1
|
Crane A, Shanahan RM, Hudson JS, Nowicki KW, Gersey ZC, Agarwal P, Jacobs RC, Lang MJ, Gross B. Pharmaceutical Modulation of Intracranial Aneurysm Development and Rupture. J Clin Med 2024; 13:3324. [PMID: 38893035 PMCID: PMC11173282 DOI: 10.3390/jcm13113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Management of intracranial aneurysms (IAs) is determined by patient age, risk of rupture, and comorbid conditions. While endovascular and microsurgical interventions offer solutions to mitigate the risk of rupture, pharmacological management strategies may complement these approaches or serve as alternatives in appropriate cases. The pathophysiology of IAs allows for the targeting of inflammation to prevent the development and rupture of IAs. The aim of this review is to provide an updated summary of different pharmaceutical management strategies for IAs. Acetylsalicylic acid and renin-angiotensin-aldosterone system (RAAS) inhibitor antihypertensives have some evidence supporting their protective effect. Studies of selective cyclooxygenase-2 (COX-2) inhibitors, statins, ADP inhibitors, and other metabolism-affecting drugs have demonstrated inconclusive findings regarding their association with aneurysm growth or rupture. In this manuscript, we highlight the evidence supporting each drug's effectiveness.
Collapse
Affiliation(s)
- Alex Crane
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Regan M. Shanahan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Joseph S. Hudson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Kamil W. Nowicki
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Zachary C. Gersey
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Prateek Agarwal
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Rachel C. Jacobs
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Michael J. Lang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Bradley Gross
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| |
Collapse
|
2
|
Wang K, Xiao Y, Zhang W, Yang H, Li C, Wang J, Li G. Elucidating key immunological biomarkers and immune microenvironment dynamics in aging-related intracranial aneurysm through integrated multi-omics analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2642-2654. [PMID: 38214030 DOI: 10.1002/tox.24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The exact cause of intracranial aneurysms (IA) is still unclear. However, pro-inflammatory factors are known to contribute to IA progression. The specific changes in the immune microenvironment of IAs remain largely unexplored. METHODS This study analyzed single-cell sequencing data from a male mouse model of brain aneurysm, focusing on samples before and after elastase-induced Willis aneurysms. The data helped identify eight distinct cell subpopulations: fibroblasts, macrophages, NK cells, endothelial cells, B cells, granulocytes, and monocytes. The study also involved bulk RNA sequencing of 97 IA samples, utilizing ssGSEA and CIBERSORT algorithms for analysis. Intercellular communication among these cells was inferred to understand the immune dynamics in IA. RESULTS The study found that fibroblasts and macrophages are predominant in various disease states of IA. Notably, the onset of IA was marked by a significant increase in fibroblasts and a decrease in macrophages. There was a marked increase in cellular interactions, especially involving macrophages, at the onset of the disease. Through enrichment analysis, 12 potential immunogenic biomarkers were identified. Of these, Rgs1 emerged as a critical molecule in IA formation, confirmed through secondary validation in a single-cell sequencing dataset. CONCLUSION This comprehensive analysis of immune cell composition and intercellular communication in IA tissues highlights the significant roles of macrophages and the molecule Rgs1. These findings shed light on the physiological and pathological conditions of IA, offering new insights into its immune microenvironment.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yangyang Xiao
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiguang Yang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chaoqun Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Guoshu Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Xing Z, Hao Z, Zeng Y, Tan J, Zhang Z, Zhao Y, Zhu H, Li M. Impinging Flow Mediates Vascular Endothelial Cell Injury through the PKCα/ERK/PPARγ Pathway in vitro. Cerebrovasc Dis 2024:1-13. [PMID: 38688248 DOI: 10.1159/000539000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION This study aimed to elucidate the mechanisms underlying endothelial injury in the context of intracranial aneurysm formation and development, which are associated with vascular endothelial injury caused by hemodynamic abnormalities. Specifically, we focus on the involvement of PKCα, an intracellular signaling transmitter closely linked to vascular diseases, and its role in activating MAPK. Additionally, we investigate the protective effects of PPARγ, a vasculoprotective factor known to attenuate vascular injury by mitigating the inflammatory response in the vessel wall. METHODS The study employs a modified T-chamber to replicate fluid flow conditions at the artery bifurcation, allowing us to assess wall shear stress effects on human umbilical vein endothelial cells in vitro. Through experimental manipulations involving PKCα knockdown and Ca2+ and MAPK inhibitors, we evaluated the phosphorylation status of PKCα, NF-κB, ERK5, ERK1/2, JNK1/2/3, and P38, as well as the expression levels of PPARγ, NF-κB, and MMP2 via Western blot analysis. The cellular localization of phosphorylated NF-κB was determined using immunofluorescence. RESULTS Our results showed that impinging flow resulted in the activation of PKCα, followed by the phosphorylation of ERK5, ERK1/2, and JNK1/2/3, leading to a decrease in PPARγ expression, an increase in the expression of NF-κB and MMP2, and the induction of apoptotic injury. Inhibition of PKCα activation or knockdown of PKCα using shRNA leads to a suppression of ERK5, ERK1/2, JNK1/2/3, and P38 phosphorylation, an elevation in PPARγ expression, and a reduction in NF-κB and MMP2 expression, alleviated apoptotic injury. Furthermore, we observe that the regulation of PPARγ, NF-κB, and MMP2 expression is influenced by ERK5 and ERK1/2 phosphorylation, and activation of PPARγ effectively counteracts the elevated expression of NF-κB and MMP2. CONCLUSION Our findings suggest that the PKCα/ERK/PPARγ pathway plays a crucial role in mediating endothelial injury under conditions of impinging flow, with potential implications for vascular diseases and intracranial aneurysm development.
