular Institute, Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Sadeer G Al-Kindi
- Advanced Heart Failure and Transplantation Center, Harrington Heart & Vascular Institute, Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Guilherme H Oliveira
- Advanced Heart Failure and Transplantation Center, Harrington Heart & Vascular Institute, Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
14
|
Su JB. Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol 2015; 7:719-741. [PMID: 26635921 PMCID: PMC4660468 DOI: 10.4330/wjc.v7.i11.719] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.
Collapse
|