1
|
Natarajan D, Ekambaram S, Tarantini S, Nagaraja RY, Yabluchanskiy A, Hedrick AF, Awasthi V, Subramanian M, Csiszar A, Balasubramanian P. Chronic β3 adrenergic agonist treatment improves neurovascular coupling responses, attenuates blood-brain barrier leakage and neuroinflammation, and enhances cognition in aged mice. Aging (Albany NY) 2025; null:206203. [PMID: 39976587 DOI: 10.18632/aging.206203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old C57BL/6J mice were treated with saline or β3-adrenergic agonist (CL 316, 243, CL) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex and increased microvascular density in the hippocampus of aged mice. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in aged mice. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of cerebromicrovascular function and can be potentially repurposed for treating age-associated cognitive decline.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shoba Ekambaram
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y Nagaraja
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria F Hedrick
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 73104, USA
| | - Anna Csiszar
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Natarajan D, Ekambaram S, Tarantini S, Yelahanka Nagaraja R, Yabluchanskiy A, Hedrick AF, Awasthi V, Subramanian M, Csiszar A, Balasubramanian P. Chronic β3 adrenergic agonist treatment improves brain microvascular endothelial function and cognition in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602747. [PMID: 39026792 PMCID: PMC11257558 DOI: 10.1101/2024.07.09.602747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old old C57BL/6J mice were treated with saline or CL (β3-adrenergic agonist) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex of aged animals. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in radial arm water maze and Y-maze tests. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of brain microvascular endothelial function and can be potentially repurposed for treating age-associated cognitive decline.
Collapse
|
3
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
5
|
Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J 2018; 39:4150-4158. [PMID: 29069341 PMCID: PMC6293269 DOI: 10.1093/eurheartj/ehx568] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/04/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and also inflict major burdens on morbidity, quality of life, and societal costs. Considering that CVD preventive medications improve vascular outcomes in less than half of patients (often relative risk reductions range from 12% to 20% compared with placebo), precision medicine offers an attractive approach to refine the targeting of CVD medications to responsive individuals in a population and thus allocate resources more wisely and effectively. New tools furnished by advances in basic science and translational medicine could help achieve this goal. This approach could reach beyond the practitioners 'eyeball' assessment or venerable markers derived from the physical examination and standard laboratory evaluation. Advances in genetics have identified novel pathways and targets that operate in numerous diseases, paving the way for 'precision medicine'. Yet the inherited genome determines only part of an individual's risk profile. Indeed, standard genomic approaches do not take into account the world of regulation of gene expression by modifications of the 'epi'genome. Epigenetic modifications defined as 'heritable changes to the genome that do not involve changes in DNA sequence' have emerged as a new layer of biological regulation in CVD and could advance individualized risk assessment as well as devising and deploying tailored therapies. This review, therefore, aims to acquaint the cardiovascular community with the rapidly advancing and evolving field of epigenetics and its implications in cardiovascular precision medicine.
Collapse
Affiliation(s)
- Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Zurich, Switzerland
| | - Peter Libby
- Brigham and Women’s Hospital, Division of Cardiovascular Medicine, Boston, MA, USA
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953, 3500 N Broad Street, Philadelphia, PA, USA
- Department of Pharmacology, Temple University, Philadelphia, PA, USA
| | - Jean-Claude Tardif
- Montreal Health Innovations Coordinating Center (MHICC), Montreal, Canada
- Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Assam El-Osta
- Central Clinical School, Faculty of Medicine, Monash University, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Osipova ED, Komleva YK, Morgun AV, Lopatina OL, Panina YA, Olovyannikova RY, Vais EF, Salmin VV, Salmina AB. Designing in vitro Blood-Brain Barrier Models Reproducing Alterations in Brain Aging. Front Aging Neurosci 2018; 10:234. [PMID: 30127733 PMCID: PMC6088457 DOI: 10.3389/fnagi.2018.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB in vitro models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB in vitro model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering. Vascular dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within the neurovascular unit, impairments in neurogenic niches where microvascular scaffold plays a key regulatory role. The review article is focused on aging-related alterations in BBB and current approaches to development of “aging” BBB models in vitro.
