1
|
Fan Y, Jialiken D, Zheng Z, Zhang W, Zhang S, Zheng Y, Sun Z, Zhang H, Yan X, Liu M, Fang Z. Qianyang Yuyin granules alleviate hypertension-induced vascular remodeling by inhibiting the phenotypic switch of vascular smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118896. [PMID: 39393558 DOI: 10.1016/j.jep.2024.118896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qianyang Yuyin granules (QYYY) have been used clinically to treat hypertension for over two decades. Previous clinical trials have shown that QYYY can improve vascular elastic function in hypertensive patients. However, the underlying pharmacological mechanism is unclear. AIM OF THE STUDY To elucidate the effects and mechanisms of QYYY on vascular remodeling using a multidisciplinary approach that includes network pharmacology, proteomics, and both in vitro and in vivo experiments. MATERIALS AND METHODS The main components of QYYY were identified using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Network pharmacology and molecular docking were employed to predict QYYY's primary active ingredients, potential therapeutic targets and intervention pathways in hypertensive vascular remodeling. We induced hypertension in male C57BL/6 mice by infusing angiotensin II (Ang II) via osmotic minipumps, and performed pre-treatment with QYYY or Sacubitril/valsartan (Entresto). Blood pressure was monitored in vivo, followed by the extraction of aortas to examine pathological structural changes and alterations in protein expression patterns. The expression and location of proteins involved in the HIF-1α/TWIST1/P-p65 signaling pathway were investigated, as well as markers of vascular smooth muscle cells (VSMCs) phenotypic switch. In vitro, we studied the effects of QYYY water extract on Ang II-stimulated human aortic VSMCs. We investigated whether QYYY could affect the HIF-1α/TWIST1/P-p65 signaling pathway, thereby ameliorating apoptosis, autophagy, and phenotype switch in VSMCs. RESULTS We identified 62 main compounds in QYYY, combined with network pharmacology, speculated 827 potentially active substances, and explored 1021 therapeutic targets. The KEGG pathway analysis revealed that the mechanisms of action associated with QYYY therapy potentially encompass various biological processes, including metabolic pathways, TNF signaling pathways, apoptosis, Ras signaling pathways, HIF-1 signaling pathways, autophagy-animal pathways. In hypertensive mice, QYYY restored abnormally elevated blood pressure, vascular remodeling, and inflammation with a dose-response relationship while altering abnormal protein patterns. In vitro, QYYY could inhibit abnormal proliferation, migration, intracellular Ca2+ accumulation and cytoskeletal changes of VSMCs. It improved mitochondrial function, reduced ROS levels, stabilized membrane potential, prevented cell death, and reduced overproduction of TGF-β1, TNF-a, and IL-1β. CONCLUSION QYYY may be able to inhibit the overactivation of the HIF-1α/TWIST1/P-p65 signaling pathway, improve the phenotypic switch, and balance apoptosis and autophagy in VSMCs, thereby effectively improving vascular remodeling caused by hypertension.
Collapse
Affiliation(s)
- Yadong Fan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Dinala Jialiken
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ziwen Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weiting Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Siqi Zhang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Yawei Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zeqi Sun
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haitao Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiwu Yan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Ming Liu
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Zhuyuan Fang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
2
|
Zhao C, Shen J, Lu Y, Ni H, Xiang M, Xie Y. Dedifferentiation of vascular smooth muscle cells upon vessel injury. Int Immunopharmacol 2025; 144:113691. [PMID: 39591824 DOI: 10.1016/j.intimp.2024.113691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Highly differentiated mature vascular smooth muscle cells (VSMCs) are the predominant type of cells constituting arterial walls, which are essential for maintaining the structural and functional integrity of blood vessels. VSMCs demonstrate a notable degree of adaptability following vascular damage, a characteristic that plays a crucial role in the progression of vascular remodeling. Advances in single-cell RNA sequencing in both healthy and pathological vascular tissues have offered profound insights into the complexity of VSMCs, revealing a more intricate diversity than previously recognized. In response to injury, VSMCs undergo dedifferentiation and exhibit pluripotent markers. This review summarizes the researches that have employed lineage tracing alongside single-cell sequencing analysis to explore the dynamics of vascular damage. The primary focus of this study was on the process of dedifferentiation in VSMCs, with particular attention to its underlying mechanisms. The discussion included the impact of microenvironmental cues, the control of transcription factors, and the various molecular pathways involved in VSMCs dedifferentiation. Herein, we provide a comprehensive analysis of cells dedifferentiated from adult VSMCs upon vascular injury.
