1
|
Zhu W, Xu M, Zhu M, Song Y, Zhang J, Zheng C. Cuyun Recipe ameliorates pregnancy loss by regulating macrophage polarization and hypercoagulable state during the peri-implantation period in an ovarian hyperstimulation mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154974. [PMID: 37523838 DOI: 10.1016/j.phymed.2023.154974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The Chinese herbal prescription Cuyun Recipe (CYR) has been widely used to treat clinical infertility and has shown good efficacy. Animal experiments have shown that CYR can promote implantation in mice, however, the exact mechanism underlying the implantation has not been elucidated. PURPOSE To investigate the effect and mechanism of CYR on regulating macrophage polarization and hypercoagulability during the peri-implantation period in mice with ovarian hyperstimulation. METHODS An ovarian hyperstimulation mouse model was developed, followed by treatment with CYR. Mice were sacrificed on day (D)4.5, D6, or D8 of gestation. The number of implantation sites, the pathological changes of the uterus and ovaries were assessed. The polarization of monocytes/macrophages in the spleen and endometrium, the expression and localization of cytokines were further detected. Furthermore, analyses of hypercoagulable state of the blood were also performed. RESULTS Treatment with CYR increased the average number of implantation sites, promoted angiogenesis in endometrial, and regulated monocytes/macrophages and the cytokine levels. Moreover, CYR downregulated the overexpression of D-dimer and fgl2 after ovarian hyperstimulation. CONCLUSION CYR facilitates embryo implantation by alleviating ovarian hyperstimulation, promoting endometrial decidualization and angiogenesis, regulating macrophage polarization, and reversing the hypercoagulable state of the blood.
Collapse
Affiliation(s)
- Wenxin Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Menghao Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Cuihong Zheng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
2
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. A comparison of rat models that best mimic immune-driven preeclampsia in humans. Front Endocrinol (Lausanne) 2023; 14:1219205. [PMID: 37842294 PMCID: PMC10569118 DOI: 10.3389/fendo.2023.1219205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Preeclampsia (PE), a hypertensive pregnancy disorder, can originate from varied etiology. Placenta malperfusion has long been considered the primary cause of PE. However, we and others have showed that this disorder can also result from heightened inflammation at the maternal-fetal interface. To advance our understanding of this understudied PE subtype, it is important to establish validated rodent models to study the pathophysiology and test therapies. We evaluated three previously described approaches to induce inflammation-mediated PE-like features in pregnant rats: 1) Tumor necrosis factor-α (TNF-α) infusion via osmotic pump from gestational day (GD) 14-19 at 50ng/day/animal; 2) Polyinosinic:polycytidylic acid (Poly I:C) intraperitoneal (IP) injections from GD 10-18 (alternate days) at 10mg/kg/day/animal; and, 3) Lipopolysaccharide (LPS) IP injections from GD 13-18 at 20ug-70ug/kg/day per animal. Maternal blood pressure was measured by tail-cuff. Upon sacrifice, fetal and placenta weights were recorded. Placenta histomorphology was assessed using H&E sections. Placenta inflammation was determined by quantifying TNF-α levels and inflammatory gene expression. Placenta metabolic and mitochondrial health were determined by measuring mitochondrial respiration rates and placenta NAD+/NADH content. Of the three rodent models tested, we found that Poly I:C and LPS decreased both fetal weight and survival; and correlated with a reduction in region specific placenta growth. As the least effective model characterized, TNF-α treatment resulted in a subtle decrease in fetal/placenta weight and placenta mitochondrial respiration. Only the LPS model was able to induce maternal hypertension and exhibited pronounced placenta metabolic and mitochondrial dysfunction, common features of PE. Thus, the rat LPS model was most effective for recapitulating features observed in cases of human inflammatory PE. Future mechanistic and/or therapeutic intervention studies focuses on this distinct PE patient population may benefit from the employment of this rodent model of PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keir J. Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Yao T, Liu Q, Tian W. Deconvolution of a Large Cohort of Placental Microarray Data Reveals Clinically Distinct Subtypes of Preeclampsia. Front Bioeng Biotechnol 2022; 10:917086. [PMID: 35910034 PMCID: PMC9326345 DOI: 10.3389/fbioe.2022.917086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
It has been well established that the dysfunctional placenta plays an important role in the pathogenesis of preeclampsia (PE), a hypertensive disorder in pregnancy. However, it is not well understood how individual cell types in the placenta are involved in placenta dysfunction because of limited single-cell studies of placenta with PE. Given that a high-resolution single-cell atlas in the placenta is now available, deconvolution of publicly available bulk PE transcriptome data may provide us with the opportunity to investigate the contribution of individual placental cell types to PE. Recent benchmark studies on deconvolution have provided suggestions on the strategy of marker gene selection and the choice of methodologies. In this study, we experimented with these suggestions by using real bulk data with known cell-type proportions and established a deconvolution pipeline using CIBERSORT. Applying the deconvolution pipeline to a large cohort of PE placental microarray data, we found that the proportions of trophoblast cells in the placenta were significantly different between PE and normal controls. We then predicted cell-type-level expression profiles for each sample using CIBERSORTx and found that the activities of several canonical PE-related pathways were significantly altered in specific subtypes of trophoblasts in PE. Finally, we constructed an integrated expression profile for each PE sample by combining the predicted cell-type-level expression profiles of several clinically relevant placental cell types and identified four clusters likely representing four PE subtypes with clinically distinct features. As such, our study showed that deconvolution of a large cohort of placental microarray provided new insights about the molecular mechanism of PE that would not be obtained by analyzing bulk expression profiles.