Collapse
Affiliation(s)
- Elena D Osipova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Raissa Ya Olovyannikova
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Elizaveta F Vais
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
7
|
Guzik TJ, Cosentino F. Epigenetics and Immunometabolism in Diabetes and Aging. Antioxid Redox Signal 2018; 29:257-274. [PMID: 28891325 PMCID: PMC6012980 DOI: 10.1089/ars.2017.7299] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE A strong relationship between hyperglycemia, impaired insulin pathway, and cardiovascular disease in type 2 diabetes (T2D) is linked to oxidative stress and inflammation. Immunometabolic pathways link these pathogenic processes and pose important potential therapeutic targets. Recent Advances: The link between immunity and metabolism is bidirectional and includes the role of inflammation in the pathogenesis of metabolic disorders such as T2D, obesity, metabolic syndrome, and hypertension and the role of metabolic factors in regulation of immune cell functions. Low-grade inflammation, oxidative stress, balance between superoxide and nitric oxide, and the infiltration of macrophages, T cells, and B cells in insulin-sensitive tissues lead to metabolic impairment and accelerated aging. CRITICAL ISSUES Inflammatory infiltrate and altered immune cell phenotype precede development of metabolic disorders. Inflammatory changes are tightly linked to alterations in metabolic status and energy expenditure and are controlled by epigenetic mechanisms. FUTURE DIRECTIONS A better comprehension of these mechanistic insights is of utmost importance to identify novel molecular targets. In this study, we describe a complex scenario of epigenetic changes and immunometabolism linking to diabetes and aging-associated vascular disease. Antioxid. Redox Signal. 29, 257-274.
Collapse
Affiliation(s)
- Tomasz J. Guzik
- BHF Centre for Research Excellence, Institute of Cardiovascular and Medical Research (ICAMS), University of Glasgow, Glasgow, United Kingdom
- Department of Internal and Agricultural Medicine, Laboratory of Translational Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Davis TME, Drinkwater J, Davis WA. Proton Pump Inhibitors, Nephropathy, and Cardiovascular Disease in Type 2 Diabetes: The Fremantle Diabetes Study. J Clin Endocrinol Metab 2017; 102:2985-2993. [PMID: 28591820 DOI: 10.1210/jc.2017-00354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/02/2017] [Indexed: 02/12/2023]
Abstract
CONTEXT There is emerging evidence of various adverse effects of chronic proton pump inhibitor (PPI) therapy. OBJECTIVE To assess the impact of PPI use on nephropathy and cardiovascular disease (CVD) risk in type 2 diabetes. DESIGN Longitudinal observational study. SETTING Urban-dwelling community. PATIENTS Patients with type 2 diabetes from the Fremantle Diabetes Study Phase II and on stable renin-angiotensin system blocking therapy were divided into those remaining untreated with a PPI (group 1, n = 686), on PPI therapy throughout (group 2, n = 174), and commencing (group 3, n = 109) or discontinuing regular PPI therapy (group 4, n = 67) during the 2 years between assessments. MAIN OUTCOME MEASURES Changes (Δ) in urinary albumin/creatinine ratio (uACR), estimated glomerular filtration rate (eGFR), and predicted 5-year CVD risk. RESULTS There were no statistically significant differences in ΔuACR between groups [analysis of variance (ANOVA), P = 0.36], but ΔeGFR was different (ANOVA, P = 0.002), with group 3 exhibiting a greater reduction than group 1 [adjusted mean difference (95% confidence interval), -2.7 (-4.5 to -0.8) mL/min/1.73 m2; P = 0.005]. The Δ5-year CVD risk showed a similar pattern (ANOVA, P < 0.001), with group 3 having a greater increase than group 1 [adjusted mean difference (95% confidence interval), 1.7% (0.6% to 2.8%); P = 0.002]. CONCLUSIONS Although PPI use was not associated with a sustained adverse effect on uACR, the association between PPI initiation and both worsening nephropathy and increasing 5-year CVD risk has potential clinical implications in type 2 diabetes.