Collapse
Affiliation(s)
- Zelong Xing
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Jiujiang University Affiliated Hospital, Jiujiang, China
| | - Zheng Hao
- Trauma Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Tan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Jiujiang University Affiliated Hospital, Jiujiang, China
| | - Yeyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Khan D, Li X, Hashimoto T, Tanikawa R, Niemela M, Lawton M, Muhammad S. Current Mouse Models of Intracranial Aneurysms: Analysis of Pharmacological Agents Used to Induce Aneurysms and Their Impact on Translational Research. J Am Heart Assoc 2024; 13:e031811. [PMID: 38258667 PMCID: PMC11056163 DOI: 10.1161/jaha.123.031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Intracranial aneurysms (IAs) are rare vascular lesions that are more frequently found in women. The pathophysiology behind the formation and growth of IAs is complex. Hence, to date, no single pharmacological option exists to treat them. Animal models, especially mouse models, represent a valuable tool to explore such complex scientific questions. Genetic modification in a mouse model of IAs, including deletion or overexpression of a particular gene, provides an excellent means for examining basic mechanisms behind disease pathophysiology and developing novel pharmacological approaches. All existing animal models need some pharmacological treatments, surgical interventions, or both to develop IAs, which is different from the spontaneous and natural development of aneurysms under the influence of the classical risk factors. The benefit of such animal models is the development of IAs in a limited time. However, clinical translation of the results is often challenging because of the artificial course of IA development and growth. Here, we summarize the continuous improvement in mouse models of IAs. Moreover, we discuss the pros and cons of existing mouse models of IAs and highlight the main translational roadblocks and how to improve them to increase the success of translational IA research.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Xuanchen Li
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
| | - Tomoki Hashimoto
- Department of Neurosurgery and NeurobiologyBarrow Neurological InstitutePhoenixAZUSA
| | - Rokuya Tanikawa
- Department of Neurosurgery, Stroke CenterSapporo Teishinkai HospitalSapporoHokkaidoJapan
| | - Mika Niemela
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Michael Lawton
- Department of Neurological SurgeryBarrow Neurological Institute, St. Joseph’s Hospital and Medical CenterPhoenixAZUSA
| | - Sajjad Muhammad
- Department of NeurosurgeryMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐Universität DüsseldorfDüsseldorfGermany
- Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
5
|
Wang Z, Ma J, Yue H, Zhang Z, Fang F, Wang G, Liu X, Shen Y. Vascular smooth muscle cells in intracranial aneurysms. Microvasc Res 2023:104554. [PMID: 37236346 DOI: 10.1016/j.mvr.2023.104554] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Intracranial aneurysm (IA) is a severe cerebrovascular disease characterized by abnormal bulging of cerebral vessels that may rupture and cause a stroke. The expansion of the aneurysm accompanies by the remodeling of vascular matrix. It is well-known that vascular remodeling is a process of synthesis and degradation of extracellular matrix (ECM), which is highly dependent on the phenotype of vascular smooth muscle cells (VSMCs). The phenotypic switching of VSMC is considered to be bidirectional, including the physiological contractile phenotype and alternative synthetic phenotype in response to injury. There is increasing evidence indicating that VSMCs have the ability to switch to various phenotypes, including pro-inflammatory, macrophagic, osteogenic, foamy and mesenchymal phenotypes. Although the mechanisms of VSMC phenotype switching are still being explored, it is becoming clear that phenotype switching of VSMCs plays an essential role in IA formation, progression, and rupture. This review summarized the various phenotypes and functions of VSMCs associated with IA pathology. The possible influencing factors and potential molecular mechanisms of the VSMC phenotype switching were further discussed. Understanding how phenotype switching of VSMC contributed to the pathogenesis of unruptured IAs can bring new preventative and therapeutic strategies for IA.
Collapse
Affiliation(s)
- Zhenye Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhewei Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China; Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
6
|
Xin C, Zhang J, Hao N, Wang J, Liu H, Wei H, Wang Y, Wang C, Wang S, Zheng C, Zhang Z, Jin Z. Irisin inhibits NLRP3 inflammasome activation in HG/HF incubated cardiac microvascular endothelial cells with H/R injury. Microcirculation 2022; 29:e12786. [PMID: 36151930 DOI: 10.1111/micc.12786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE NLRP3 inflammasome mediates myocardial ischemia/reperfusion (MI/R) injury and diabetic vascular endothelia dysfunction. However, the role of NLRP3 inflammasome in MI/R injury with diabetes has not been fully described. Irisin plays an important role in anti-inflammation and improves endothelial function in type 2 diabetes. The current study aimed to investigate the effect of irisin on regulating NLRP3 inflammasome activation in diabetic vascular endothelia dysfunction. METHODS Cardiac microvascular endothelial cells (CMECs) were cultured and subjected to high glucose/high fat (HG/HF) receiving hypoxia/reoxygenation (H/R) with irisin incubation or not. Then, apoptosis, viability, migration, NO secretion, and inflammasome activation were examined. RESULTS The hypoxic CMECs exhibited increased apoptosis, impaired viability, and migration, even decreased NO secretion and enhanced inflammasome activation. Moreover, irisin incubation decreased NLRP3 activation and attenuated cell injury in HG/HF cultured CMECs subjected to H/R injury, which was abolished by NLRP3 inflammasome activation. Meanwhile, NLRP3 inflammasome siRNA also attenuated H/R injury in CMECs under HG/HF condition. CONCLUSION The current study demonstrated for the first time that irisin inhibits NLRP3 inflammasome activation in CMECs as a novel mechanism in myocardial ischemia/reperfusion injury in diabetes.
Collapse
Affiliation(s)
- Chao Xin
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jinglong Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ningbo Hao
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jianan Wang
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hui Liu
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hanwen Wei
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yong Wang
- The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Chengzhu Wang
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shuo Wang
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chengrong Zheng
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zheng Zhang
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhitao Jin
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
7
|
Fréneau M, Baron-Menguy C, Vion AC, Loirand G. Why Are Women Predisposed to Intracranial Aneurysm? Front Cardiovasc Med 2022; 9:815668. [PMID: 35224050 PMCID: PMC8866977 DOI: 10.3389/fcvm.2022.815668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Intracranial aneurysm (IA) is a frequent and generally asymptomatic cerebrovascular abnormality characterized as a localized dilation and wall thinning of intracranial arteries that preferentially arises at the arterial bifurcations of the circle of Willis. The devastating complication of IA is its rupture, which results in subarachnoid hemorrhage that can lead to severe disability and death. IA affects about 3% of the general population with an average age for detection of rupture around 50 years. IAs, whether ruptured or unruptured, are more common in women than in men by about 60% overall, and more especially after the menopause where the risk is double-compared to men. Although these data support a protective role of estrogen, differences in the location and number of IAs observed in women and men under the age of 50 suggest that other underlying mechanisms participate to the greater IA prevalence in women. The aim of this review is to provide a comprehensive overview of the current data from both clinical and basic research and a synthesis of the proposed mechanisms that may explain why women are more prone to develop IA.
