1
|
Issotina Zibrila A, Zhou J, Wang X, Zeng M, Ali MA, Liu X, Alkuhali AA, Zeng Z, Meng Y, Wang Z, Li X, Liu J. Placental ischemia-upregulated angiotensin II type 1 receptor in hypothalamic paraventricular nucleus contributes to hypertension in rat. Pflugers Arch 2024; 476:1677-1691. [PMID: 39215834 DOI: 10.1007/s00424-024-03010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Preeclampsia (PE) is associated with increased angiotensin II sensitivity and poor neurological outcomes marked by temporal loss of neural control of blood pressure. Yet the role of centrally expressed angiotensin II type 1 receptor (AT1R) within the paraventricular nucleus of the hypothalamus (PVN) in the PE model is not understood. In a PE rat model with reduced placental perfusion pressure (RUPP) induced on gestational day 14 (GD14), the PVN expression and cellular localization of AT1R were assessed using immunofluorescence and western blotting. The sensitivity of RUPP to acute angiotensin II infusion was assessed. AT1R was antagonized by losartan (100 µg/kg/day) for 5 days intracerebroventricularly (ICV). Hemodynamic data and samples were collected on GD19 for further analysis. RUPP upregulated (p < 0.05) mRNA and protein of AT1R within the PVN and lowered (p < 0.05) circulating angiotensin II in rats. RUPP increased neural and microglial activation. Cellular localization assessment revealed that AT1R was primarily expressed in neurons and slightly in microglia and astrocytes. Infusion of 100 ng/kg as bolus increased the mean arterial pressure (MAP in mmHg) in both RUPP and Sham. ICV losartan infusion attenuated RUPP-increased MAP (113.6 ± 6.22 in RUPP vs. 92.16 ± 5.30 in RUPP + Los, p = 0.021) and the expression of nuclear transcription factor NF-κB, tyrosine hydroxylase (TH), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) in the PVN. Our data suggest that centrally expressed AT1R, within the PVN, contributes to placental ischemia-induced hypertension in RUPP rats highlighting its therapeutic potential in PE.
Collapse
Affiliation(s)
- Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Jun Zhou
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Md Ahasan Ali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Asma A Alkuhali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Yuan Meng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xuelan Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China.
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China.
| |
Collapse
|
2
|
Bernier E, Couture C, Borchers A, Brien ME, Graham CH, Girard S. Circulating Immune Cells from Early- and Late-onset Pre-eclampsia Displays Distinct Profiles with Differential Impact on Endothelial Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1292-1304. [PMID: 39302114 PMCID: PMC11491498 DOI: 10.4049/jimmunol.2400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Pre-eclampsia (PE) affects 5-8% of pregnancies and has detrimental effects on maternal-fetal health. PE is characterized by de novo hypertension after 20 wk of gestation and end-organ damage. Systemic inflammatory imbalance has been associated with PE, but its contribution to the pathology is poorly understood. Our objective was to investigate maternal systemic immune changes in early-onset PE (EOPE) and late-onset PE (LOPE) versus uncomplicated pregnancies (control [CTRL]), and their contribution to endothelial activation, hallmark of hypertension. Blood samples were analyzed by flow cytometry, multiplex assay, intracellular cytokine staining, and single-cell RNA sequencing. We performed cocultures between circulating immune cells and HUVECs to assess endothelial activation. We found that EOPE had decreased regulatory T cells (4.64±0.33, p < 0.05) and monocytes (33.92±3.08, p < 0.01), whereas LOPE had decreased regulatory T cells (4.60±0.30, p < 0.05) and Th2 cells (7.50±0.62, p < 0.01) versus CTRL. Compared to CTRL, elevated cytokines/chemokines, and growth factors were observed in LOPE, whereas EOPE primarily showed decreased levels. Using intracellular cytokine staining, we observed more monocytes producing IL-12, TNF-α, and IL-1β (all p < 0.05) in LOPE versus CTRL. At the transcriptomic level, we found differentially expressed genes between EOPE and CTRL, predominantly related to upregulation of immune activation pathways. Lastly, EOPE PBMCs induced heightened endothelial activation in vitro observed by increased ICAM-1 and ET-1 (p < 0.05), whereas LOPE PBMCs required LPS stimulation. Although significant proteomic changes are observed in the LOPE group, the EOPE displayed changes mostly at the transcriptomic levels and could induce endothelial activation in vitro.