Collapse
Affiliation(s)
- Timothy M E Davis
- School of Medicine and Pharmacology, Fremantle Hospital, Fremantle, Western Australia 6959, Australia
| | - Jocelyn Drinkwater
- School of Medicine and Pharmacology, Fremantle Hospital, Fremantle, Western Australia 6959, Australia
| | - Wendy A Davis
- School of Medicine and Pharmacology, Fremantle Hospital, Fremantle, Western Australia 6959, Australia
| |
Collapse
|
9
|
Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF, Rezzani R. Melatonin: Protection against age-related cardiac pathology. Ageing Res Rev 2017; 35:336-349. [PMID: 27884595 DOI: 10.1016/j.arr.2016.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Aging is a complex and progressive process that involves physiological and metabolic deterioration in every organ and system. Cardiovascular diseases are one of the most common causes of mortality and morbidity among elderly subjects worldwide. Most age-related cardiovascular disorders can be influenced by modifiable behaviours such as a healthy diet rich in fruit and vegetables, avoidance of smoking, increased physical activity and reduced stress. The role of diet in prevention of various disorders is a well-established factor, which has an even more important role in the geriatric population. Melatonin, an indoleamine with multiple actions including antioxidant properties, has been identified in a very large number of plant species, including edible plant products and medical herbs. Among products where melatonin has been identified include wine, olive oil, tomato, beer, and others. Interestingly, consumed melatonin in plant foods or melatonin supplementation may promote health benefits by virtue of its multiple properties and it may counteract pathological conditions also related to cardiovascular disorders, carcinogenesis, neurological diseases and aging. In the present review, we summarized melatonin effects against age-related cardiac alterations and abnormalities with a special focus on heart ischemia/reperfusion (IR) injury and myocardial infarction.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences, University of Manitoba and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
10
|
Diogo CV, Deus CM, Lebiedzinska-Arciszewska M, Wojtala A, Wieckowski MR, Oliveira PJ. Carvedilol and antioxidant proteins in a type I diabetes animal model. Eur J Clin Invest 2017; 47:19-29. [PMID: 27805735 DOI: 10.1111/eci.12696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/30/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Patients with diabetes are at a high risk of developing both micro- and macrovascular disease. Hyperglycaemia seems to be the main factor in the pathogenesis of diabetic cardiomyopathy, often based on increased oxidative stress. Carvedilol, a β-adrenergic blocker, has intrinsic antioxidant properties and was previously described to be effective in the protection of cardiac mitochondria against oxidative stress. The objective of this study was to evaluate the effect of carvedilol on hyperglycaemia-induced oxidative damage and mitochondrial abnormalities in cardiac and skeletal muscle in streptozotocin-treated rats. MATERIALS AND METHODS Body mass, blood glucose, the level of protein carbonylation, caspase-9- and caspase-3-like activities, mitochondrial proteins, the status of antioxidant defence system and stress-related proteins were evaluated in streptozotocin vs streptozotocin + carvedilol (1 mg/kg/day)-treated rats. RESULTS The results showed that carvedilol decreased blood glucose in streptozotocin-treated animals. Content of catalase in the heart and SOD2, SOD1 and catalase in skeletal muscle were increased by carvedilol treatment in streptozotocin-treated animals. At this particular time point, streptozotocin-induced hyperglycaemia did not cause caspase activation or increase in protein carbonylation status. The data showed that carvedilol increased the level of antioxidant enzymes, what may contribute to preserve cell redox balance during hyperglycaemia. We also showed here for the first time that carvedilol effects on streptozotocin-treated rats are tissue dependent, with a more predominant effect on skeletal muscle. CONCLUSIONS Based on data showing modulation of the antioxidant network in the heart, carvedilol may be beneficial in diabetic patients without advanced disease complications, delaying their progression.