Collapse
|
8
|
RNA Sequencing Data from Human Intracranial Aneurysm Tissue Reveals a Complex Inflammatory Environment Associated with Rupture. Mol Diagn Ther 2021; 25:775-790. [PMID: 34403136 DOI: 10.1007/s40291-021-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intracranial aneurysm (IA) rupture leads to deadly subarachnoid hemorrhages. However, the mechanisms leading to rupture remain poorly understood. Altered gene expression within IA tissue is linked to the pathobiology of aneurysm development and progression. Here, we analyzed expression patterns of control tissue samples and compared them to those of unruptured and ruptured IA tissue samples using data from the Gene Expression Omnibus (GEO). METHODS FASTQ files for 21 ruptured IAs, 21 unruptured IAs, and 16 control tissue samples were accessed from the GEO database. DESeq2 was used for differential expression analysis in three comparisons: unruptured IA versus control, ruptured IA versus control, and ruptured versus unruptured IA. Genes that were differentially expressed in multiple comparisons were evaluated to find those progressively increasing/decreasing from control to unruptured to ruptured. Significance was tested by either analysis of variance/Gabriel or Brown-Forsythe/Games Howell (p < 0.05 was considered significant). We used additional RNA sequencing and proteomics datasets to evaluate if our differentially expressed genes (DEGs) were present in other studies. Bioinformatics analyses were performed with g:Profiler and Ingenuity Pathway Analysis. RESULTS In total, we identified 1768 DEGs, of which 318 were found in multiple comparisons. Unruptured versus control reflected vascular remodeling processes, while ruptured versus control reflected inflammatory responses and cell activation/signaling. When comparing ruptured to unruptured IAs, we found massive activation of inflammation, inflammatory responses, and leukocyte responses. Of the 318 genes in multiple comparisons, 127 were found to be significant in the multi-cohort correlation analysis. Those that progressively increased (70 genes) were associated with immune system processes, while those that progressively decreased (38 genes) did not return any gene ontology terms. Many of our DEGs were also found in the other IA tissue sequencing studies. CONCLUSIONS We found unruptured IAs relate more to remodeling processes, while ruptured IAs reflect more inflammatory and immune responses.
Collapse
|
9
|
Xu H, Stamova B, Ander BP, Waldau B, Jickling GC, Sharp FR, Ko NU. mRNA Expression Profiles from Whole Blood Associated with Vasospasm in Patients with Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:82-89. [PMID: 31595394 PMCID: PMC7392923 DOI: 10.1007/s12028-019-00861-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Though there are many biomarker studies of plasma and serum in patients with aneurysmal subarachnoid hemorrhage (SAH), few have examined blood cells that might contribute to vasospasm. In this study, we evaluated inflammatory and prothrombotic pathways by examining mRNA expression in whole blood of SAH patients with and without vasospasm. Methods Adult SAH patients with vasospasm (n = 29) and without vasospasm (n = 21) were matched for sex, race/ethnicity, and aneurysm treatment method. Diagnosis of vasospasm was made by angiography. mRNA expression was measured by Affymetrix Human Exon 1.0 ST Arrays. SAH patients with vasospasm were compared to those without vasospasm by ANCOVA to identify differential gene, exon, and alternatively spliced transcript expression. Analyses were adjusted for age, batch, and time of blood draw after SAH. Results At the gene level, there were 259 differentially expressed genes between SAH patients with vasospasm compared to patients without (false discovery rate < 0.05, |fold change| ≥ 1.2). At the exon level, 1210 exons representing 1093 genes were differentially regulated between the two groups (P < 0.005, ≥ 1.2 |fold change|). Principal components analysis segregated SAH patients with and without vasospasm. Signaling pathways for the 1093 vasospasm-related genes included adrenergic, P2Y, ET-1, NO, sildenafil, renin–angiotensin, thrombin, CCR3, CXCR4, MIF, fMLP, PKA, PKC, CRH, PPARα/RXRα, and calcium. Genes predicted to be alternatively spliced included IL23A, RSU1, PAQR6, and TRIP6. Conclusions This is the first study to demonstrate that mRNA expression in whole blood distinguishes SAH patients with vasospasm from those without vasospasm and supports a role of coagulation and immune systems in vasospasm. Electronic supplementary material The online version of this article (10.1007/s12028-019-00861-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huichun Xu
- Department of Medicine, University of Maryland, College Park, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Ben Waldau
- Neurosurgery, University of California at Davis, Sacramento, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.,Department of Neurology, University of Alberta, Edmonton, Canada
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.
