1
|
Salie MT, Yang J, Ramírez Medina CR, Zühlke LJ, Chishala C, Ntsekhe M, Gitura B, Ogendo S, Okello E, Lwabi P, Musuku J, Mtaja A, Hugo-Hamman C, El-Sayed A, Damasceno A, Mocumbi A, Bode-Thomas F, Yilgwan C, Amusa GA, Nkereuwem E, Shaboodien G, Da Silva R, Lee DCH, Frain S, Geifman N, Whetton AD, Keavney B, Engel ME. Data-independent acquisition mass spectrometry in severe rheumatic heart disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases. Clin Proteomics 2022; 19:7. [PMID: 35317720 PMCID: PMC8939134 DOI: 10.1186/s12014-022-09345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rheumatic heart disease (RHD) remains a major source of morbidity and mortality in developing countries. A deeper insight into the pathogenetic mechanisms underlying RHD could provide opportunities for drug repurposing, guide recommendations for secondary penicillin prophylaxis, and/or inform development of near-patient diagnostics. METHODS We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectrometry (SWATH-MS) to screen protein expression in 215 African patients with severe RHD, and 230 controls. We applied a machine learning (ML) approach to feature selection among the 366 proteins quantifiable in at least 40% of samples, using the Boruta wrapper algorithm. The case-control differences and contribution to Area Under the Receiver Operating Curve (AUC) for each of the 56 proteins identified by the Boruta algorithm were calculated by Logistic Regression adjusted for age, sex and BMI. Biological pathways and functions enriched for proteins were identified using ClueGo pathway analyses. RESULTS Adiponectin, complement component C7 and fibulin-1, a component of heart valve matrix, were significantly higher in cases when compared with controls. Ficolin-3, a protein with calcium-independent lectin activity that activates the complement pathway, was lower in cases than controls. The top six biomarkers from the Boruta analyses conferred an AUC of 0.90 indicating excellent discriminatory capacity between RHD cases and controls. CONCLUSIONS These results support the presence of an ongoing inflammatory response in RHD, at a time when severe valve disease has developed, and distant from previous episodes of acute rheumatic fever. This biomarker signature could have potential utility in recognizing different degrees of ongoing inflammation in RHD patients, which may, in turn, be related to prognostic severity.
Collapse
Affiliation(s)
- M Taariq Salie
- AFROStrep Research Group, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jing Yang
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carlos R Ramírez Medina
- Division of Informatics, Imaging, and Data Sciences, University of Manchester, Manchester , UK
| | - Liesl J Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Chishala Chishala
- Division of Cardiology, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Bernard Gitura
- Cardiology Department of Medicine, Kenyatta National Hospital, University of Nairobi, Nairobi, Kenya
| | - Stephen Ogendo
- Department of Surgery, University of Nairobi, Nairobi, Kenya
| | - Emmy Okello
- Departments of Adult and Pediatric Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Peter Lwabi
- Departments of Adult and Pediatric Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - John Musuku
- University Teaching Hospital-Children's Hospital, University of Zambia, Lusaka, Zambia
| | - Agnes Mtaja
- University Teaching Hospital-Children's Hospital, University of Zambia, Lusaka, Zambia
| | - Christopher Hugo-Hamman
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
- Rheumatic Heart Disease Clinic, Windhoek Central Hospital, Windhoek, Namibia
| | - Ahmed El-Sayed
- Department of Cardiothoracic Surgery, Alshaab Teaching Hospital, Alazhari Health Research Center, Alzaiem Alazhari University, Khartoum, Sudan
| | - Albertino Damasceno
- Faculty of Medicine, Eduardo Mondlane University/Nucleo de Investigaçao, Departamento de Medicina, Hospital Central de Maputo, Maputo, Mozambique
| | - Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
- Division of Non Communicable Diseases, Instituto Nacional de Saude, Vila de Marracuene, Mozambique
| | - Fidelia Bode-Thomas
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Christopher Yilgwan
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Ganiyu A Amusa
- Department of Medicine, University of Jos and Jos University Teaching Hospital, Jos, Nigeria
| | - Esin Nkereuwem
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Gasnat Shaboodien
- Department of Medicine and Cape Heart Institute (CHI), University of Cape Town, Cape Town, South Africa
| | - Rachael Da Silva
- Stoller Biomarker Discovery Institute, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dave Chi Hoo Lee
- Stoller Biomarker Discovery Institute, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Frain
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Anthony D Whetton
- Faculty of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark E Engel
- AFROStrep Research Group, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Yasmin, Maskari RA, McEniery CM, Cleary SE, Li Y, Siew K, Figg NL, Khir AW, Cockcroft JR, Wilkinson IB, O'Shaughnessy KM. The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Sci Rep 2018; 8:8550. [PMID: 29867203 PMCID: PMC5986773 DOI: 10.1038/s41598-018-25851-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Stiffening of the aorta is an important independent risk factor for myocardial infarction and stroke. Yet its genetics is complex and little is known about its molecular drivers. We have identified for the first time, tagSNPs in the genes for extracellular matrix proteins, aggrecan and fibulin-1, that modulate stiffness in young healthy adults. We confirmed SNP associations with ex vivo stiffness measurements and expression studies in human donor aortic tissues. Both aggrecan and fibulin-1 were found in the aortic wall, but with marked differences in the distribution and glycosylation of aggrecan reflecting loss of chondroitin-sulphate binding domains. These differences were age-dependent but the striking finding was the acceleration of this process in stiff versus elastic young aortas. These findings suggest that aggrecan and fibulin-1 have critical roles in determining the biomechanics of the aorta and their modification with age could underpin age-related aortic stiffening.