Collapse
Affiliation(s)
- Chaoyue Zhao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yunrui Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
3
|
Lv Y, Wang X, Zeng Y, Tang Z, Nie F, Guo R. PF-477736 modulates vascular smooth muscle cells phenotypic transition through Chk1/p53/CD44 pathway. Tissue Cell 2024; 93:102682. [PMID: 39689385 DOI: 10.1016/j.tice.2024.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION The phenotypic transition of vascular smooth muscle cells (VSMCs) from a quiescent, contractile type to a secretory phenotype with high proliferation and mobility is a key event in vascular remodeling. PF-477736 is an ATP-competitive inhibitor of Chk1 which induces the accumulation of DNA damage by increasing the level of replicative stress, and ultimately inhibiting cell proliferation or causing cell death. Although this compound has been utilized as an anti-tumor drug, its role in vascular remodeling remains unclear. METHODS In vitro, Human aortic smooth muscle cell line (HAVSMC) and primary rat aortic smooth muscle cells were used to establish phenotype transformation model with PDGF-bb; Western blot was used to detect the expression of VSMCs phenotype marker α-SMA, Vimentin; MTT and EdU assays were used to evaluate the proliferation ability of VSMCs; wound healing assay was used to evaluate the migration ability of VSMCs. In vivo, we established ballon injury of carotid artery in rats, and the function of the PF-477736 was evaluated by several histological stainings. RESULTS The results exhibit that PF-477736 effectively inhibited VSMCs phenotypic transition, resulting in G1/S phase arrest and decreased proliferation and migration ability of VSMCs. Furthermore, while PDGF-bb down-regulated p53 protein and up-regulated CD44 expression, PF-477736 significantly countered these effects. Pretreatment of VSMCs with p53 siRNA blocked the effect of PF-477736, up-regulated the expression of CD44, and promoted VSMCs' proliferation and migration. Conversely, CD44 silencing through siRNA mitigated the phenotypic transition of VSMCs. In addition, the H&E, Masson' staining and the immunohistochemistry of PCNA, p53 and CD44 showed that PF-477736 substantially inhibits vascular remodeling in the balloon injury model. CONCLUSION Our findings show that PF-477736 exerts anti-vascular remodeling effect by inhibiting phenotypic transition through the Chk1/p53/CD44 pathway in VSMCs, providing novel therapeutic strategies for preventing and treating vascular remodeling.
Collapse
Affiliation(s)
- Yu Lv
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youjie Zeng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zizhao Tang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Fangqin Nie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Pharmacy, Hospital/School Of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
4
|
Doherty W, Conway L, Leveau B, Giulia Nacca F, Chiappa L, Riccio A, Roberts SM, Gabriella Santoro M, Evans P. 4-Aza Cyclopentenone Prostaglandin Analogues: Synthesis and NF-κB Inhibitory Activities. ChemMedChem 2024:e202400823. [PMID: 39648152 DOI: 10.1002/cmdc.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Inspired by the cyclopentenone family of prostaglandins, a series of 4-aza, cross-conjugated cyclopentenones is described. Synthesised from N-protected (4R)-aza-cyclopentenone 5, the exocyclic alkene was installed using a modified Baylis-Hillman type aldol reaction, whereby carbon-carbon bond formation is accompanied by dehydration. In this manner octanal and octenal, for example, can be introduced to mimic the ω-group present in the natural prostaglandins. Similarly, a focused range of alternative substituents were introduced using different aldehydes and ketones. The presence of the tert-butyloxycarbonyl (Boc) group on the 4-amino-cyclopentenone substituent enabled subsequent derivatisation and various electrophiles were successfully incorporated. The ability of the family of 4-amino functionalised cross-conjugated cyclopentenones to block activation of nuclear factor-kappa B (NF-κB) was studied and compared with the natural prostanoid, Δ12,14-15-deoxy-PGJ2 (2). Thereafter, the synthesis of a series of thiol adducts from these compounds were prepared and similarly evaluated biologically. The adducts showed comparable and, on occasion, more potent inhibition of NF-κB than their cyclopentenone precursors and generally demonstrated diminished cytotoxicity. For example, cross-conjugated dieneone 12 inhibited the activation of NF-κB with an IC50 value of 6.2 μM, whereas its endocyclic N-Boc (27) and N-acetyl (28) cysteine adducts blocked NF-κB activity with values of 1.0 and 8.0 μM respectively.