Collapse
Affiliation(s)
- Cátia V Diogo
- CNC - Center for Neuroscience and Cell Biology, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, Biocant Park, University of Coimbra, Cantanhede, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Aleksandra Wojtala
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, Biocant Park, University of Coimbra, Cantanhede, Portugal
| |
Collapse
|
11
|
Cardoso CRL, Salles GF. Aortic Stiffness as a Surrogate Endpoint to Micro- and Macrovascular Complications in Patients with Type 2 Diabetes. Int J Mol Sci 2016; 17:E2044. [PMID: 27929441 PMCID: PMC5187844 DOI: 10.3390/ijms17122044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
Increased aortic stiffness has been recognized as a predictor of adverse cardiovascular outcomes in some clinical conditions, such as in patients with arterial hypertension and end-stage renal disease, in population-based samples and, more recently, in type 2 diabetic patients. Patients with type 2 diabetes have higher aortic stiffness than non-diabetic individuals, and increased aortic stiffness has been correlated to the presence of micro- and macrovascular chronic diabetic complications. We aimed to review the current knowledge on the relationships between aortic stiffness and diabetic complications, their possible underlying physiopathological mechanisms, and their potential applications to clinical type 2 diabetes management.
Collapse
Affiliation(s)
- Claudia R L Cardoso
- Department of Internal Medicine, School of Medicine and University Hospital Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Rodolpho Rocco 255, Cidade Universitária, Rio de Janeiro-RJ 21941-901, Brazil.
| | - Gil F Salles
- Department of Internal Medicine, School of Medicine and University Hospital Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Rodolpho Rocco 255, Cidade Universitária, Rio de Janeiro-RJ 21941-901, Brazil.
| |
Collapse
|
12
|
Verhulst S, Dalgård C, Labat C, Kark JD, Kimura M, Christensen K, Toupance S, Aviv A, Kyvik KO, Benetos A. A short leucocyte telomere length is associated with development of insulin resistance. Diabetologia 2016; 59:1258-65. [PMID: 27020448 DOI: 10.1007/s00125-016-3915-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS A number of studies have shown that leucocyte telomere length (LTL) is inversely associated with insulin resistance and type 2 diabetes mellitus. The aim of the present longitudinal cohort study, utilising a twin design, was to assess whether shorter LTL predicts insulin resistance or is a consequence thereof. METHODS Participants were recruited between 1997 and 2000 through the population-based national Danish Twin Registry to participate in the GEMINAKAR study, a longitudinal evaluation of metabolic disorders and cardiovascular risk factors. Baseline and follow-up measurements of LTL and insulin resistance over an average of 12 years were performed in a subset of the Registry consisting of 338 (184 monozygotic and 154 dizygotic) same-sex twin pairs. RESULTS Age at baseline examination was 37.4 ± 9.6 (mean ± SD) years. Baseline insulin resistance was not associated with age-dependent changes in LTL (attrition) over the follow-up period, whereas baseline LTL was associated with changes in insulin resistance during this period. The shorter the LTL at baseline, the more pronounced was the increase in insulin resistance over the follow-up period (p < 0.001); this effect was additive to that of BMI. The co-twin with the shorter baseline LTL displayed higher insulin resistance at follow-up than the co-twin with the longer LTL. CONCLUSIONS/INTERPRETATION These findings suggest that individuals with short LTL are more likely to develop insulin resistance later in life. By contrast, presence of insulin resistance does not accelerate LTL attrition.
Collapse
Affiliation(s)
- Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Christine Dalgård
- Department of Public Health, Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Carlos Labat
- INSERM, U1116, Vandoeuvre-les-Nancy, France
- Université de Lorraine, Nancy, France
| | - Jeremy D Kark
- Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - Masayuki Kimura
- Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Kaare Christensen
- The Danish Twin Registry, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Simon Toupance
- INSERM, U1116, Vandoeuvre-les-Nancy, France
- Université de Lorraine, Nancy, France
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Kirsten O Kyvik
- Department of Clinical Research, University of Southern Denmark and Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Athanase Benetos
- INSERM, U1116, Vandoeuvre-les-Nancy, France.
- Université de Lorraine, Nancy, France.