Collapse
Affiliation(s)
- Yasmin
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Raya Al Maskari
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Carmel M McEniery
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Sarah E Cleary
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ye Li
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - Keith Siew
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ashraf W Khir
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - John R Cockcroft
- Division of Cardiology, New York-Presbyterian Hospital, Columbia University, New York, USA
| | - Ian B Wilkinson
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
3
|
Holmager P, Egstrup M, Gustafsson I, Schou M, Dahl JS, Rasmussen LM, Møller JE, Tuxen C, Faber J, Kistorp C. Galectin-3 and fibulin-1 in systolic heart failure - relation to glucose metabolism and left ventricular contractile reserve. BMC Cardiovasc Disord 2017; 17:22. [PMID: 28068900 PMCID: PMC5223321 DOI: 10.1186/s12872-016-0437-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
Background Heart failure (HF) patients with diabetes (DM) have an adverse prognosis and reduced functional capacity, which could be associated with cardiac fibrosis, increased chamber stiffness and reduced left ventricular (LV) contractile reserve. Galectin-3 (Gal-3) and fibulin-1 are circulating biomarkers potentially reflecting cardiac fibrosis. We hypothesize that plasma levels of Gal-3 and fibulin-1 are elevated in HF patients with DM and are associated with reduced LV contractile reserve in these patients. Methods A total of 155 patients with HF with reduced ejection fraction underwent a low-dose dobutamine echocardiography and blood sampling for biomarker measurements. Patients were classified according to history of DM and an oral glucose tolerance test (OGTT) as: normal glucose tolerance (NGT) (n = 70), impaired glucose tolerance (IGT) (n = 25) and DM (n = 60). Results Galectin-3 levels were elevated in DM patients as compared to non-diabetic patients (P = 0.02), while higher fibulin-1 levels were observed in HF patients with IGF and DM (P = 0.07). Reduced LV contractile reserve was associated with increasing Gal-3 levels (β = −0.19, P = 0.03) although, this association was attenuated after adjustment for estimated glomerular filtration rate (P = 0.66). Fibulin-1 was not associated with LV contractile reserve (P = 0.71). Conclusions Galectin-3 and fibulin-1 levels were elevated in HF patients with impaired glucose metabolism. However, reduced LV contractile reserve among HF patients with DM does not to have an independent impact on plasma Gal-3 and fibulin-1 levels.
Collapse
Affiliation(s)
- Pernille Holmager
- Department of Medicine, Endocrine Unit, Herlev University Hospital, Herlev, Denmark. .,Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark. .,Department of Endocrinology, Herlev Hospital, Herlev, Denmark.
| | - Michael Egstrup
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Ida Gustafsson
- Department of Cardiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Morten Schou
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark.,Department of Cardiology, Herlev University Hospital, Herlev, Denmark
| | - Jordi S Dahl
- Department of Cardiology and Cardiothoracic Surgery, Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Centre of Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | - Jacob E Møller
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Christian Tuxen
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jens Faber
- Department of Medicine, Endocrine Unit, Herlev University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Medicine, Endocrine Unit, Herlev University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
4
|
Mokwatsi GG, Schutte AE, Kruger R. A biomarker of tissue damage, lactate dehydrogenase, is associated with fibulin-1 and oxidative stress in blacks: the SAfrEIC study. Biomarkers 2015; 21:48-55. [DOI: 10.3109/1354750x.2015.1118532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Calumenin and fibulin-1 on tumor metastasis: Implications for pharmacology. Pharmacol Res 2015; 99:11-5. [PMID: 25976680 DOI: 10.1016/j.phrs.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
Tumor metastasis is a key cause of cancer mortality, and inhibiting migration of cancer cells is one of the major directions of anti-metastatic drug development. Calumenin and fibulin-1 are two extracellular proteins that synergistically inhibit cell migration and tumor metastasis, and could potentially be served as targets for pharmacological research of anti-metastatic drugs. This review briefly introduces the multi-function of these two proteins, and discusses the mechanism of how they regulate cell migration and tumor metastasis.