| | - Nerissa U Ko
- Department of Neurology, University of California at San Francisco, San Francisco, USA
| |
Collapse
|
10
|
Zhang X, Kang YX, Kong W, Zhang YL, Ju T. Relationship between peroxisome proliferator-activated receptor-γ mRNA expression and intracranial aneurysm rupture. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211028720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has been reported that the normal adults can suffer from an intracranial aneurysm (IA) that might present the risk of rupture and cause the subarachnoid hemorrhage. Peroxisome proliferator-activated receptor-γ (PPAR-γ) as a nuclear hormone receptor has been identified to involve in the progress of the formation and rupture of IAs. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect PPAR-γmRNA expression in the macrophages of the patients with IAs. The information including fasting blood glucose (FBG), interleukin-6 (IL-6), and systolic blood pressure (SBP) were collected. The aneurysm parameters of all the participants were obtained through the cerebral angiography. Establishing the receiver-operating characteristic curve (ROC curve) evaluated the clinical significances of PPAR-γmRNA for IAs rupture. In this study, we observed that the rupture of IAs was caused by the maximum height of aneurysm ⩾7 mm, the location of aneurysm in posterior communicating artery (PCOM) or anterior communicating artery (ACOM), and the increase of aneurysm size ratio (SR). The levels of SBP and IL-6 in the rupture group were higher than those in the unrupture group, and PPAR-γmRNA expression in the rupture group was also significantly reduced. In addition, heavy drinking was statistically significant between the ruptured and unruptured groups. There was no significant difference in serum FBG level between the two groups. The evidences of this study showed that PPAR-γmRNA was negatively correlated with SBP, SR, and IL-6 levels in rupture group, respectively. The AUC of PPAR-γmRNA in ROC curve was 0.867, indicating that the change of PPAR-γmRNA level had obvious effect on IAs rupture. The aim of this study was to evaluate the potential of PPAR-γ in macrophages to prevent IAs rupture.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Laboratory, The First People’s Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Yan-Xun Kang
- Department of Medical Imaging, The First People’s Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Wei Kong
- Department of Neurology, The First People’s Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Ya-Lan Zhang
- Department of Laboratory, The First People’s Hospital of Xianyang, Xianyang, Shaanxi, China
| | - Tao Ju
- Department of Neurosurgery, Xianyang Hospital of Yan’an University, Xianyang, Shaanxi, China
| |
Collapse
|
11
|
Involvement of Microglia in the Pathophysiology of Intracranial Aneurysms and Vascular Malformations-A Short Overview. Int J Mol Sci 2021; 22:ijms22116141. [PMID: 34200256 PMCID: PMC8201350 DOI: 10.3390/ijms22116141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysms and vascular malformations of the brain represent an important source of intracranial hemorrhage and subsequent mortality and morbidity. We are only beginning to discern the involvement of microglia, the resident immune cell of the central nervous system, in these pathologies and their outcomes. Recent evidence suggests that activated proinflammatory microglia are implicated in the expansion of brain injury following subarachnoid hemorrhage (SAH) in both the acute and chronic phases, being also a main actor in vasospasm, considerably the most severe complication of SAH. On the other hand, anti-inflammatory microglia may be involved in the resolution of cerebral injury and hemorrhage. These immune cells have also been observed in high numbers in brain arteriovenous malformations (bAVM) and cerebral cavernomas (CCM), although their roles in these lesions are currently incompletely ascertained. The following review aims to shed a light on the most significant findings related to microglia and their roles in intracranial aneurysms and vascular malformations, as well as possibly establish the course for future research.
Collapse
|
12
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
13
|
Que Y, Shu X, Wang L, Wang S, Li S, Hu P, Tong X. Inactivation of SERCA2 Cys 674 accelerates aortic aneurysms by suppressing PPARγ. Br J Pharmacol 2021; 178:2305-2323. [PMID: 33591571 DOI: 10.1111/bph.15411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Inactivation of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes intracellular Ca2+ accumulation, which activates calcineurin-mediated nuclear factor of activated T-lymphocytes (NFAT)/NF-κB pathways, and results in the phenotypic modulation of smooth muscle cells (SMCs) to accelerate angiotensin II-induced aortic aneurysms. Our goal was to investigate the mechanism involved. EXPERIMENTAL APPROACH We used heterozygous SERCA2 C674S knock-in (SKI) mice, where half of C674 was substituted by serine, to mimic partial irreversible oxidation of C674. The aortas of SKI mice and their littermate wild-type mice were collected for RNA sequencing, cell culture, protein expression, luciferase activity and aortic aneurysm analysis. KEY RESULTS Inactivation of C674 inhibited the promoter activity and protein expression of PPARγ, which could be reversed by inhibitors of calcineurin or NF-κB. In SKI SMCs, inhibition of NF-κB by pyrrolidinedithiocarbamic acid (PDTC) or overexpression of PPARγ2 reversed the protein expression of SMC phenotypic modulation markers and inhibited cell proliferation, migration, and macrophage adhesion to SMCs. Pioglitazone, a PPARγ agonist, blocked the activation of NFAT/NF-κB, reversed the protein expression of SMC phenotypic modulation markers, and inhibited cell proliferation, migration, and macrophage adhesion to SMCs in SKI SMCs. Furthermore, pioglitazone also ameliorated angiotensin II-induced aortic aneurysms in SKI mice. CONCLUSIONS AND IMPLICATIONS The inactivation of SERCA2 C674 promotes the development of aortic aneurysms by disrupting the balance between PPARγ and NFAT/NF-κB. Our study highlights the importance of C674 redox status in regulating PPARγ to maintain aortic homeostasis.
Collapse
Affiliation(s)
- Yumei Que
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xi Shu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Langtao Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Sai Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Muhammad S, Chaudhry SR, Dobreva G, Lawton MT, Niemelä M, Hänggi D. Vascular Macrophages as Therapeutic Targets to Treat Intracranial Aneurysms. Front Immunol 2021; 12:630381. [PMID: 33763073 PMCID: PMC7982735 DOI: 10.3389/fimmu.2021.630381] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a highly fatal and morbid type of hemorrhagic strokes. Intracranial aneurysms (ICAs) rupture cause subarachnoid hemorrhage. ICAs formation, growth and rupture involves cellular and molecular inflammation. Macrophages orchestrate inflammation in the wall of ICAs. Macrophages generally polarize either into classical inflammatory (M1) or alternatively-activated anti-inflammatory (M2)-phenotype. Macrophage infiltration and polarization toward M1-phenotype increases the risk of aneurysm rupture. Strategies that deplete, inhibit infiltration, ameliorate macrophage inflammation or polarize to M2-type protect against ICAs rupture. However, clinical translational data is still lacking. This review summarizes the contribution of macrophage led inflammation in the aneurysm wall and discuss pharmacological strategies to modulate the macrophageal response during ICAs formation and rupture.