Collapse
Affiliation(s)
- Tian Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Qiming Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
- Children’s Hospital of Fudan University, Shanghai, China
- Qilu Children’s Hospital of Shandong University, Jinan, China
- *Correspondence: Weidong Tian,
| |
Collapse
|
4
|
Wei X, Yuan Y, Yang Q. Long noncoding RNA PVT1 accelerates the growth of placental trophoblasts in preeclampsia through the microRNA-24-3p/HSD11B2 axis. Mol Reprod Dev 2022; 89:271-280. [PMID: 35735229 DOI: 10.1002/mrd.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) is essential for the maintenance of normal functions of trophoblasts in preeclampsia (PE). This study aims to decipher the concrete mechanism of PVT1 with the microRNA-24-3p/Type-2 11β-hydroxysteroid dehydrogenase (miR-24-3p/HSD11B2) axis in PE. PVT1, miR-24-3p, and HSD11B2 expression levels in normal placental tissues and PE placental tissues were defined. HTR-8/SVneo cells were transfected to determine the effects of PVT1, miR-24-3p, and HSD11B2 on the growth of HTR-8/SVneo cells. The relationships among PVT1/miR-24-3p/HSD11B2 in HTR-8/SVneo cells were identified. PVT1 and HSD11B2 were downregulated, while miR-24-3p was upregulated in the placenta of PE. Upregulated/downregulated PVT1 promoted/impeded the growth of human placental trophoblast (HTR-8/SVneo) cells in PE. Restored/knocked down miR-24-3p impeded/enhanced the growth of HTR-8/SVneo cells in PE. PVT1 inhibited miR-24-3p to mediate HSD11B2. PVT1 sponges miR-24-3p to regulate HSD11B2; thereby, the growth of placental trophoblasts is promoted in PE.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Obstetrics, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| | - Yichong Yuan
- Department of gynaecology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| | - Qiong Yang
- Department of Obstetrics, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Analysis of Proteomic Characteristics of Peripheral Blood in Preeclampsia and Study of Changes in Fetal Arterial Doppler Parameters Based on Magnetic Nanoparticles. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7145487. [PMID: 34765014 PMCID: PMC8577888 DOI: 10.1155/2021/7145487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
Background Traditional mass spectrometry detection methods have low detection efficiency for low-abundance proteins, thus limiting the application of proteomic analysis in the diagnosis of preeclampsia. Magnetic nanomaterials have good superparamagnetism and have obvious advantages in the field of biological separation and enrichment. Aim The objective of this study is to explore the value of superparamagnetic iron oxide nanoparticles in the proteomic analysis of preeclampsia. Materials and Methods 42 patients and 40 normal pregnant women were selected in this study for analysis. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to evaluate the function of these differential proteins. Proteomic analysis was used to analyze the differential proteins. Color Doppler ultrasound technology was used to detect changes in the blood flow of the fetal umbilical artery and cerebral artery. Results 16 differential proteins in the serum of pregnant women with preeclampsia and normal pregnant women were detected. The 16 proteins are mainly related to angiogenesis and endothelial function proteins, coagulation cascade proteins, placental growth factor, and so on. Biological function analysis revealed that these proteins are mainly enriched in the nuclear factor kB (NF-κB) signaling pathway. Moreover, our data suggested that compared with the fetus in the uterus of normal pregnant women, the umbilical artery S/D, PI, and RI of the fetus in preeclampsia were greatly increased, and the cerebral artery S/D, PI, and RI were greatly decreased. Conclusion Biological function analysis revealed that 16 proteins are mainly enriched in the NF-κB signaling pathway. Compared with the normal group, the umbilical artery S/D, PI, and RI of the preeclampsia group were greatly increased, and the cerebral artery S/D, PI, and RI were all greatly reduced. Our findings provided a more comprehensive reference for us to study the mechanism of preeclampsia at the molecular level and also provide data support for the screening of relevant markers for early diagnosis of preeclampsia.
Collapse
|