Collapse
Affiliation(s)
- William Doherty
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| | - Lorna Conway
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| | - Brian Leveau
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| | | | - Lucia Chiappa
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Stanley M Roberts
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Paul Evans
- School of Chemistry, University College Dublin, Dublin, D04 N2E2, Ireland
| |
Collapse
|
5
|
Chen S, Ye L. Fosinopril inhibits Ang II-induced VSMC proliferation, phenotype transformation, migration, and oxidative stress through the TGF-β1/Smad signaling pathway. Open Life Sci 2024; 19:20220955. [PMID: 39588111 PMCID: PMC11588003 DOI: 10.1515/biol-2022-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 11/27/2024] Open
Abstract
Fosinopril (FOS) is an angiotensin-converting enzyme inhibitor that can decrease angiotensin II (Ang II) formation, thereby reducing systemic vasoconstriction. This study investigated the impact of FOS on vascular smooth muscle cell (VSMC) phenotypic transformation in hypertension. Experiments using western blotting revealed that FOS inhibits the Ang II-induced downregulation of α-SMA and SM22α and the upregulation of OPN in VSMCs. In addition, CCK8 assays, EdU staining, and Transwell assays demonstrated that FOS reduces Ang II-induced increases in VSMC cell viability, proliferation, migration, and MMP2 and MMP9 expression. Moreover, immunofluorescence and ELISA experiments showed that FOS suppresses Ang II-induced increases in ROS levels, NAD(P)H activity, and NOX2 and NOX4 expression in VSMCs. Western blotting also indicated that FOS inhibits Ang II-induced increases in TGF-β1 and p-Smad2/3 expression in VSMCs. Finally, FOS mitigates Ang II-induced VSMC proliferation, phenotypic transformation, migration, and oxidative stress by inhibiting the TGF-β1/Smad signaling pathway. In conclusion, these results suggest that FOS could be effective in managing vascular diseases, including hypertension.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Electrocardiogram Diagnosis, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, China
| | - Lingxiang Ye
- Department of Electrocardiogram Diagnosis, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, China
| |
Collapse
|
6
|
Yin Z, Zhang J, Zhao M, Liu J, Xu Y, Peng S, Pan W, Wei C, Zheng Z, Liu S, Qin JJ, Wan J, Wang M. EDIL3/Del-1 prevents aortic dissection through enhancing internalization and degradation of apoptotic vascular smooth muscle cells. Autophagy 2024; 20:2405-2425. [PMID: 38873925 PMCID: PMC11572282 DOI: 10.1080/15548627.2024.2367191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global edil3 knockout (edil3-/-) mice and edil3-/- bone marrow chimeric mice exhibited a considerable exacerbation in β-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. edil3-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/αv-ITGB3/β3 integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 may be a novel factor for the prevention and treatment of TAD.Abbreviations: BAPN: β-aminopropionitrile monofumarate; BMDM: bone marrow-derived macrophage; C12FDG: 5-dodecanoylaminofluorescein-di-β-D-galactopyranoside; CTRL: control; CYBB/NOX2: cytochrome b-245, beta polypeptide; DCFH-DA: 2',7'-dichlorofluorescin diacetate; EDIL3/Del-1: EGF-like repeats and discoidin I-like domains 3; EdU: 5-ethynyl-2'-deoxyuridine; EVG: elastic van Gieson; H&E: hematoxylin and eosin; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAC: N-acetylcysteine; PtdSer: phosphatidylserine; rEDIL3: recombinant EDIL3; ROS: reactive oxygen species; SMPD1: sphingomyelin phosphodiesterase 1; TAD: thoracic aortic dissection; TEM: transmission electron microscopy; VSMC: vascular smooth muscle cell; WT: wild-type.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
7
|
Niu C, Hu Y, Xu K, Pan X, Wang L, Yu G. The role of the cytoskeleton in fibrotic diseases. Front Cell Dev Biol 2024; 12:1490315. [PMID: 39512901 PMCID: PMC11540670 DOI: 10.3389/fcell.2024.1490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Caoyuan Niu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yanan Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
8
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
9
|
Li J, Yang Z, Song H, Yang L, Na K, Mei Z, Zhang S, Liu J, Xu K, Yan C, Wang X. The role of mitofusin 2 in regulating endothelial cell senescence: Implications for vascular aging. iScience 2024; 27:110809. [PMID: 39290834 PMCID: PMC11406077 DOI: 10.1016/j.isci.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Endothelial cell dysfunction contributes to age-related vascular diseases. Analyzing public databases and mouse tissues, we found decreased MFN2 expression in senescent endothelial cells and angiotensin II-treated mouse aortas. In human endothelial cells, Ang II reduced MFN2 expression while increasing senescence markers P21 and P53. siMFN2 treatment worsened Ang II-induced senescence, while MFN2 overexpression alleviated it. siMFN2 or Ang II treatment caused mitochondrial dysfunction and morphological abnormalities, including increased ROS production and reduced respiration, mitigated by ovMFN2 treatment. Further study revealed that BCL6, a negative regulator of MFN2, significantly contributes to Ang II-induced endothelial senescence. In vivo, Ang II infusion decreased MFN2 expression and increased BCL6, P21, and P53 expression in vascular endothelial cells. The shMfn2+Ang II group showed elevated senescence markers in vascular tissues. These findings highlight MFN2's regulatory role in endothelial cell senescence, emphasizing its importance in maintaining endothelial homeostasis and preventing age-related vascular diseases.