Collapse
Affiliation(s)
- Sajjad Muhammad
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Anatomy and Developmental Biology, Medical Faculty Mannheim and European Center for Angioscience (ECAS), University of Heidelberg, Mannheim, Germany
| | - Shafqat Rasul Chaudhry
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim and European Center for Angioscience (ECAS), University of Heidelberg, Mannheim, Germany
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Brain and Spine, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
15
|
Endogenous animal models of intracranial aneurysm development: a review. Neurosurg Rev 2021; 44:2545-2570. [PMID: 33501561 DOI: 10.1007/s10143-021-01481-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in animals. Studies that constructed aneurysms (i.e., by surgically creating a sac) were excluded. From the eligible studies, we reported information including the animal species, method for aneurysm induction, aneurysm definitions, evaluation methods, aneurysm characteristics, formation rate, rupture rate, and time course. Between 1960 and 2019, 174 articles reported endogenous animal models of IA. The majority used flow modification, hypertension, and vessel wall weakening (i.e., elastase treatment) to induce IAs, primarily in rats and mice. Most studies utilized subjective or qualitative descriptions to define experimental aneurysms and histology to study them. In general, experimental IAs resembled the pathobiology of the human disease in terms of internal elastic lamina loss, medial layer degradation, and inflammatory cell infiltration. After the early 2000s, many endogenous animal models of IA began to incorporate state-of-the-art technology, such as gene expression profiling and 9.4-T magnetic resonance imaging (MRI) in vivo imaging, to quantitatively analyze the biological mechanisms of IA. Future studies aimed at longitudinally assessing IA pathobiology in models that incorporate aneurysm growth will likely have the largest impact on our understanding of the disease. We believe this will be aided by high-resolution, small animal, survival imaging, in situ live-cell imaging, and next-generation omics technology.
Collapse
|
16
|
Preclinical Intracranial Aneurysm Models: A Systematic Review. Brain Sci 2020; 10:brainsci10030134. [PMID: 32120907 PMCID: PMC7139747 DOI: 10.3390/brainsci10030134] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/30/2022] Open
Abstract
Intracranial aneurysms (IA) are characterized by weakened cerebral vessel walls that may lead to rupture and subarachnoid hemorrhage. The mechanisms behind their formation and progression are yet unclear and warrant preclinical studies. This systematic review aims to provide a comprehensive, systematic overview of available animal models for the study of IA pathobiology. We conducted a systematic literature search using the PubMed database to identify preclinical studies employing IA animal models. Suitable articles were selected based on predefined eligibility criteria following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Included studies were reviewed and categorized according to the experimental animal and aneurysm model. Of 4266 returned results, 3930 articles were excluded based on the title and/or abstract and further articles after screening the full text, leaving 123 studies for detailed analysis. A total of 20 different models were found in rats (nine), mice (five), rabbits (four), and dogs (two). Rat models constituted the most frequently employed intracranial experimental aneurysm model (79 studies), followed by mice (31 studies), rabbits (12 studies), and two studies in dogs. The most common techniques to induce cerebral aneurysms were surgical ligation of the common carotid artery with subsequent induction of hypertension by ligation of the renal arteries, followed by elastase-induced creation of IAs in combination with corticosterone- or angiotensin-induced hypertension. This review provides a comprehensive summary of the multitude of available IA models to study various aspects of aneurysm formation, growth, and rupture. It will serve as a useful reference for researchers by facilitating the selection of the most appropriate model and technique to answer their scientific question.
Collapse
|
17
|
Luan P, Jian W, Xu X, Kou W, Yu Q, Hu H, Li D, Wang W, Feinberg MW, Zhuang J, Xu Y, Peng W. NLRC5 inhibits neointima formation following vascular injury and directly interacts with PPARγ. Nat Commun 2019; 10:2882. [PMID: 31253783 PMCID: PMC6599027 DOI: 10.1038/s41467-019-10784-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
NLR Family CARD Domain Containing 5 (NLRC5), an important immune regulator in innate immunity, is involved in regulating inflammation and antigen presentation. However, the role of NLRC5 in vascular remodeling remains unknown. Here we report the role of NLRC5 on vascular remodeling and provide a better understanding of its underlying mechanism. Nlrc5 knockout (Nlrc5−/−) mice exhibit more severe intimal hyperplasia compared with wild-type mice after carotid ligation. Ex vivo data shows that NLRC5 deficiency leads to increased proliferation and migration of human aortic smooth muscle cells (HASMCs). NLRC5 binds to PPARγ and inhibits HASMC dedifferentiation. NACHT domain of NLRC5 is essential for the interaction with PPARγ and stimulation of PPARγ activity. Pioglitazone significantly rescues excessive intimal hyperplasia in Nlrc5−/− mice and attenuates the increased proliferation and dedifferentiation in NLRC5-deficient HASMCs. Our study demonstrates that NLRC5 regulates vascular remodeling by directly inhibiting SMC dysfunction via its interaction with PPARγ. NLRC5 is known for its role in inflammation and antigen presentation. Here Luan et al. find that NLRC5 protects mice from intimal hyperplasia following vascular injury, and regulates the response of vascular smooth muscle cells to injury through direct interaction with PPARγ.
Collapse
Affiliation(s)
- Peipei Luan
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Weixia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Xu Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Handan Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
18
|
Fulop GA, Ramirez-Perez FI, Kiss T, Tarantini S, Valcarcel Ares MN, Toth P, Yabluchanskiy A, Conley SM, Ballabh P, Martinez-Lemus LA, Ungvari Z, Csiszar A. IGF-1 Deficiency Promotes Pathological Remodeling of Cerebral Arteries: A Potential Mechanism Contributing to the Pathogenesis of Intracerebral Hemorrhages in Aging. J Gerontol A Biol Sci Med Sci 2019; 74:446-454. [PMID: 29931048 PMCID: PMC6417448 DOI: 10.1093/gerona/gly144] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Clinical and experimental studies show that age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels promotes the pathogenesis of intracerebral hemorrhages, which critically contribute to the development of vascular cognitive impairment and disability in older adults. Yet, the mechanisms by which IGF-1 deficiency compromises structural integrity of the cerebral vasculature are not completely understood. To determine the role of IGF-1 deficiency in pathological remodeling of middle cerebral arteries (MCAs), we compared alterations in vascular mechanics, morphology, and remodeling-related gene expression profile in mice with liver-specific knockdown of IGF-1 (Igf1f/f + TBG-Cre-AAV8) and control mice with or without hypertension induced by angiotensin-II treatment. We found that IGF-1 deficiency resulted in thinning of the media and decreased wall-to-lumen ratio in MCAs. MCAs of control mice exhibited structural adaptation to hypertension, manifested as a significant increase in wall thickness, vascular smooth muscle cell (VSMC) hypertrophy, decreased internal diameter and up-regulation of extracellular matrix (ECM)-related genes. IGF-1 deficiency impaired hypertension-induced adaptive media hypertrophy and dysregulated ECM remodeling, decreasing elastin content and attenuating adaptive changes in ECM-related gene expression. Thus, circulating IGF-1 plays a critical role in maintenance of the structural integrity of cerebral arteries. Alterations of VSMC phenotype and pathological remodeling of the arterial wall associated with age-related IGF-1 deficiency have important translational relevance for the pathogenesis of intracerebral hemorrhages and vascular cognitive impairment in elderly hypertensive patients.