Collapse
Affiliation(s)
- Elsa Bernier
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Camille Couture
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Anna Borchers
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Marie-Eve Brien
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Sylvie Girard
- Department of Immunology, Mayo Clinic, Rochester, MN
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN
| |
Collapse
|
3
|
Elgazzaz M, Woodham PC, Maher J, Faulkner JL. Implications of pregnancy on cardiometabolic disease risk: preeclampsia and gestational diabetes. Am J Physiol Cell Physiol 2024; 327:C646-C660. [PMID: 39010840 PMCID: PMC11427017 DOI: 10.1152/ajpcell.00293.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Cardiometabolic disorders, such as obesity, insulin resistance, and hypertension, prior to and within pregnancy are increasing in prevalence worldwide. Pregnancy-associated cardiometabolic disease poses a great risk to the short- and long-term well-being of the mother and offspring. Hypertensive pregnancy, notably preeclampsia, as well as gestational diabetes are the major diseases of pregnancy growing in prevalence as a result of growing cardiometabolic disease prevalence. The mechanisms whereby obesity, diabetes, and other comorbidities lead to preeclampsia and gestational diabetes are incompletely understood and continually evolving in the literature. In addition, novel therapeutic avenues are currently being explored in these patients to offset cardiometabolic-induced adverse pregnancy outcomes in preeclamptic and gestational diabetes pregnancies. In this review, we discuss the emerging pathophysiological mechanisms of preeclampsia and gestational diabetes in the context of cardiometabolic risk as well as the most recent preclinical and clinical updates in the pathogenesis and treatment of these conditions.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Padmashree C Woodham
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - James Maher
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
4
|
Tucker SM, Essajee SI, Warne CM, Dick GM, Heard MP, Crowe N, Goulopoulou S, Tune JD. Impaired balance between coronary blood flow and myocardial metabolism in postpartum swine. J Mol Cell Cardiol 2024; 194:96-104. [PMID: 38971217 DOI: 10.1016/j.yjmcc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35-45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1-30 μg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (P < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (P < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO2) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (P < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (P < 0.05) or MVO2 (P < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO2 up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (P < 0.001), increases in coronary venous PCO2 (P < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.
Collapse
Affiliation(s)
- Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Michael P Heard
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Nicole Crowe
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics Loma Linda University, Loma Linda, CA, United States of America
| | - Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America.
| |
Collapse
|
5
|
Manoharan MM, Montes GC, Acquarone M, Swan KF, Pridjian GC, Nogueira Alencar AK, Bayer CL. Metabolic theory of preeclampsia: implications for maternal cardiovascular health. Am J Physiol Heart Circ Physiol 2024; 327:H582-H597. [PMID: 38968164 PMCID: PMC11442029 DOI: 10.1152/ajpheart.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Collapse
Affiliation(s)
- Mistina M Manoharan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
| | - Guilherme C Montes
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Department of Neurology, Tulane University, New Orleans, Louisiana, United States
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | - Gabriella C Pridjian
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | | | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Lin IC, Wu KLH, Cheng HH, Tsai CC, Yu HR, Hsu TY, Tain YL, Huang LT, Lai YJ. Association of Perinatal Cardiovascular Features with Angiotensin System Expressions in Maternal Preeclampsia. Int J Mol Sci 2024; 25:7426. [PMID: 39000532 PMCID: PMC11242154 DOI: 10.3390/ijms25137426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
We hypothesized and investigated whether prenatal exposure to preeclampsia (PE) would simultaneously affect perinatal cardiovascular features and angiotensin system expressions. This prospective study was composed of mother-neonate dyads with (n = 49) and without maternal preeclampsia (n = 48) in a single tertiary medical center. The neonates exposed to PE had significantly larger relative sizes for the left and right coronary arteries and a higher cord plasma level of aminopeptidase-N, which positively correlated with the maternal diastolic blood pressures and determined the relative sizes of the left and right coronary arteries, whereas the encoding aminopeptidase-N (ANPEP) mRNA level in the PE cord blood leukocytes was significantly decreased, positively correlated with the neonatal systolic blood pressures (SBPs), and negatively correlated with the cord plasma-induced endothelial vascular cell adhesion molecule-1 mRNA levels. The PE cord plasma significantly induced higher endothelial mRNA levels of angiotensin II type 1 receptor (AT1R) and AT4R, whereas in the umbilical arteries, the protein expressions of AT2R and AT4R were significantly decreased in the PE group. The endothelial AT1R mRNA level positively determined the maternal SBPs, and the AT4R mRNA level positively determined the neonatal chamber size and cardiac output. In conclusion, PE may influence perinatal angiotensin system and cardiovascular manifestations of neonates across placentae. Intriguing correlations between these two warrant further mechanistic investigation.