- Département de Médecine Gériatrique, CHU de Nancy, 54511, Vandoeuvre-les-Nancy, France.
| |
Collapse
|
13
|
Fetoni AR, Eramo SLM, Paciello F, Rolesi R, Samengo D, Paludetti G, Troiani D, Pani G. The redox protein p66(shc) mediates cochlear vascular dysfunction and transient noise-induced hearing loss. Sci Rep 2016; 6:25450. [PMID: 27157635 PMCID: PMC4860599 DOI: 10.1038/srep25450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
p66shc, a member of the ShcA protein family, is essential for cellular response to oxidative stress, and elicits the formation of mitochondrial Reactive Oxygen Species (ROS), thus promoting vasomotor dysfunction and inflammation. Accordingly, mice lacking the p66 isoform display increased resistance to oxidative tissue damage and to cardiovascular disorders. Oxidative stress also contributes to noise-induced hearing loss (NIHL); we found that p66shc expression and serine phosphorylation were induced following noise exposure in the rat cochlea, together with markers of oxidative stress, inflammation and ischemia as indicated by the levels of the hypoxic inducible factor (HIF) and the vascular endothelial growth factor (VEGF) in the highly vascularised cochlear lateral region and spiral ganglion. Importantly, p66shc knock-out (p66 KO) 126 SvEv adult mice were less vulnerable to acoustic trauma with respect to wild type controls, as shown by preserved auditory function and by remarkably lower levels of oxidative stress and ischemia markers. Of note, decline of auditory function observed in 12 month old WT controls was markedly attenuated in p66KO mice consistent with delayed inner ear senescence. Collectively, we have identified a pivotal role for p66shc -induced vascular dysfunction in a common pathogenic cascade shared by noise-induced and age-related hearing loss.
Collapse
Affiliation(s)
- A R Fetoni
- Department of Head and Neck Surgery, Università Cattolica School of Medicine, Rome, Italy
| | - S L M Eramo
- Institute of Human Physiology, Università Cattolica School of Medicine, Rome, Italy
| | - F Paciello
- Department of Head and Neck Surgery, Università Cattolica School of Medicine, Rome, Italy
| | - R Rolesi
- Department of Head and Neck Surgery, Università Cattolica School of Medicine, Rome, Italy
| | - D Samengo
- Institute of General Pathology, Università Cattolica School of Medicine, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, Università Cattolica School of Medicine, Rome, Italy
| | - D Troiani
- Institute of Human Physiology, Università Cattolica School of Medicine, Rome, Italy
| | - G Pani
- Institute of General Pathology, Università Cattolica School of Medicine, Rome, Italy
| |
Collapse
|
14
|
Shabrova E, Hoyos B, Vinogradov V, Kim YK, Wassef L, Leitges M, Quadro L, Hammerling U. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity. FASEB J 2015; 30:1339-55. [PMID: 26671999 DOI: 10.1096/fj.15-281543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.
Collapse
Affiliation(s)
- Elena Shabrova
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Beatrice Hoyos
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Valerie Vinogradov
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Youn-Kyung Kim
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Lesley Wassef
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Michael Leitges
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Loredana Quadro
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Ulrich Hammerling
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Assar ME, Angulo J, Rodríguez-Mañas L. Diabetes and ageing-induced vascular inflammation. J Physiol 2015; 594:2125-46. [PMID: 26435167 DOI: 10.1113/jp270841] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and the ageing process independently increase the risk for cardiovascular disease (CVD). Since incidence of diabetes increases as people get older, the diabetic older adults represent the largest population of diabetic subjects. This group of patients would potentially be threatened by the development of CVD related to both ageing and diabetes. The relationship between CVD, ageing and diabetes is explained by the negative impact of these conditions on vascular function. Functional and clinical evidence supports the role of vascular inflammation induced by the ageing process and by diabetes in vascular impairment and CVD. Inflammatory mechanisms in both aged and diabetic vasculature include pro-inflammatory cytokines, vascular hyperactivation of nuclear factor-кB, increased expression of cyclooxygenase and inducible nitric oxide synthase, imbalanced expression of pro/anti-inflammatory microRNAs, and dysfunctional stress-response systems (sirtuins, Nrf2). In contrast, there are scarce data regarding the interaction of these mechanisms when ageing and diabetes co-exist and its impact on vascular function. Older diabetic animals and humans display higher vascular impairment and CVD risk than those either aged or diabetic, suggesting that chronic low-grade inflammation in ageing creates a vascular environment favouring the mechanisms of vascular damage driven by diabetes. Further research is needed to determine the specific inflammatory mechanisms responsible for exacerbated vascular impairment in older diabetic subjects in order to design effective therapeutic interventions to minimize the impact of vascular inflammation. This would help to prevent or delay CVD and the specific clinical manifestations (cognitive decline, frailty and disability) promoted by diabetes-induced vascular impairment in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain.,Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| |
Collapse
|
16
|
Lamoke F, Shaw S, Yuan J, Ananth S, Duncan M, Martin P, Bartoli M. Increased Oxidative and Nitrative Stress Accelerates Aging of the Retinal Vasculature in the Diabetic Retina. PLoS One 2015; 10:e0139664. [PMID: 26466127 PMCID: PMC4605485 DOI: 10.1371/journal.pone.0139664] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 09/16/2015] [Indexed: 01/12/2023] Open
Abstract
Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress.