Collapse
Affiliation(s)
- Gabor A Fulop
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center; Departments of Biological Engineering and Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Tamas Kiss
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Marta Noa Valcarcel Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Neurosurgery, Medical School, University of Pecs, Hungary
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Shannon M Conley
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, New York
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center; Departments of Biological Engineering and Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
| |
Collapse
|
19
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 682] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
20
|
Gruszka W, Zbroszczyk M, Komenda J, Gruszczyńska K, Baron J. The role of inflammation and potential pharmacological therapy in intracranial aneurysms. Neurol Neurochir Pol 2018; 52:662-669. [PMID: 30190209 DOI: 10.1016/j.pjnns.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
Intracranial aneurysms remain important clinical concern. There is relatively low risk of rupture of symptomless aneurysms incidentally found in MRA or CTA performed due to other indications. Not all of the intracranial aneurysms should or can be treated with neurosurgery intervention or endovascular embolization. Clinical strategy for small, symptomless, unruptured aneurysms is still questionable. Mechanisms underlying aneurysms formation, progression and rupture are poorly understood. Inflammation is one of the factors suspected to participate in these processes. Therefore the aim of this manuscript is to present current state of knowledge about the role of inflammation in the formation and progression of intracranial aneurysms and in their rupture process. Current knowledge about possible pharmacological treatment of intracranial aneurysms will also be presented. Macrophages infiltration seems to participate in the formation of intracranial aneurysms. Inhibition of signals sent by macrophages may prevent the aneurysms formation. Inflammation present in the wall of the aneurysm seems to be also related to the aneurysm's rupture risk. However it does not seem to be the only cause of the degeneration, but it can be a possible target of drug therapy. Some preliminary studies in humans indicate the potential role of aspirin as a factor that decrease the level of inflammation and lower the risk of rupture of intracranial aneurysms. However further research including a greater number of subjects and a prospective randomized design are necessary to assess the role of aspirin in preventing strategy for small, symptomless, unruptured intracranial aneurysms.
Collapse
Affiliation(s)
- Wojciech Gruszka
- Department of Radiology and Interventional Radiology, Medical University of Silesia, Katowice, Poland; Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Miłosz Zbroszczyk
- Department of Radiology and Interventional Radiology, Medical University of Silesia, Katowice, Poland
| | - Jacek Komenda
- Department of Radiology and Interventional Radiology, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Gruszczyńska
- Department of Radiology and Interventional Radiology, Medical University of Silesia, Katowice, Poland
| | - Jan Baron
- Department of Radiology and Interventional Radiology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
21
|
Wang WD, Sun R, Chen YX. PPARγ agonist rosiglitazone alters the temporal and spatial distribution of inflammation during abdominal aortic aneurysm formation. Mol Med Rep 2018; 18:3421-3428. [PMID: 30066924 DOI: 10.3892/mmr.2018.9311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/19/2018] [Indexed: 11/06/2022] Open
Abstract
Research into inflammation during abdominal aortic aneurysm (AAA) formation remains inconclusive. The present study aimed to demonstrate the temporal and spatial distribution of inflammatory cytokines, and to confirm the effect of peroxisome proliferator‑activated receptor γ (PPARγ) on the incidence of AAA formation and the distribution of inflammation in the disease process. Male apolipoprotein E‑/‑ mice were randomly divided into eight groups: Angiotensin II (Ang‑II)‑only 7, 14, 21, 28 and 42 days groups, Ang‑II with rosiglitazone (RGZ) 28 and 42 days groups, and the saline control 42 days group. The early stage was defined as between 7 and 21 days, and the late stage as between 28 and 42 days. Incidences of early rupture and late rupture, aneurysm formation and the maximum diameters of the aorta were recorded. Suprarenal abdominal aortic tissues were collected for histological analysis, and western blotting was performed to reveal the distribution of inflammation. Treatment with Ang‑II caused a significant dilation of the aorta in the late stage; however, this was not observed in the early stage. RGZ reduced the maximum diameters in the late stage. With the pathological process alterations, the inflammatory type shifted. Regarding temporal distribution, the tumor necrosis factor (TNF)‑α expression level was increased over time, and the interleukin (IL)‑10 expression level significantly decreased. When considering the spatial distribution, TNF‑α was expressed dominantly in the aneurysmal body and IL‑10 was dominant in the aneurysmal neck in the late stage. The PPARγ agonist RGZ may reduce the expression of TNF‑α in the late stage and increase the expression level of IL‑10, maintaining the TNF‑α or IL‑10 expression levels at the same levels as in the early stage. Aortic inflammation during AAA formation is dynamic. Protective anti‑inflammatory cytokines are upregulated in the early 'compensatory stage'; however, pro‑inflammatory cytokines are dominant in the late 'decompensatory stage'. PPARγ is likely to continue to upregulate the expression of anti‑inflammatory cytokines, extend the 'compensatory stage', and decelerate the process of AAA development and rupture.