Collapse
|
6
|
Hansen ML, Rasmussen LM. Associations between plasma fibulin-1, pulse wave velocity and diabetes in patients with coronary heart disease. J Diabetes Complications 2015; 29:362-6. [PMID: 25633574 DOI: 10.1016/j.jdiacomp.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Diabetes is related to increased risk of cardiovascular disease, and arterial stiffness and its consequences may be the factor connecting the two. Arterial stiffness is often measured by carotid-femoral pulse wave velocity (cf-PWV), but no plasma biomarker reflecting arterial stiffness is available. Fibulin-1 is an extracellular matrix protein, up-regulated in arterial tissue and in plasma in patients with type 2 diabetes. We aimed to evaluate the association between plasma fibulin-1 and arterial stiffness measured by cf PWV in a group of patients with diabetes, and one without, all undergoing coronary artery bypass grafting. METHODS Pulse wave velocity (PWV) and pulse wave analysis including augmentation index (Aix75) was measured in 273 patients, who subsequently underwent a coronary by-pass operation. Plasma samples were drawn and information was gathered on diabetes status, HbA1c, lipids, medication, body mass index, co-morbidities and smoking status. Carotid artery intima-media thickness, as well as estimation of carotid artery plaque burden, and distal blood pressure was also obtained. RESULTS Sixty three patients had diabetes, and this group had significantly higher levels of plasma fibulin-1, PWV and Aix75, compared to the 210 patients who did not have diabetes. In univariate analysis fibulin-1 and pulse wave velocity were not correlated in either group whereas fibulin-1 in patients without diabetes was correlated to Aix75. CONCLUSION Fibulin-1 and arterial stiffness indices are not directly related in patients with cardiac disease, despite the fact that both measures are increased among patients with diabetes.
Collapse
Affiliation(s)
- Maria Lyck Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Centre of Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Denmark.
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark; Centre of Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Denmark
| |
Collapse
|
7
|
Extracellular Matrix Biomarker, Fibulin-1 and Its Association with Soluble uPAR in a Bi-ethnic South African Population: The SAfrEIC Study. Heart Lung Circ 2015; 24:298-305. [DOI: 10.1016/j.hlc.2014.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/26/2014] [Indexed: 01/22/2023]
|
8
|
Overgaard M, Cangemi C, Jensen ML, Argraves WS, Rasmussen LM. Total and isoform-specific quantitative assessment of circulating fibulin-1 using selected reaction monitoring MS and time-resolved immunofluorometry. Proteomics Clin Appl 2015; 9:767-75. [PMID: 25331251 DOI: 10.1002/prca.201400070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 01/17/2023]
Abstract
PURPOSE Targeted proteomics using SRM-MS combined with stable-isotope dilution has emerged as a promising quantitative technique for the study of circulating protein biomarkers. The purpose of this study was to develop and characterize robust quantitative assays for the emerging cardiovascular biomarker fibulin-1 and its circulating isoforms in human plasma. EXPERIMENTAL DESIGN We used bioinformatics analysis to predict total and isoform-specific tryptic peptides for absolute quantitation using SRM-MS. Fibulin-1 was quantitated in plasma by nanoflow-LC-SRM-MS in undepleted plasma and time-resolved immunofluorometric assay (TRIFMA). Both methods were validated and compared to a commercial ELISA (CircuLex). Molecular size determination was performed under native conditions by SEC analysis coupled to SRM-MS and TRIFMA. RESULTS Absolute quantitation of total fibulin-1, isoforms -1C, and -1D was performed by SRM-MS. Fibulin-1C was the most abundant isoform in plasma. Circulating fibulin-1 isoforms were homo -or hetero multimeric complexes (range 318-364 kDa). Good correlation was obtained between SRM-MS and TRIFMA but not CircuLex. CONCLUSIONS AND CLINICAL RELEVANCE For biomarker studies using smaller cohorts, SRM-MS provides an alternative measure of total and specific fibulin-1 isoforms in undepleted plasma. For larger cohorts TRIFMA provides a faster platform for fibulin-1 quantitation in plasma. While the correlation between these methods was acceptable, low correlation was obtained between the commercial CircuLex assay and SRM-MS or TRIFMA.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Claudia Cangemi
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Martin L Jensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - William S Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Cangemi C, Hansen ML, Argraves WS, Rasmussen LM. Fibulins and their role in cardiovascular biology and disease. Adv Clin Chem 2014; 67:245-65. [PMID: 25735864 DOI: 10.1016/bs.acc.2014.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibulins are a group of extracellular matrix proteins of which many are present in high amounts in the cardiovascular system. They share common biochemical properties and are often found in relation to basement membranes or elastic fibers. Observations in humans with specific mutations in fibulin genes, together with results from genetically engineered mice and data from human cardiovascular tissue suggest that the fibulin family of proteins play important functional roles in the cardiovascular system. Moreover, fibulin-1 circulates in high concentrations in plasma and may function as a cardiovascular disease marker.