Collapse
Affiliation(s)
- Jiayin Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zheming Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Lin Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zhu Mei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Shuli Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Jing Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiaozeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| |
Collapse
|
10
|
Yang W, Lu C, Chu F, Bu K, Ma H, Wang Q, Jiao Z, Wang S, Yang X, Gao Y, Sun D, Sun H. Fluoride-induced hypertension by regulating RhoA/ROCK pathway and phenotypic transformation of vascular smooth muscle cells: In vitro and in vivo evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116681. [PMID: 38964063 DOI: 10.1016/j.ecoenv.2024.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Fluoride exposure has been implicated as a potential risk factor for hypertension, but the underlying mechanisms remain unclear. This study investigated the role of the RhoA/ROCK signaling pathway in fluoride-induced hypertension. Male Wistar rats were divided into different groups and exposed to varying concentrations of sodium fluoride (NaF) or sodium chloride (NaCl) via drinking water. The rats' blood pressure was measured, and their aortic tissue was utilized for high-throughput sequencing analysis. Additionally, rat and A7r5 cell models were established using NaF and/or Fasudil. The study evaluated the effects of fluoride exposure on blood pressure, pathological changes in the aorta, as well as the protein/mRNA expression levels of phenotypic transformation indicators (a-SMA, calp, OPN) in vascular smooth muscle cells (VSMCs), along with the RhoA/ROCK signaling pathway (RhoA, ROCK1, ROCK2, MLC/p-MLC). The results demonstrated that fluoride exposure in rats led to increased blood pressure. High-throughput sequencing analysis revealed differential gene expression associated with vascular smooth muscle contraction, with the RhoA/ROCK signaling pathway emerging as a key regulator. Pathological changes in the rat aorta, such as elastic membrane rupture and collagen fiber deposition, were observed following NaF exposure. However, fasudil, a ROCK inhibitor, mitigated these pathological changes. Both in vitro and in vivo models confirmed the activation of the RhoA/ROCK signaling pathway and the phenotypic transformation of VSMCs from a contractile to a synthetic state upon fluoride exposure. Fasudil effectively inhibited the activities of ROCK1 and ROCK2 and attenuated the phenotypic transformation of VSMCs. In conclusion, fluoride has the potential to induce hypertension through the activation of the RhoA/ROCK signaling pathway and phenotypic changes in vascular smooth muscle cells. These results provide new insights into the mechanism of fluoride-induced hypertension.
Collapse
Affiliation(s)
- Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Keming Bu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Qiaoyu Wang
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China; Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhe Jiao
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China; Institute for Kashin Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Yanhui Gao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China.
| |
Collapse
|
11
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
12
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
13
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
14
|
Wei C, Zhang J, Peng S, Liu J, Xu Y, Zhao M, Xu S, Pan W, Yin Z, Zheng Z, Qin JJ, Wan J, Wang M. Resolvin D1 attenuates Ang II-induced hypertension in mice by inhibiting the proliferation, migration and phenotypic transformation of vascular smooth muscle cells by blocking the RhoA/mitogen-activated protein kinase pathway. J Hypertens 2024; 42:420-431. [PMID: 37937508 PMCID: PMC10842678 DOI: 10.1097/hjh.0000000000003610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The proliferation, migration and phenotypic transformation of vascular smooth muscle cells contribute to vascular remodeling and hypertension. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been shown to have anti-inflammatory effects and can protect against different cardiovascular diseases. However, the role and mechanism of RvD1 in hypertension are not clear. The current study investigated the role of RvD1 in Ang II-induced hypertensive mice and Ang II-stimulated rat vascular smooth muscle cells. The results showed that RvD1 treatment significantly attenuated hypertension and vascular remodeling, as indicated by decreases in blood pressure, aortic media thickness and collagen deposition. In addition, RvD1 inhibited the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in vivo and in vitro . Notably, the protective effects of RvD1 were mediated by the Ras homolog gene family member A (RhoA)/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, our findings demonstrated the potential benefits of RvD1 as a promising therapeutic agent in the treatment of vascular remodeling and hypertension.
Collapse
Affiliation(s)
- Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| |
Collapse
|
15
|
Kong M, Pei Z, Xie Y, Gao Y, Li J, He G. Prognostic factors of MINOCA and their possible mechanisms. Prev Med Rep 2024; 39:102643. [PMID: 38426041 PMCID: PMC10902145 DOI: 10.1016/j.pmedr.2024.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Despite not showing substantial stenosis of coronary arteries, Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA) presents with myocardial ischemia injury, thus having a grave prognosis and a high risk of long-term complications. This necessitates increased clinical attention and exploration of its root causes to prevent a similar crisis. Methods Research on MINOCA is limited, especially in terms of its clinical attributes, long-term outlook, risk stratification, and prognosis-linked cardiometabolic risk factors. This review aims to fill these gaps, providing an extensive overview of clinical trials and studies on MINOCA to separate the issue from the presence of non-obstructive coronary arteries in cardiac patients. Results It has been found that MINOCA patients still face a high risk of long-term adverse events. Due to social and physiological factors, the hospital mortality rate is higher among women, and they are also more susceptible to MINOCA. Cardiac metabolic risk factors, including disorder of glucose and lipid metabolism, as well as changes in serum CysC levels, have significant impacts on the occurrence and prognosis of MINOCA. Conclusions Further research is still needed to fully understand the complex biological mechanisms underlying the prognostic factors of MINOCA. A profound understanding of these factors could reveal potential targets for improving prognosis, thereby indicating new strategies for managing this cardiovascular condition.