Collapse
Affiliation(s)
- I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
7
|
Zhao S, Huang Y, Shi S, Chen W, Chen R, Wang Z, Wang D. Causal effects of hypertensive disorders of pregnancy on structural changes in specific brain regions: a Mendelian randomization study. Cereb Cortex 2024; 34:bhae282. [PMID: 38984704 DOI: 10.1093/cercor/bhae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
This study utilized Mendelian randomization to explore the impact of hypertensive disorders of pregnancy and their subtypes on brain structures, using genome-wide association study data from the FinnGen consortium for hypertensive disorders of pregnancy exposure and brain structure data from the ENIGMA consortium as outcomes. The inverse-variance weighted method, along with Cochran's Q test, Mendelian randomization-Egger regression, Mendelian randomization-PRESSO global test, and the leave-one-out approach, were applied to infer causality and assess heterogeneity and pleiotropy. Findings indicate hypertensive disorders of pregnancy are associated with structural brain alterations, including reduced cortical thickness in areas like the insula, isthmus cingulate gyrus, superior temporal gyrus, temporal pole, and transverse temporal gyrus, and an increased surface area in the superior frontal gyrus. Specific associations were found for hypertensive disorders of pregnancy subtypes: chronic hypertension with superimposed preeclampsia increased cortical thickness in the supramarginal gyrus; preeclampsia/eclampsia led to thinner cortex in the lingual gyrus and larger hippocampal volume and superior parietal lobule surface area. Chronic hypertension was associated with reduced cortical thickness in the caudal and rostral anterior cingulate and increased surface area of the cuneus and thickness of the pars orbitalis cortex. Gestational hypertension showed no significant brain region changes. These insights clarify hypertensive disorders of pregnancies' neurological and cognitive effects by identifying affected brain regions.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Yihong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Shaole Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Wei Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Run Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, 58 Zhongshan Road II, Guangzhou 510080, China
| |
Collapse
|
8
|
Warrington JP, Collins HE, Davidge ST, do Carmo JM, Goulopoulou S, Intapad S, Loria AS, Sones JL, Wold LE, Zinkhan EK, Alexander BT. Guidelines for in vivo models of developmental programming of cardiovascular disease risk. Am J Physiol Heart Circ Physiol 2024; 327:H221-H241. [PMID: 38819382 PMCID: PMC11380980 DOI: 10.1152/ajpheart.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.
Collapse
Grants
- 20YVNR35490079 American Heart Association (AHA)
- R01HL139348 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135158 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54GM115428 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG057046 HHS | NIH | National Institute on Aging (NIA)
- P20 GM104357 NIGMS NIH HHS
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 GM149404 NIGMS NIH HHS
- P20GM104357 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM135002 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL163003 NHLBI NIH HHS
- R01HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK121411 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Excellence Faculty Support Grant Jewish Heritage Fund
- P30GM149404 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P30GM14940 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 23SFRNPCS1067044 American Heart Association (AHA)
- R01 HL146562 NHLBI NIH HHS
- R56HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- 1R01HL163076 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL51971 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- FS154313 CIHR
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, Kentucky, United States
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jussara M do Carmo
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, United States
- Department of Gynecology, and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Suttira Intapad
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jenny L Sones