Collapse
Affiliation(s)
- Claudia Cangemi
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Maria Lyck Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - William Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
10
|
Kruger R, Rasmussen LM, Argraves WS, Eugen-Olsen J, Nielsen OW, Blyme A, Willenheimer R, Wachtell K, Olsen MH. Extracellular matrix biomarker, fibulin-1, is closely related to NT-proBNP and soluble urokinase plasminogen activator receptor in patients with aortic valve stenosis (the SEAS study). PLoS One 2014; 9:e101522. [PMID: 25014213 PMCID: PMC4094491 DOI: 10.1371/journal.pone.0101522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/09/2014] [Indexed: 01/20/2023] Open
Abstract
Background Fibulin-1, a circulating extracellular matrix glycoprotein, has been associated with arterial disease and elevated N-terminal prohormone B-type natriuretic peptide (NT-proBNP) in diabetes. Soluble urokinase plasminogen activator receptor (suPAR), a marker of inflammation, has been associated with subclinical atherosclerosis. Therefore, we aimed to explore the interplay between these biomarkers and mild to moderate aortic valve stenosis (AS). Methods In 374 patients with mild to moderate AS, we investigated the relationship of fibulin-1 with NT-proBNP, levels of suPAR and the degree of AS at baseline and after one and four years of treatment with Simvastatin 40 mg and Ezetimibe 10 mg or placebo. Results During treatment, fibulin-1 became more closely associated with NT-proBNP (βyear0 = 0.10, p = 0.08, βyear1 = 0.16, p = 0.005, βyear4 = 0.22, p<0.001) and suPAR (βyear0 = 0.05, p = 0.34, βyear1 = 0.16, p = 0.006, βyear4 = 0.13, p = 0.03) at the expense of the association to aortic valve area index (AVAI) (βyear0 = −0.14, p = 0.005, βyear1 = −0.08, p = 0.11, βyear4 = −0.06, p = 0.22) independently of age, gender, creatinine, and serum aspartate aminotransferase (Adj.Ryear02 = 0.19, Adj.Ryear12 = 0.22, Adj.Ryear42 = 0.27). Fibulin-1 was unrelated to aortic regurgitation, left ventricular mass, and ejection fraction. In patients with baseline AVAI<0.58 cm2/m2 (median value), fibulin-1 was more closely associated to NT-proBNP (βyear0 = 0.25, βyear1 = 0.21, βyear4 = 0.22, all p<0.01), and suPAR (βyear0 = 0.09, p = 0.26, βyear1 = 0.23, βyear4 = 0.21, both p<0.01) independently of age, gender, AST and treatment allocation. Conclusions Increased levels of fibulin-1 were independently associated with higher levels of suPAR and NT-proBNP especially in patients with lower AVAI, suggesting that fibulin-1 may be an early marker of AS as well as cardiac fibrosis secondarily to elevated left ventricular hemodynamic load.