Collapse
Affiliation(s)
- Mowei Kong
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, PR China
| | - Zhenying Pei
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, PR China
| | - Yuyu Xie
- Department of Dermatology, Chengdu Fifth People’s Hospital, Chengdu, Sichuan 610000, PR China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Jun Li
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, PR China
| | - Guoxiang He
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou 550018, PR China
| |
Collapse
|
16
|
Yin Z, Zhang J, Zhao M, Peng S, Ye J, Liu J, Xu Y, Xu S, Pan W, Wei C, Qin J, Wan J, Wang M. Maresin-1 ameliorates hypertensive vascular remodeling through its receptor LGR6. MedComm (Beijing) 2024; 5:e491. [PMID: 38463394 PMCID: PMC10924638 DOI: 10.1002/mco2.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Center for Healthy AgingWuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
17
|
Luo M, Gu R, Wang C, Guo J, Zhang X, Ni K, Liu L, Pan Y, Li J, Deng L. High Stretch Associated with Mechanical Ventilation Promotes Piezo1-Mediated Migration of Airway Smooth Muscle Cells. Int J Mol Sci 2024; 25:1748. [PMID: 38339025 PMCID: PMC10855813 DOI: 10.3390/ijms25031748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Ventilator-induced lung injury (VILI) during mechanical ventilation (MV) has been attributed to airway remodeling involving increased airway smooth muscle cells (ASMCs), but the underlying mechanism is not fully understood. Thus, we aimed to investigate whether MV-associated high stretch (>10% strain) could modulate mechanosensitive Piezo1 expression and thereby alter cell migration of ASMCs as a potential pathway to increased ASMCs in VILI. C57BL/6 mice and ASMCs were subjected to MV at high tidal volume (VT, 18 mL/kg, 3 h) and high stretch (13% strain, 0.5 Hz, 72 h), respectively. Subsequently, the mice or cells were evaluated for Piezo1 and integrin mRNA expression by immunohistochemical staining and quantitative PCR (qPCR), and cell migration and adhesion by transwell and cell adhesion assays. Cells were either treated or not with Piezo1 siRNA, Piezo1-eGFP, Piezo1 knockin, Y27632, or blebbistatin to regulate Piezo1 mRNA expression or inhibit Rho-associated kinase (ROCK) signaling prior to migration or adhesion assessment. We found that expression of Piezo1 in in situ lung tissue, mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion of ASMCs isolated from mice with MV were all reduced but the cell migration of primary ASMCs (pASMCs) isolated from mice with MV was greatly enhanced. Similarly, cell line mouse ASMCs (mASMCs) cultured in vitro with high stretch showed that mRNA expression of Piezo1 and integrin αVβ1 and cell adhesion were all reduced but cell migration was greatly enhanced. Interestingly, such effects of MV or high stretch on ASMCs could be either induced or abolished/reversed by down/up-regulation of Piezo1 mRNA expression and inhibition of ROCK signaling. High stretch associated with MV appears to be a mechanical modulator of Piezo1 mRNA expression and can, thus, promote cell migration of ASMCs during therapeutic MV. This may be a novel mechanism of detrimental airway remodeling associated with MV, and, therefore, a potential intervention target to treat VILI.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Rong Gu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Chunhong Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jia Guo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Xiangrong Zhang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
18
|
Wang Q, Ni S, Ling L, Wang S, Xie H, Ren Z. Ginkgolide B Blocks Vascular Remodeling after Vascular Injury via Regulating Tgf β1/Smad Signaling Pathway. Cardiovasc Ther 2023; 2023:8848808. [PMID: 38125702 PMCID: PMC10732976 DOI: 10.1155/2023/8848808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Coronary artery disease (CAD) is the most prevalent cardiovascular disease worldwide, resulting in myocardial infarction (MI) and even sudden death. Following percutaneous coronary intervention (PCI), restenosis caused by vascular remodeling is always formed at the stent implantation site. Here, we show that Ginkgolide B (GB), a naturally occurring terpene lactone, effectively suppresses vascular remodeling and subsequent restenosis in wild-type mice following left carotid artery (LCA) injury. Additional experiments reveal that GB exerts a protective effect on vascular remodeling and further restenosis through modulation of the Tgfβ1/Smad signaling pathway in vivo and in human vascular smooth muscle cells (HVSMAs) but not in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, the beneficial effect of GB is abolished after incubated with pirfenidone (PFD, a drug for idiopathic pulmonary fibrosis, IPF), which can inhibit Tgfβ1. In Tgfβ1-/- mice, treatment with pirfenidone capsules and Yinxingneizhi Zhusheye (including Ginkgolide B) fails to improve vascular remodeling and restenosis. In conclusion, our data identify that GB could be a potential novel therapeutic agent to block vessel injury-associated vascular remodeling and further restenosis and show significant repression of Tgfβ1/Smad signaling pathway.