Collapse
Affiliation(s)
- Folami Lamoke
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Sean Shaw
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jianghe Yuan
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Sudha Ananth
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael Duncan
- Dept. of Medicine, Section of Gastroenterology/Hepatology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Pamela Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Manuela Bartoli
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Alvarado-Vásquez N. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient. Exp Gerontol 2015; 69:70-8. [PMID: 26026597 DOI: 10.1016/j.exger.2015.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/09/2015] [Accepted: 05/25/2015] [Indexed: 12/16/2022]
Abstract
Recent evidence has shown that 346million people in the world have diabetes mellitus (DM); this number will increase to 439million by 2030. In addition, current data indicate an increase in DM cases in the population between 40 and 59years of age. Diabetes is associated with the development of micro- and macro-vascular complications, derived from chronic hyperglycemia on the endothelium. Some reports demonstrate that people in a prediabetic state have a major risk of developing early endothelial dysfunction (ED). Today, it is accepted that individuals considered as prediabetic patients are in a pro-inflammatory state associated with endothelial and mitochondrial dysfunction. It is important to mention that impaired mitochondrial functionality has been linked to endothelial apoptosis and release of mitochondrial DNA (mtDNA) in patients with sepsis, cardiac disease, or atherosclerosis. This free mtDNA could promote ED, as well as other side effects on the vascular system through the activation of the toll-like receptor 9 (TLR9). TLR9 is expressed in different cell types (e.g., T or B lymphocytes, mastocytes, and epithelial and endothelial cells). It is localized intracellularly and recognizes non-methylated dinucleotides of viral, bacterial, and mitochondrial DNA. Recently, it has been reported that TLR9 is associated with the pathogenesis of lupus erythematosus, rheumatoid arthritis, and autoimmune diabetes. In this work, it is hypothesized that the increase in the levels of circulating mtDNA is the trigger of early ED in the prediabetic patient, and later on in the older patient with diabetes, through activation of the TLR9 present in the endothelium.
Collapse
Affiliation(s)
- Noé Alvarado-Vásquez
- Department of Biochemistry, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calz. de Tlalpan 4502, Col. Sección XVI, 14080 Mexico, D.F., Mexico, Mexico.
| |
Collapse
|
18
|
Tetrahydroxystilbene glucoside extends mouse life span via upregulating neural klotho and downregulating neural insulin or insulin-like growth factor 1. Neurobiol Aging 2015; 36:1462-70. [DOI: 10.1016/j.neurobiolaging.2014.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 10/26/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023]
|
19
|
Qi Nan W, Ling Z, Bing C. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications. Expert Opin Ther Targets 2015; 19:849-64. [PMID: 25677239 DOI: 10.1517/14728222.2015.1016500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qi Nan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Chongqing, Post number: 400038 , China
| | | | | |
Collapse
|
20
|
Paneni F, Costantino S, Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 2015; 16:419. [PMID: 24781596 DOI: 10.1007/s11883-014-0419-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are major drivers of cardiovascular disease (CVD). The link between environmental factors, obesity, and dysglycemia indicates that progression to diabetes with time occurs along a "continuum", not necessarily linear, which involves different cellular mechanisms including alterations of insulin signaling, changes in glucose transport, pancreatic beta cell dysfunction, as well as the deregulation of key genes involved in oxidative stress and inflammation. The present review critically addresses key pathophysiological aspects including (i) hyperglycemia and insulin resistance as predictors of CV outcome, (ii) molecular mechanisms underpinning the progression of diabetic vascular complications despite intensive glycemic control, and (iii) stratification of CV risk, with particular emphasis on emerging biomarkers. Taken together, these important aspects may contribute to the development of promising diagnostic approaches as well as mechanism-based therapeutic strategies to reduce CVD burden in obese and diabetic subjects.