- Equine Reproduction Laboratory, Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Erin K Zinkhan
- Department of Pediatrics, University of Utah and Intermountain Health, Salt Lake City, Utah, United States
- Intermountain Health, Salt Lake City, Utah, United States
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
9
|
Tano S, Kotani T, Matsuo S, Ushida T, Imai K, Kajiyama H. Identifying the high-benefit population for weight management-based cardiovascular disease prevention in Japan. Prev Med Rep 2024; 43:102782. [PMID: 39026567 PMCID: PMC11257143 DOI: 10.1016/j.pmedr.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cardiovascular-disease (CVD) is the leading cause of death, and the association between obesity and CVD is particularly significant among women. Given the evidence highlighting the significance of weight-gain velosity, we aimed to elucidate its influence on cardio-ankle vascular index (CAVI), a reliable surrogate marker of CVD, and identify the high-benefit population where this influence is most pronounced. Methods This multicenter retrospective study used electronic data from annual health checkups for workers in Japan. Individuals who voluntarily measured CAVI in 2019 were included, and weight-gain velosity was defined as the mean BMI gain from 2015 to 2019. Our primary outcome was the relationship between weight-gain velosity and CAVI. Results Among 459 individuals, 53 had CAVI ≥ 9. Random forest analysis revealed that age was the most important factor, followed by lipid metabolism, weight-gain velosity, and glucose metabolism, with sex being the least important. Non-linear regression analysis of the effect of age on CAVI ≥ 9 showed the effect was pronounced after age 60, and the trend was greater in women. Among individuals aged 60 or younger, the aOR of weight-gain velosity for CAVI ≥ 9 was significantly positive (aOR 11.95, 95 %CI 1.13-126.27), while it was not significant for those older than 60. The relationship between weight-gain velosity and CAVI provides a new perspective on CVD risk factors. The effects of age, especially after 60, and weight-gain velosity in early- to middle-adulthood on arterial stiffness are emphasized. Conclusions These findings underscore the importance of weight management under age 60, especially in women.
Collapse
Affiliation(s)
- Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Xu M, Wang HX, Zu P, Jiang N, Bian JF, Xu JR, Luo W, Zhu P. Association Between Preeclampsia and Blood Pressure in Offspring: A Systematic Review and Meta-Analysis. Curr Hypertens Rep 2024; 26:325-337. [PMID: 38780756 DOI: 10.1007/s11906-024-01306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF REVIEW Pregnancy-induced preeclampsia is a severe pregnancy complication and preeclampsia has been associated with an increased risk of chronic hypertension for offspring. However, the magnitude of the overall effect of exposure to preeclampsia in pregnancy on blood pressure (BP) in offspring is unknown. This systematic review and meta-analysis was sought to systematically assess the effects of preeclampsia on the BP of the offspring. RECENT FINDINGS Of 2550 publications identified, 23 studies were included. The meta-analysis indicated that preeclampsia increases the potential risk of hypertension in offspring. Systolic blood pressure (SBP) was 2.0 mm Hg (95% CI: 1.2, 2.8) and diastolic blood pressure (DBP) was 1.4 mm Hg (95% CI: 0.9, 1.9) higher in offspring exposed to pre-eclampsia in utero, compared to those born to normotensive mothers. The correlations were similar in stratified analyses of children and adolescents by sex, geographic area, ages, and gestational age. During childhood and young adulthood, the offspring of pregnant women with preeclampsia are at an increased risk of high BP. It is crucial to monitor their BP.
Collapse
Affiliation(s)
- Min Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-Xia Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Ping Zu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Nan Jiang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Jing-Feng Bian
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Ji-Rong Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory of Environment and Population health across the Life Course, Anhui Medical University, Hefei, China.
- Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Graton ME, Spaans F, He R, Chatterjee P, Kirschenman R, Quon A, Phillips TJ, Case CP, Davidge ST. Sex-specific differences in the mechanisms for enhanced thromboxane A 2-mediated vasoconstriction in adult offspring exposed to prenatal hypoxia. Biol Sex Differ 2024; 15:52. [PMID: 38898532 PMCID: PMC11188502 DOI: 10.1186/s13293-024-00627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A2 (TxA2) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown. To prevent the risk of cardiovascular disease by prenatal hypoxia, we have tested a maternal treatment using a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). We hypothesized that prenatal hypoxia enhances vascular TxA2 responses in the adult offspring, due to decreased NO modulation, and that this might be prevented by maternal nMitoQ treatment. METHODS Pregnant Sprague-Dawley rats received a single intravenous injection (100 µL) of vehicle (saline) or nMitoQ (125 µmol/L) on gestational day (GD)15 and were exposed to normoxia (21% O2) or hypoxia (11% O2) from GD15 to GD21 (term = 22 days). Coronary and mesenteric arteries were isolated from the 4-month-old female and male offspring, and vasoconstriction responses to U46619 (TxA2 analog) were evaluated using wire myography. In mesenteric arteries, L-NAME (pan-NO synthase (NOS) inhibitor) was used to assess NO modulation. Mesenteric artery endothelial (e)NOS, and TxA2 receptor expression, superoxide, and 3-nitrotyrosine levels were assessed by immunofluorescence. RESULTS Prenatal hypoxia resulted in increased U46619 responsiveness in coronary and mesenteric arteries of the female offspring, and to a lesser extent in the male offspring, which was prevented by nMitoQ. In females, there was a reduced impact of L-NAME in mesenteric arteries of the prenatal hypoxia saline-treated females, and reduced 3-nitrotyrosine levels. In males, L-NAME increased U46619 responses in mesenteric artery to a similar extent, but TxA2 receptor expression was increased by prenatal hypoxia. There were no changes in eNOS or superoxide levels. CONCLUSIONS Prenatal hypoxia increased TxA2 vasoconstrictor capacity in the adult offspring in a sex-specific manner, via reduced NO modulation in females and increased TP expression in males. Maternal placental antioxidant treatment prevented the impact of prenatal hypoxia. These findings increase our understanding of how complicated pregnancies can lead to a sex difference in the programming of cardiovascular disease in the adult offspring.
Collapse
Affiliation(s)
- Murilo E Graton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Rose He
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Paulami Chatterjee
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tom J Phillips
- UK Dementia Research Institute, Cardiff University, Cardiff, W1T 7NF, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS8 1QU, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
12
|
Ngene NC, Moodley J. Preventing maternal morbidity and mortality from preeclampsia and eclampsia particularly in low- and middle-income countries. Best Pract Res Clin Obstet Gynaecol 2024; 94:102473. [PMID: 38513504 DOI: 10.1016/j.bpobgyn.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
Preeclampsia (PE) is a complex heterogeneous disorder with overlapping clinical phenotypes that complicate diagnosis and management. Although several pathophysiological mechanisms have been proposed, placental dysfunction due to inadequate remodelling of uterine spiral arteries leading to mal-perfusion and syncytiotrophoblast stress is recognized as the unifying characteristic of early-onset PE. Placental overgrowth and or premature senescence are probably the causes of late-onset PE. The frequency of PE has increased over the last few decades due to population-wide increases in risk factors viz. obesity, diabetes, multifetal pregnancies and pregnancies at an advanced maternal age. Whilst multimodal tools with components comprising risk factors, biomarkers and sonography are used for predicting PE, aspirin is most effective in preventing early-onset PE. The incidence and clinical consequences of PE and eclampsia are influenced by socioeconomic and cultural factors, therefore management strategies should involve multi-sector partnerships to mitigate the adverse outcomes.
Collapse
Affiliation(s)
- Nnabuike Chibuoke Ngene
- Department of Obstetrics and Gynaecology, Rahima Moosa Mother and Child Hospital, Johannesburg, Gauteng, South Africa; Department of Obstetrics and Gynaecology, School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynecology, School of Clinical Medicine, Faculty of Health Sciences, University of Kwa Zulu-Natal, Durban, South Africa.