Collapse
Affiliation(s)
- Quan Wang
- Hubei University of Science and Technology, Xianning 437100, China
| | - Shuai Ni
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Li Ling
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siqi Wang
- Hubei University of Science and Technology, Xianning 437100, China
| | - Hanbin Xie
- Collections Conservation Research Center, Shanghai Natural History Museum (Branch of Shanghai Science and Technology Museum), Shanghai 200041, China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
19
|
Zhang J, Yin Z, Xu Y, Wei C, Peng S, Zhao M, Liu J, Xu S, Pan W, Zheng Z, Liu S, Ye J, Qin JJ, Wan J, Wang M. Resolvin E1/ChemR23 Protects Against Hypertension and Vascular Remodeling in Angiotensin II-Induced Hypertensive Mice. Hypertension 2023; 80:2650-2664. [PMID: 37800344 DOI: 10.1161/hypertensionaha.123.21348] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Inflammation plays a critical role in the development of hypertension and vascular remodeling. Resolvin E1 (RvE1), as one of the specialized proresolving lipid mediators, promotes inflammation resolution by binding with a G protein-coupled receptor, ChemR23 (chemerin receptor 23). However, whether RvE1/ChemR23 regulates hypertension and vascular remodeling is unknown. METHODS Hypertension in mice was induced by Ang II (angiotensin II) infusion (750 ng/kg per minute), and RvE1 (2 µg/kg per day) was administered through intraperitoneal injection. Loss of ChemR23 was achieved by mice receiving intravenous injection of adeno-associated virus 9-encoding shRNA against ChemR23. RESULTS Aortic ChemR23 expression was increased in Ang II-induced hypertensive mice and that ChemR23 was mainly expressed on vascular smooth muscle cells (VSMCs). RvE1 lowered blood pressure, reduced aortic media thickness, attenuated aortic fibrosis, and mitigated VSMC phenotypic transformation and proliferation in hypertensive mice, which were all reversed by the knockdown of ChemR23. Moreover, RvE1 reduced the aortic infiltration of macrophages and T cells, which was also reversed by ChemR23 knockdown. RvE1 inhibited Ccl5 expression in VSMCs via the AMPKα (AMP-activated protein kinase α)/Nrf2 (nuclear factor E2-related factor 2)/canonical NF-κB (nuclear factor κB) pathway, thereby reducing the infiltration of macrophages and T cells. The AMPKα/Nrf2 pathway also mediated the effects of RvE1 on VSMC phenotypic transformation and proliferation. In patients with hypertension, the serum levels of RvE1 and other eicosapentaenoic acid-derived metabolites were significantly decreased. CONCLUSIONS RvE1/ChemR23 ameliorated hypertension and vascular remodeling by activating AMPKα/Nrf2 signaling, which mediated immune cell infiltration by inhibiting the canonical NF-κB/Ccl5 pathway, and regulated VSMC proliferation and phenotypic transformation. RvE1/ChemR23 may be a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Yao Xu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Wei Pan
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Jing Ye
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Center for Healthy Aging, Wuhan University School of Nursing, China (J.-J.Q.)
| | - Jun Wan
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.)
- Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
- Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.)
| |
Collapse
|
20
|
Guo T, Liu B, Zeng R, Lin R, Guo J, Yu G, Xu Y, Tan X, Xie K, Zhou Y. The vasoconstrictor activities of prostaglandin D 2 via the thromboxane prostanoid receptor and E prostanoid receptor-3 outweigh its concurrent vasodepressor effect mainly through D prostanoid receptor-1 ex vivo and in vivo. Eur J Pharmacol 2023; 956:175963. [PMID: 37543159 DOI: 10.1016/j.ejphar.2023.175963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Prostaglandin (PG) D2, a commonly considered vasodilator through D prostanoid receptor-1 (DP1), might also evoke vasoconstriction via acting on the thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2; TP) and/or E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2; EP3). This study aimed to test the above hypothesis in the mouse renal vascular bed (main renal arteries and perfused kidneys) and/or mesenteric resistance arteries and determine how the vasoconstrictor mechanism influences the overall PGD2 effect on systemic blood pressure under in vivo conditions. Experiments were performed on control wild-type (WT) mice and mice with deficiencies in TP (TP-/-) and/or EP3 (EP3-/-). Here we show that PGD2 indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however not only reduced by TP-/- or EP3-/-, but also reversed by TP-/-/EP3-/- in some of the above tissues (mesenteric resistance arteries or perfused kidneys) to dilator reactions that were reduced by non-selective DP antagonism. A slight or mild pressor response was also observed with PGD2 under in vivo conditions, and this was again reversed to a depressor response in TP-/- or TP-/-/EP3-/- mice. Non-selective DP antagonism reduced the PGD2-evoked depressor response in TP-/-/EP3-/- mice as well. These results thus demonstrate that like other PGs, PGD2 activates TP and/or EP3 to evoke vasoconstrictor activities, which can outweigh its concurrent vasodepressor activity mediated mainly through DP1, and hence result in a pressor response, although the response might only be of a slight or mild extent.