Collapse
Affiliation(s)
- Francesco Paneni
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Abstract
The incidence of stroke and myocardial infarction increases in aged patients and it is associated with an adverse outcome. Considering the aging population and the increasing incidence of cardiovascular disease, the prediction for population well-being and health economics is daunting. Accordingly, there is an unmet need to focus on fundamental processes underlying vascular aging. A better understanding of the pathways leading to arterial aging may contribute to design mechanism-based therapeutic approaches to prevent or attenuate features of vascular senescence. In the present review, we discuss advances in the pathophysiology of age-related vascular dysfunction including nitric oxide signalling, dysregulation of oxidant/inflammatory genes, epigenetic modifications and mechanisms of vascular calcification as well as insights into vascular repair. Such an overview highlights attractive molecular targets for the prevention of age-driven vascular disease.
Collapse
|
22
|
Corella D, Ordovás JM. Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Rev 2014; 18:53-73. [PMID: 25159268 DOI: 10.1016/j.arr.2014.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
In the study of longevity, increasing importance is being placed on the concept of healthy aging rather than considering the total number of years lived. Although the concept of healthy lifespan needs to be defined better, we know that cardiovascular diseases (CVDs) are the main age-related diseases. Thus, controlling risk factors will contribute to reducing their incidence, leading to healthy lifespan. CVDs are complex diseases influenced by numerous genetic and environmental factors. Numerous gene variants that are associated with a greater or lesser risk of the different types of CVD and of intermediate phenotypes (i.e., hypercholesterolemia, hypertension, diabetes) have been successfully identified. However, despite the close link between aging and CVD, studies analyzing the genes related to human longevity have not obtained consistent results and there has been little coincidence in the genes identified in both fields. The APOE gene stands out as an exception, given that it has been identified as being relevant in CVD and longevity. This review analyzes the genomic and epigenomic factors that may contribute to this, ranging from identifying longevity genes in model organisms to the importance of gene-diet interactions (outstanding among which is the case of the TCF7L2 gene).
Collapse
|
23
|
Paneni F, Costantino S, Cosentino F. p66(Shc)-induced redox changes drive endothelial insulin resistance. Atherosclerosis 2014; 236:426-9. [PMID: 25150941 DOI: 10.1016/j.atherosclerosis.2014.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Obesity-induced insulin resistance (IR) precipitates cardiovascular disease (CVD). Impairment of insulin signalling in the endothelium is emerging as a trigger of IR but the underlying mechanisms remain elusive. The mitochondrial adaptor p66(Shc) drives endothelial dysfunction via reactive oxygen species (ROS) generation. This study investigates p66(Shc) role in obesity-induced impairment of endothelial insulin signalling. METHODS All experiments were performed in leptin-deficient (Lep(Ob/Ob)) and wild-type (WT) mice. RESULTS Endothelium-dependent relaxations to insulin were blunted in Lep(Ob/Ob) as compared to WT. Interestingly, in vivo gene silencing of p66(Shc) restored insulin response via IRS-1/Akt/eNOS pathway. Furthermore, p66(Shc) knockdown in endothelial cells isolated from Lep(Ob/Ob) mice attenuated ROS production, free fatty acids (FFA) oxidation and prevented dysregulation of redox-sensitive pathways such as nuclear factor-kappa-B (NF-kB), AGE precursor methylglyoxal and PGI2 synthase. CONCLUSIONS Targeting endothelial p66(Shc) may represent a promising strategy to prevent IR and CVD in obese individuals.
Collapse
Affiliation(s)
- Francesco Paneni
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden; Cardiology, Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Italy
| | - Sarah Costantino
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|