| |
Collapse
|
13
|
Svigkou A, Katsi V, Kordalis VG, Tsioufis K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. Int J Mol Sci 2024; 25:5455. [PMID: 38791492 PMCID: PMC11121482 DOI: 10.3390/ijms25105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The review examines the impact of maternal preeclampsia (PE) on the cardiometabolic and cardiovascular health of offspring. PE, a hypertensive disorder of pregnancy, is responsible for 2 to 8% of pregnancy-related complications. It significantly contributes to adverse outcomes for their infants, affecting the time of birth, the birth weight, and cardiometabolic risk factors such as blood pressure, body mass index (BMI), abdominal obesity, lipid profiles, glucose, and insulin. Exposure to PE in utero predisposes offspring to an increased risk of cardiometabolic diseases (CMD) and cardiovascular diseases (CVD) through mechanisms that are not fully understood. The incidence of CMD and CVD is constantly increasing, whereas CVD is the main cause of morbidity and mortality globally. A complex interplay of genes, environment, and developmental programming is a plausible explanation for the development of endothelial dysfunction, which leads to atherosclerosis and CVD. The underlying molecular mechanisms are angiogenic imbalance, inflammation, alterations in the renin-angiotensin-aldosterone system (RAAS), endothelium-derived components, serotonin dysregulation, oxidative stress, and activation of both the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis. Moreover, the potential role of epigenetic factors, such as DNA methylation and microRNAs as mediators of these effects is emphasized, suggesting avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
| | - Vasiliki Katsi
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Vasilios G. Kordalis
- School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Konstantinos Tsioufis
- Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| |
Collapse
|
14
|
Bakrania BA, Spradley FT, McClements L. Editorial: Adverse outcomes of preeclampsia: from mother to baby, pregnancy to postpartum. Front Physiol 2024; 15:1394120. [PMID: 38651040 PMCID: PMC11033511 DOI: 10.3389/fphys.2024.1394120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Bhavisha A. Bakrania
- UQ Centre for Clinical Research and Perinatal Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Frank T. Spradley
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lana McClements
- School of Life Sciences and Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
16
|
Ananth CV, Brandt JS. Hypertensive disorders across successive pregnancies and cardiovascular risks: A nuanced picture emerges, but raises questions too. Paediatr Perinat Epidemiol 2024; 38:238-240. [PMID: 38425080 DOI: 10.1111/ppe.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Cande V Ananth
- Division of Epidemiology and Biostatistics, Department of Obstetrics, Gynecology, and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Cardiovascular Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Justin S Brandt
- Department of Obstetrics and Gynecology, NYU Langone Health, New York University, New York, New York, USA
| |
Collapse
|
17
|
Kilkenny K, Frishman W. Preeclampsia's Cardiovascular Aftermath: A Comprehensive Review of Consequences for Mother and Offspring. Cardiol Rev 2024:00045415-990000000-00188. [PMID: 38189425 DOI: 10.1097/crd.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Preeclampsia (PE), a multisystem hypertensive disorder affecting 2-8% of pregnancies, has emerged as a novel risk factor for cardiovascular disease (CVD) in affected mothers and in their offspring. Between 10 and 15 years following gestation, women with a history of PE have double the risk of CVD, nearly 4 times the risk of hypertension, and increased all-cause mortality. Offspring exposed to PE in utero carry an increased risk of CVD and congenital heart defects. Due to the multifactorial nature of both PE and CVD, a clear dependency has been difficult to establish. The interplay between CVD and PE is an area of active investigation, likely involving placental, genetic, and epigenetic factors resulting in enduring endothelial, vascular, and immune dysfunction. Fetal developmental programming induced by adverse intrauterine environments, epigenetic changes triggered by oxidative stress, and underlying genetic predisposition play pivotal roles in the development of CVD in offspring exposed to PE. Though the literature has discussed the cardiovascular outcomes associated with PE for nearly a decade, patient risk perception and health care provider awareness remain low, representing a substantial missed opportunity for early intervention in this vulnerable population. This review article will discuss the pathophysiology of preeclampsia, its intersection with CVD, and the long-term cardiovascular consequences for affected mothers and their offspring. Our objective is to increase health care provider awareness and garner greater research interest in this important topic.
Collapse
Affiliation(s)
| | - William Frishman
- From the New York Medical College, School of Medicine, Valhalla, NY
- Department of Medicine, Westchester Medical Center, Valhalla, NY
| |
Collapse
|
18
|
Jing Jia, Ma B, Zhao X. Fetal endothelial colony-forming cells: Possible targets for prevention of the fetal origins of adult diseases. Placenta 2024; 145:80-88. [PMID: 38100962 DOI: 10.1016/j.placenta.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Endothelial colony-forming cells (ECFCs), a subset of circulating and resident endothelial progenitor cells, are capable of self-renewal and de novo vessel formation, and are known key regulators of vascular integrity and homeostasis. Numerous studies have found that exposure to hostile environment during the fetal development exerts a profound influence on the level and function of ECFCs, which may be the underlying factor linking endothelial dysfunction to cardiovascular disease of the offspring in later life. Herein, we focus on the latest findings regarding the effects of pregnancy-related disorders on the frequency and function of fetal ECFCs. Subsequently, we discuss about placental ECFCs and put forward some details that should be paid attention to in the process of ECFC isolation and culture. Overall, the information presented in this review highlight the potential of ECFCs as a future biomarker or even therapeutic targets for the pregnancy-related adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Baitao Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|