Collapse
Affiliation(s)
- Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- The Cardiovascular and Metabolic Preventive Clinic, Department of Endocrinology, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- * E-mail:
| | - Lars M. Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - William S. Argraves
- Medical University of South Carolina, Department of Cell Biology, Charleston, South Carolina, United States of America
| | | | - Olav W. Nielsen
- Department of Cardiology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Adam Blyme
- Department of Cardiology, Glostrup Hospital, Copenhagen, Denmark
| | | | | | - Michael H. Olsen
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- The Cardiovascular and Metabolic Preventive Clinic, Department of Endocrinology, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| |
Collapse
|
11
|
Wulf-Johansson H, Lock Johansson S, Schlosser A, Trommelholt Holm A, Melholt Rasmussen L, Mickley H, Diederichsen ACP, Munkholm H, Poulsen TS, Tornøe I, Nielsen V, Marcussen N, Vestbo J, Sækmose SG, Holmskov U, Sorensen GL. Localization of microfibrillar-associated protein 4 (MFAP4) in human tissues: clinical evaluation of serum MFAP4 and its association with various cardiovascular conditions. PLoS One 2013; 8:e82243. [PMID: 24349233 PMCID: PMC3862580 DOI: 10.1371/journal.pone.0082243] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
Microfibrillar-associated protein 4 (MFAP4) is located in the extracellular matrix (ECM). We sought to identify tissues with high levels of MFAP4 mRNA and MFAP4 protein expression. Moreover, we aimed to evaluate the significance of MFAP4 as a marker of cardiovascular disease (CVD) and to correlate MFAP4 with other known ECM markers, such as fibulin-1, osteoprotegerin (OPG), and osteopontin (OPN). Quantitative real-time PCR demonstrated that MFAP4 mRNA was more highly expressed in the heart, lung, and intestine than in other elastic tissues. Immunohistochemical studies demonstrated high levels of MFAP4 protein mainly at sites rich in elastic fibers and within blood vessels in all tissues investigated. The AlphaLISA technique was used to determine serum MFAP4 levels in a clinical cohort of 172 patients consisting of 5 matched groups with varying degrees of CVD: 1: patients with ST elevation myocardial infarction (STEMI), 2: patients with non-STEMI, 3: patients destined for vascular surgery because of various atherosclerotic diseases (stable atherosclerotic disease), 4: apparently healthy individuals with documented coronary artery calcification (CAC-positive), and 5: apparently healthy individuals without signs of coronary artery calcification (CAC-negative). Serum MFAP4 levels were significantly lower in patients with stable atherosclerotic disease than CAC-negative individuals (p<0.05). Furthermore, lower serum MFAP4 levels were present in patients with stable atherosclerotic disease compared with STEMI and non-STEMI patients (p<0.05). In patients with stable atherosclerotic disease, positive correlations between MFAP4 and both fibulin-1 (ρ = 0.50; p = 0.0244) and OPG (ρ = 0.62; p = 0.0014) were found. Together, these results indicate that MFAP4 is mainly located in elastic fibers and is highly expressed in blood vessels. The present study suggests that serum MFAP4 varies in groups of patients with different cardiovascular conditions. Further studies are warranted to describe the role of serum MFAP4 as a biomarker of stable atherosclerotic disease.
Collapse
Affiliation(s)
- Helle Wulf-Johansson
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Sofie Lock Johansson
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne Trommelholt Holm
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Melholt Rasmussen
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Hans Mickley
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Axel C. P. Diederichsen
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Henrik Munkholm
- Department of Cardiology, Lillebælt Hospital Vejle, Vejle, Denmark
| | | | - Ida Tornøe
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Vicki Nielsen
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Respiratory and Allergy Research Group, Manchester Academic Health Sciences Centre, University Hospital South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Susanne Gjørup Sækmose
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Næstved Hospital, Næstved, Denmark
| | - Uffe Holmskov
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Hansen ML, Dahl JS, Argraves WS, Irmukhamedov A, Rasmussen LM. Aortic valve stenosis and atrial fibrillation influence plasma fibulin-1 levels in patients treated with coronary bypass surgery. Cardiology 2013; 126:202-6. [PMID: 24051963 DOI: 10.1159/000354217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Aortic valve stenosis (AS) causes cardiac fibrosis and left ventricular hypertrophy, and over time heart failure can occur. To date, a reliable marker to predict progression of AS or the development of heart failure is still lacking. In this study, we addressed the hypothesis that fibulin-1 levels reflect myocardial fibrosis. METHODS Patients undergoing heart surgery at the Odense University were investigated. By 2012 data on outcome were obtained. RESULTS In 293 patients, plasma fibulin-1 levels were measured. Patients with AS or atrial fibrillation (AF) had significantly higher fibulin-1 levels compared to those with coronary artery disease only (p = 0.005). Patients with preoperatively diagnosed chronic AF had significantly higher levels of fibulin-1 compared to those without (p = 0.004). Plasma fibulin-1 levels showed no relationship to echocardiographic size and had no impact on outcome, death or other adverse events. CONCLUSION This study shows that plasma fibulin-1 levels are increased in patients with AS and AF compared to patients with coronary disease only. Our study results suggest fibulin-1, a vascular extracellular matrix (ECM) protein, as a marker of ECM turnover perhaps due to the increased myocardial stretch that is related to pressure overload.
Collapse
Affiliation(s)
- Maria Lyck Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | | | | | | | | |
Collapse
|