Collapse
Affiliation(s)
- Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| | - Ruhui Zeng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Rui Lin
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhai Tan
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Kaiqi Xie
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
21
|
Cui Y, Wang Y, Wang S, Du B, Li X, Li Y. Highlighting Fibroblasts Activation in Fibrosis: The State-of-The-Art Fibroblast Activation Protein Inhibitor PET Imaging in Cardiovascular Diseases. J Clin Med 2023; 12:6033. [PMID: 37762974 PMCID: PMC10531835 DOI: 10.3390/jcm12186033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Fibrosis is a common healing process that occurs during stress and injury in cardiovascular diseases. The evolution of fibrosis is associated with cardiovascular disease states and causes adverse effects. Fibroblast activation is responsible for the formation and progression of fibrosis. The incipient detection of activated fibroblasts is important for patient management and prognosis. Fibroblast activation protein (FAP), a membrane-bound serine protease, is almost specifically expressed in activated fibroblasts. The development of targeted FAP-inhibitor (FAPI) positron emission tomography (PET) imaging enabled the visualisation of FAP, that is, incipient fibrosis. Recently, research on FAPI PET imaging in cardiovascular diseases increased and is highly sought. Hence, we comprehensively reviewed the application of FAPI PET imaging in cardiovascular diseases based on the state-of-the-art published research. These studies provided some insights into the value of FAPI PET imaging in the early detection of cardiovascular fibrosis, risk stratification, response evaluation, and prediction of the evolution of left ventricular function. Future studies should be conducted with larger populations and multicentre patterns, especially for response evaluation and outcome prediction.
Collapse
Affiliation(s)
| | | | | | | | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China; (Y.C.); (Y.W.); (S.W.); (B.D.)
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China; (Y.C.); (Y.W.); (S.W.); (B.D.)
| |
Collapse
|
22
|
Cai C, Weng Y, Wang X, Wu Y, Li Y, Wang P, Zeng C, Yang Z, Jia B, Tang L, Chen L. Single-cell RNA landscape of cell heterogeneity and immune microenvironment in ligation-induced vascular remodeling in rat. Atherosclerosis 2023; 377:1-11. [PMID: 37343431 DOI: 10.1016/j.atherosclerosis.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Vascular remodeling is a common pathological basis for cardiovascular diseases. Although both immune and non-immune cells have been suggested to contribute to this process, the complex cellular heterogeneity and intercellular interactions remain largely uncharacterized. METHODS AND RESULTS In this study, we simulated early and late vascular remodeling by ligating the rat carotid artery for 1 week and 4 weeks, respectively. Using single-cell RNA-sequencing, we characterized gene expression signatures and driver signals of major cell types involved in vascular remodeling. Focused analysis revealed a novel sub-population of Selenbp1hi smooth muscle cells (SMCs) associated with vascular remodeling. Results of intercellular communication analyses predicted several ligand-receptor pairs between immune cells with SMCs and endothelial cells (ECs), implicating SMCs apoptosis and repair, ECs aging and inflammatory responses. CONCLUSIONS We present a comprehensive single-cell atlas of vascular cells in early and late stages of ligated rat carotid artery, providing valuable insights into the understanding of the initiation and progression of vascular remodeling.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China; Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Xihao Wang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Yonghui Wu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Ya Li
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Peipei Wang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| | - Bingbing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
23
|
Ye S, Huang H, Xiao Y, Han X, Shi F, Luo W, Chen J, Ye Y, Zhao X, Huang W, Wang Y, Lai D, Liang G, Fu G. Macrophage Dectin-1 mediates Ang II renal injury through neutrophil migration and TGF-β1 secretion. Cell Mol Life Sci 2023; 80:184. [PMID: 37340199 DOI: 10.1007/s00018-023-04826-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
Macrophage activation has been shown to play an essential role in renal fibrosis and dysfunction in hypertensive chronic kidney disease. Dectin-1 is a pattern recognition receptor that is also involved in chronic noninfectious diseases through immune activation. However, the role of Dectin-1 in Ang II-induced renal failure is still unknown. In this study, we found that Dectin-1 expression on CD68 + macrophages was significantly elevated in the kidney after Ang II infusion. We assessed the effect of Dectin-1 on hypertensive renal injury using Dectin-1-deficient mice infused by Angiotensin II (Ang II) at 1000 ng/kg/min for 4 weeks. Ang II-induced renal dysfunction, interstitial fibrosis, and immune activation were significantly attenuated in Dectin-1-deficient mice. A Dectin-1 neutralizing antibody and Syk inhibitor (R406) were used to examine the effect and mechanism of Dectin-1/Syk signaling axle on cytokine secretion and renal fibrosis in culturing cells. Blocking Dectin-1 or inhibiting Syk significantly reduced the expression and secretion of chemokines in RAW264.7 macrophages. The in vitro data showed that the increase in TGF-β1 in macrophages enhanced the binding of P65 and its target promotor via the Ang II-induced Dectin-1/Syk pathway. Secreted TGF-β1 caused renal fibrosis in kidney cells through Smad3 activation. Thus, macrophage Dectin-1 may be involved in the activation of neutrophil migration and TGF-β1 secretion, thereby promoting kidney fibrosis and dysfunction.