Collapse
Affiliation(s)
- Wen-Da Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Rui Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yue-Xin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
22
|
Kuwabara A, Liu J, Kamio Y, Liu A, Lawton MT, Lee JW, Hashimoto T. Protective Effect of Mesenchymal Stem Cells Against the Development of Intracranial Aneurysm Rupture in Mice. Neurosurgery 2018; 81:1021-1028. [PMID: 28431181 DOI: 10.1093/neuros/nyx172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem or stromal cells found in multiple tissues. Intravenous MSC injections have been used to treat various diseases with an inflammatory component in animals and humans. Inflammation is emerging as a key component of pathophysiology of intracranial aneurysms. Modulation of inflammation by MSCs may affect sustained inflammatory processes that lead to aneurysmal rupture. OBJECTIVE To assess the effect of MSCs on the development of aneurysm rupture using a mouse model. METHODS Intracranial aneurysms were induced with a combination of a single elastase injection into the cerebrospinal fluid and deoxycorticosterone acetate salt-induced hypertension in mice. We administered allogeneic bone marrow-derived MSCs or vehicle, 6 and 9 d after aneurysm induction. RESULTS MSC administration significantly reduced rupture rate (vehicle control vs MSCs, 90% vs 36%; P < .05). In cell culture experiments with an MSC and mast cell coculture, MSCs stabilized mast cells through cyclooxygenase-2 (COX-2)-dependent production of prostaglandin E2, thereby reducing the release of proinflammatory cytokines from mast cells. Pretreatment of MSCs with COX-2 inhibitor, NS-398, abolished the protective effect of MSCs against the development of aneurysm rupture. CONCLUSION Intravenous administration of MSCs after aneurysm formation prevented aneurysmal rupture in mice. The protective effect of MSCs against the development of aneurysm rupture appears to be mediated in part by the stabilization of mast cells by MSCs.
Collapse
Affiliation(s)
- Atsushi Kuwabara
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | - Jia Liu
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | - Yoshinobu Kamio
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | - Airan Liu
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | - Michael T Lawton
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
- Departments of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Jae-Woo Lee
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | - Tomoki Hashimoto
- Departments of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
- Departments of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
23
|
Macrophage Polarization in Cerebral Aneurysm: Perspectives and Potential Targets. J Immunol Res 2017; 2017:8160589. [PMID: 29445758 PMCID: PMC5763122 DOI: 10.1155/2017/8160589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Cerebral aneurysms (CAs) have become a health burden not only because their rupture is life threatening, but for a series of devastating complications left in survivors. It is well accepted that sustained chronic inflammation plays a crucial role in the pathology of cerebral aneurysms. In particular, macrophages have been identified as critical effector cells orchestrating inflammation in CAs. In recent years, dysregulated M1/M2 polarization has been proposed to participate in the progression of CAs. Although the pathological mechanisms of M1/M2 imbalance in CAs remain largely unknown, recent advances have been made in the understanding of the molecular basis and other immune cells involving in this sophisticated network. We provide a concise overview of the mechanisms associated with macrophage plasticity and the emerging molecular targets.
Collapse
|
24
|
Doderer SA, Gäbel G, Kokje VBC, Northoff BH, Holdt LM, Hamming JF, Lindeman JHN. Adventitial adipogenic degeneration is an unidentified contributor to aortic wall weakening in the abdominal aortic aneurysm. J Vasc Surg 2017; 67:1891-1900.e4. [PMID: 28912007 DOI: 10.1016/j.jvs.2017.05.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/01/2017] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The processes driving human abdominal aortic aneurysm (AAA) progression are not fully understood. Although antiinflammatory and proteolytic strategies effectively quench aneurysm progression in preclinical models, so far all clinical interventions failed. These observations hint at an incomplete understanding of the processes involved in AAA progression and rupture. Interestingly, strong clinical and molecular associations exist between popliteal artery aneurysms (PAAs) and AAAs; however, PAAs have an extremely low propensity to rupture. We thus reasoned that differences between these aneurysms may provide clues toward (auxiliary) processes involved in AAA-related wall debilitation. A better understanding of the pathophysiologic processes driving AAA growth can contribute to pharmaceutical treatments in the future. METHODS Aneurysmal wall samples were collected during open elective and emergency repair. Control perirenal aorta was obtained during kidney transplantation, and reference popliteal tissue obtained from the anatomy department. This study incorporates various techniques including (immuno)histochemistry, Western Blot, quantitative polymerase chain reaction, microarray, and cell culture. RESULTS Histologic evaluation of AAAs, PAAs, and control aorta shows extensive medial (PAA) and transmural fibrosis (AAA), and reveals abundant adventitial adipocytes aggregates as an exclusive phenomenon of AAAs (P < .001). Quantitative polymerase chain reaction, immunohistochemistry, Western blotting, and microarray analysis showed enrichment of adipogenic mediators (C/EBP family P = .027; KLF5 P < .000; and peroxisome proliferator activated receptor-γ, P = .032) in AAA tissue. In vitro differentiation tests indicated a sharply increased adipogenic potential of AAA adventitial mesenchymal cells (P < .0001). Observed enrichment of adipocyte-related genes and pathways in ruptured AAA (P < .0003) supports an association between the extent of fatty degeneration and rupture. CONCLUSIONS This translational study identifies extensive adventitial fatty degeneration as an ignored and distinctive feature of AAA disease. Enrichment of adipocyte genesis and adipocyte-related genes in ruptured AAA point to an association between the extent of fatty degeneration and rupture. This observation may (partly) explain the failure of medical therapy and could provide a lead for pharmaceutical alleviation of AAA progression.
