1
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Nickerson AJ, Mutchler SM, Sheng S, Cox NA, Ray EC, Kashlan OB, Carattino MD, Marciszyn AL, Winfrey A, Gingras S, Kirabo A, Hughey RP, Kleyman TR. Mice lacking γENaC palmitoylation sites maintain benzamil-sensitive Na+ transport despite reduced channel activity. JCI Insight 2023; 8:e172051. [PMID: 37707951 PMCID: PMC10721255 DOI: 10.1172/jci.insight.172051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.
Collapse
Affiliation(s)
| | | | | | | | | | - Ossama B. Kashlan
- Department of Medicine
- Department of Computational and Systems Biology
| | | | | | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Thomas R. Kleyman
- Department of Medicine
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Reckelhoff JF. Mechanisms of sex and gender differences in hypertension. J Hum Hypertens 2023; 37:596-601. [PMID: 36797338 DOI: 10.1038/s41371-023-00810-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
The mechanisms that control blood pressure are multifaceted including the sympathetic nervous system and the renin-angiotensin system leading to vasoconstriction and sodium reabsorption that causes a shift in the pressure-natriuesis relationship to higher blood pressures. Sex steroids can affect these mechanisms either directly or indirectly, and the effects may be different depending on the sex of the individual. This review will discuss some of the major blood pressure-controlling mechanisms and how sex steroids may affect them and the need for future studies to better clarify the mechanisms responsible for sex and gender differences in blood pressure control. New mechanisms that are identified, along with what is already known, will provide better tools for treatment of hypertension in men and women of all ethnicities and decrease the risk of cardiovascular disease in the future.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology, Women's Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
4
|
Masenga SK, Povia JP, Mutengo KH, Hamooya BM, Nzala S, Heimburger DC, Munsaka SM, Elijovich F, Patel KP, Kirabo A. Sex differences in hypertension among people living with HIV after initiation of antiretroviral therapy. Front Cardiovasc Med 2022; 9:1006789. [PMID: 36465432 PMCID: PMC9715396 DOI: 10.3389/fcvm.2022.1006789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hypertension is common in people living with HIV (PLWH) on antiretroviral therapy (ART). In the general population and in experimental animal models, the incidence of hypertension is greater in males than in females, especially during the premenopausal period. However, it is not known whether there are sex differences in hypertension associated with HIV and ART, and the factors contributing to incident hypertension among PLWH have not been well characterized. In this study, we aimed to determine the time course, sex differences and factors associated with incident hypertension in PLWH initiating ART. Methods and results We conducted a retrospective study in which we used programmatic data from the ART registry to identify sex differences in the determinants of incident hypertension among PLWH initiating the ART regimen from Livingstone University Teaching Hospital in Zambia and followed for 8 years. Males developed hypertension earlier, 2 years after initiating ART, compared to 6 years in females. In multivariable analysis, increasing age, baseline systolic blood pressure and baseline mean arterial pressure (MAP) were associated with increased risk for developing incident hypertension. Also, participants who switched to the integrase strand transfer inhibitor, dolutegravir (DTG) or the protease inhibitor, lopinavir boosted with ritonavir were 2 and 3 times more likely to develop hypertension when compared to those on non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, these relationships were abrogated by sex, as self-reported male sex was the major contributor in predicting incident hypertension. While none of the factors remained significantly associated with incident hypertension upon multivariate analysis among females, body mass index (BMI), and use of protease inhibitors remained strongly associated with hypertension among males. Conclusion Our results indicate that the use of protease inhibitors and BMI are important predictors of incident hypertension among males. Thus, blood pressure and BMI should be closely monitored, particularly in males living with HIV on protease inhibitors. In addition, identifying specific factors that protect females from developing hypertension early is important but remains to be determined.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia,School of Medicine, University of Zambia, Lusaka, Zambia
| | - Joreen P. Povia
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Benson M. Hamooya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | | | - Douglas C. Heimburger
- School of Medicine, University of Zambia, Lusaka, Zambia,Department of Medicine, Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sody M. Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Fernando Elijovich
- Department of Medicine, Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo,
| |
Collapse
|