Collapse
Affiliation(s)
- Shiju Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - He Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Fengjie Shi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Wu Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiawen Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yang Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xia Zhao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
24
|
Gao J, Li L, Zhou D, Sun X, Cui L, Yang D, Wang X, Du P, Yuan W. Effects of norepinephrine‑induced activation of rat vascular adventitial fibroblasts on proliferation and migration of BMSCs involved in vascular remodeling. Exp Ther Med 2023; 25:290. [PMID: 37206559 PMCID: PMC10189611 DOI: 10.3892/etm.2023.11989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Vascular remodeling caused by vascular injury such as hypertension and atherosclerosis is a complex process involving a variety of cells and factors, and the mechanism is unclear. A vascular injury model was simulated by adding norepinephrine (NE) to culture medium of vascular adventitial fibroblasts (AFs). NE induced activation and proliferation of AFs. To investigate the association between the AFs activation and bone marrow mesenchymal stem cells (BMSCs) differentiation in vascular remodeling. BMSCs were cultured with supernatant of the AFs culture medium. BMSC differentiation and migration were observed by immunostaining and Transwell assay, respectively, while cell proliferation was measured using the Cell Counting Kit-8. Expression levels of smooth muscle actin (α-SMA), TGF-β1 and SMAD3 were measured using western blot assay. The results indicated that compared with those in the control group, in which BMSCs were cultured in normal medium, expression levels of α-SMA, TGF-β1 and SMAD3 in BMSCs cultured in medium supplemented with supernatant of AFs, increased significantly (all P<0.05). Activated AFs induced the differentiation of BMSCs into vascular smooth muscle-like cells and promoted proliferation and migration. AFs activated by NE may induce BMSCs to participate in vascular remodeling. These findings may help design and develop new approaches and therapeutic strategies for vascular injury to prevent pathological remodeling.
Collapse
Affiliation(s)
- Jun Gao
- Medical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Li Li
- Pediatric Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Dongli Zhou
- Nurse's Office, Health School of Laiyang, Laiyang, Yantai, Shandong 265200, P.R. China
| | - Xuhong Sun
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lilu Cui
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Donglin Yang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaohui Wang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| | - Wendan Yuan
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| |
Collapse
|
25
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
26
|
Zhang J, Hui Y, Liu F, Yang Q, Lu Y, Chang Y, Liu Q, Ding Y. Neohesperidin Protects Angiotensin II-Induced Hypertension and Vascular Remodeling. Front Pharmacol 2022; 13:890202. [PMID: 35677431 PMCID: PMC9168427 DOI: 10.3389/fphar.2022.890202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular remodeling due to hypertension is one of the major health challenges facing countries around the world. Neohesperidin, a flavonoid glycoside found in citrus fruits, is an antioxidant. Neohesperidin has been studied for a variety of diseases in addition to hypertension. In this study, angiotensin II was used to induce hypertension in mice (490 ng/kg/min, 14 days). We used H&E, Masson, immunofluorescence, dihydroethidine and qPCR to evaluate the effect of Nehesperidin (50 mg/kg/day, 16 days) on pathological hypertension in mice. Estimating the effect of Nehesperidin on human umbilical vein endothelial cells and vascular smooth muscle cells stimulated by angiotensin II. We found that neohesperidin inhibited angiotensin II-induced hypertension in mice. Neohesperidin reduced angiotensin II-induced vascular hypertrophy, fibrosis, inflammation and oxidative stress in vivo. Neohesperidin inhibited angiotensin II-induced ROS and DNA damage in human umbilical vein endothelial cells. Neohesperidin inhibited angiotensin II-induced migration of vascular smooth muscle cells. The results showed that Nehesperidin acts as an antioxidant and could significantly inhibit angiotensin II induced hypertension and vascular remodeling in vitro and in vivo.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuanshu Hui
- Department of Heart Function Examination, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fengyi Liu
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qian Yang
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yi Lu
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yeting Chang
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinlong Liu
- Department of Hepatobiliary Pancreatic Surgery II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yanchun Ding
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|