Collapse
Affiliation(s)
- Stefan A Doderer
- Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vivianne B C Kokje
- Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Bernd H Northoff
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jaap F Hamming
- Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
25
|
Zhang J, Xia L, Zhang F, Zhu D, Xin C, Wang H, Zhang F, Guo X, Lee Y, Zhang L, Wang S, Guo X, Huang C, Gao F, Liu Y, Tao L. A novel mechanism of diabetic vascular endothelial dysfunction: Hypoadiponectinemia-induced NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1556-1567. [DOI: 10.1016/j.bbadis.2017.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
|
26
|
Amenta PS, Medel R, Pascale CL, Dumont AS. Elucidating Sex Differences in Cerebral Aneurysm Biology and Therapy. Hypertension 2016; 68:312-4. [DOI: 10.1161/hypertensionaha.116.07606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peter S. Amenta
- From the Department of Neurosurgery, Tulane Clinical Neurosciences Institute, Tulane University School of Medicine, New Orleans, LA
| | - Ricky Medel
- From the Department of Neurosurgery, Tulane Clinical Neurosciences Institute, Tulane University School of Medicine, New Orleans, LA
| | - Crissey L. Pascale
- From the Department of Neurosurgery, Tulane Clinical Neurosciences Institute, Tulane University School of Medicine, New Orleans, LA
| | - Aaron S. Dumont
- From the Department of Neurosurgery, Tulane Clinical Neurosciences Institute, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
27
|
Chalouhi N, Starke RM, Correa T, Jabbour P, Zanaty M, Brown R, Torner J, Hasan D. Differential Sex Response to Aspirin in Decreasing Aneurysm Rupture in Humans and Mice. Hypertension 2016; 68:411-7. [PMID: 27296993 PMCID: PMC4945417 DOI: 10.1161/hypertensionaha.116.07515] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/25/2023]
Abstract
We previously found that aspirin decreases the risk of cerebral aneurysm rupture in humans. We aim to assess whether a sex differential exists in the response of human cerebral aneurysms to aspirin and confirm these observations in a mouse model of cerebral aneurysm. A nested case-control analysis from the International Study of Unruptured Intracranial Aneurysms was performed to assess whether a sex differential exists in the response of human cerebral aneurysms to aspirin. A series of experiments were subsequently performed in a mouse model of cerebral aneurysms. Aneurysms were induced with hypertension and elastase injection into mice basal cisterns. We found that aspirin decreased the risk of aneurysm rupture more significantly in men than in women in the International Study of Unruptured Intracranial Aneurysms. In mice, aspirin and cyclooxygenase-2 inhibitor did not affect cerebral aneurysm formation but significantly decreased the incidence of rupture. The incidence of rupture was significantly lower in male versus female mice on aspirin. Gene expression analysis from cerebral arteries showed higher 15-hydroxyprostaglandin dehydrogenase levels in male mice. The rate of cerebral aneurysm rupture was similar in male mice receiving aspirin and 15-hydroxyprostaglandin dehydrogenase inhibitor compared with females receiving aspirin and 15-hydroxyprostaglandin dehydrogenase agonist, signaling a reversal of the sex-differential response to aspirin. Aspirin decreases aneurysm rupture in human and mice, in part through cyclooxygenase-2 pathways. Evidence from animal and human studies suggests a consistent differential effect by sex. 15-Hydroxyprostaglandin dehydrogenase activation in females reduces the incidence of rupture and eliminates the sex-differential response to aspirin.
Collapse
Affiliation(s)
- Nohra Chalouhi
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Robert M. Starke
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Tatiana Correa
- Carver College of Medicine, University of Iowa, Iowa city, Iowa
| | - Pascal Jabbour
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Mario Zanaty
- Department of Neurological Surgery, University of Iowa, Iowa City, Iowa
| | - Robert Brown
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - James Torner
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa city, Iowa
| | - David Hasan
- Department of Neurological Surgery, University of Iowa, Iowa City, Iowa
| |
Collapse
|
28
|
Maraviroc-Mediated Lung Protection following Trauma-Hemorrhagic Shock. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5302069. [PMID: 27556035 PMCID: PMC4983395 DOI: 10.1155/2016/5302069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/06/2016] [Accepted: 07/10/2016] [Indexed: 12/24/2022]
Abstract
Objectives. The peroxisome proliferator-activated receptor gamma (PPARγ) pathway exerts anti-inflammatory effects in response to injury. Maraviroc has been shown to have potent anti-inflammatory effects. The aim of this study was to investigate whether PPARγ plays an important role in maraviroc-mediated lung protection following trauma-hemorrhage. Methods. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of maraviroc (3 mg/kg, intravenously) with and without a PPARγ inhibitor GW9662 (1 mg/kg, intravenously), GW9662, or vehicle was administered. Lung water content, tissue histology, and other various parameters were measured (n = 8 rats/group) 24 hours after resuscitation. One-way ANOVA and Tukey's testing were used for statistical analysis. Results. Trauma-hemorrhage significantly increased lung water content, myeloperoxidase activity, intercellular adhesion molecule-1, interleukin-6, and interleukin-1β levels. These parameters significantly improved in the maraviroc-treated rats subjected to trauma-hemorrhage. Maraviroc treatment also decreased lung tissue damage as compared to the vehicle-treated trauma-hemorrhaged rats. Coadministration of GW9662 with maraviroc abolished the maraviroc-induced beneficial effects on these parameters and lung injury. Conclusion. These results suggest that PPARγ might play a key role in maraviroc-mediated lung protection following trauma-hemorrhage.
Collapse
|
29
|
Chan SH, Chu PM, Kao CL, Cheng YH, Hung CH, Tsai KL. Oleic acid activates MMPs up-regulation through SIRT1/PPAR-γ inhibition: a probable linkage between obesity and coronary arterial disease. J Biochem 2016; 160:217-225. [PMID: 27072559 DOI: 10.1093/jb/mvw028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/09/2016] [Indexed: 12/28/2022] Open
Abstract
Obesity is positively related to the growing prevalence of coronary arterial disease (CAD). It is well established in terms of the plasma concentrations of free fatty acid (FFA) that are up-regulated in cases associating with obesity. Oleic acid (OA) is known as the most abundant monounsaturated fatty acid in the human circulatory system. Several pro-atherosclerotic responses of OA have been established. Sirtuin 1 (SIRT1) acts as a key role in regulating the normal physical function in smooth muscle cells (SMCs). SIRT1 activation is developed as a novel approach to delay the progression of atherosclerotic injuries. However, the mechanism is still unclear as to whether OA affects SIRT1 expression and its activity in SMCs. We confirmed that OA treatment represses SIRT1 and peroxisome proliferator-activated receptors-γ levels in SMCs. Moreover, OA enhances by transforming the growth factor-β1 (TGF-β1) release via activation of NF-κB. OA causes NO production by inducing the inducible nitric oxide synthase overexpression, thereby promoting the secretions of matrix metalloproteinases-1 (MMP-1) and MMP-3. Overall, we suggested that OA enhances MMPs activation through SIRT1 down-regulation. Therefore, our findings might provide a novel route for developing new therapeutic treatments for FFAs-related CADs.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hsin Cheng
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|