1
|
Serrano-Morillas N, González-Alayón C, Vastola-Mascolo A, Rodríguez-Rodríguez AE, Hernández G, Porrini E, Hernández-Guerra M, Alvarez de la Rosa D. Decaying kidney function during cirrhosis correlates with remodeling of distal colon aldosterone target gene expression. Am J Physiol Gastrointest Liver Physiol 2023; 325:G306-G317. [PMID: 37461846 DOI: 10.1152/ajpgi.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Liver cirrhosis is associated to circulatory abnormalities leading to hypovolemia and stimulation of the renin-angiotensin-aldosterone system (RAAS). Advanced stages of the disease cause renal failure, impairing K+ and Na+ homeostasis. It has been proposed that the distal colon undergoes functional remodeling during renal failure, in particular by aldosterone-driven increased K+ excretion. In this study, we compared the transcriptional response of aldosterone target genes in the rat distal colon under two models of increased circulating aldosterone (one with concomitant RAAS activation) and in a model of secondary hyperaldosteronism induced by cirrhosis. The expression of a subset of these genes was also tested in distal colon biopsies from control subjects or patients with cirrhosis with varying levels of disease progression and treated or not with mineralocorticoid receptor inhibitor spironolactone. We examined known aldosterone-regulated transcripts involved in corticosteroid signaling and transepithelial ion transport. In addition, we included aldosterone-regulated genes related to cell proliferation. Our comparison revealed multiple aldosterone target genes upregulated in the rat distal colon during decompensated cirrhosis. Epithelial Na+ channel β and γ subunit expression correlated positively with plasma aldosterone concentration and negatively with glomerular filtration rate. Patients with cirrhosis showed increased expression of 11-β-hydroxysteroid-dehydrogenase 2 (11βHSD2), which was reverted by spironolactone treatment, suggesting a sensitization of the distal colon to aldosterone action. In summary, our data show that decaying kidney function during cirrhosis progression toward a decompensated state with hypovolemia correlates with remodeling of distal colon ion transporter expression, supporting a role for aldosterone in the process.NEW & NOTEWORTHY Liver cirrhosis progression significantly alters ion transporter subunit expression in the rat distal colon, a change that correlated well with declining kidney function and the severity of the disease. Our data suggest that the steroid hormone aldosterone participates in this homeostatic response to maintain electrolyte balance.
Collapse
Affiliation(s)
- Natalia Serrano-Morillas
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| | | | - Arianna Vastola-Mascolo
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| | - Ana E Rodríguez-Rodríguez
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
- Research Unit, Hospital Universitario de Canarias, La Laguna, Spain
| | - Guadalberto Hernández
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| | - Esteban Porrini
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
- Research Unit, Hospital Universitario de Canarias, La Laguna, Spain
| | - Manuel Hernández-Guerra
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
- Research Unit, Hospital Universitario de Canarias, La Laguna, Spain
- Servicio de Aparato Digestivo, Hospital Universitario de Canarias, La Laguna, Spain
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
2
|
Simard C, Ferchaud V, Sallé L, Milliez P, Manrique A, Alexandre J, Guinamard R. TRPM4 Participates in Aldosterone-Salt-Induced Electrical Atrial Remodeling in Mice. Cells 2021; 10:636. [PMID: 33809210 PMCID: PMC7998432 DOI: 10.3390/cells10030636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
Aldosterone plays a major role in atrial structural and electrical remodeling, in particular through Ca2+-transient perturbations and shortening of the action potential. The Ca2+-activated non-selective cation channel Transient Receptor Potential Melastatin 4 (TRPM4) participates in atrial action potential. The aim of our study was to elucidate the interactions between aldosterone and TRPM4 in atrial remodeling and arrhythmias susceptibility. Hyperaldosteronemia, combined with a high salt diet, was induced in mice by subcutaneously implanted osmotic pumps during 4 weeks, delivering aldosterone or physiological serum for control animals. The experiments were conducted in wild type animals (Trpm4+/+) as well as Trpm4 knock-out animals (Trpm4-/-). The atrial diameter measured by echocardiography was higher in Trpm4-/- compared to Trpm4+/+ animals, and hyperaldosteronemia-salt produced a dilatation in both groups. Action potentials duration and triggered arrhythmias were measured using intracellular microelectrodes on the isolated left atrium. Hyperaldosteronemia-salt prolong action potential in Trpm4-/- mice but had no effect on Trpm4+/+ mice. In the control group (no aldosterone-salt treatment), no triggered arrythmias were recorded in Trpm4+/+ mice, but a high level was detected in Trpm4-/- mice. Hyperaldosteronemia-salt enhanced the occurrence of arrhythmias (early as well as delayed-afterdepolarization) in Trpm4+/+ mice but decreased it in Trpm4-/- animals. Atrial connexin43 immunolabelling indicated their disorganization at the intercalated disks and a redistribution at the lateral side induced by hyperaldosteronemia-salt but also by Trpm4 disruption. In addition, hyperaldosteronemia-salt produced pronounced atrial endothelial thickening in both groups. Altogether, our results indicated that hyperaldosteronemia-salt and TRPM4 participate in atrial electrical and structural remodeling. It appears that TRPM4 is involved in aldosterone-induced atrial action potential shortening. In addition, TRPM4 may promote aldosterone-induced atrial arrhythmias, however, the underlying mechanisms remain to be explored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Romain Guinamard
- EA 4650, Signalisation, Electrophysiologie et Imagerie des Lésions d’Ischémie-Reperfusion Myocardique, GIP Cyceron, Université de Caen Normandie, CHU de Caen, 14032 Caen, France; (C.S.); (V.F.); (L.S.); (P.M.); (A.M.); (J.A.)
| |
Collapse
|
3
|
Yang Y, Chen S, Tao L, Gan S, Luo H, Xu Y, Shen X. Inhibitory Effects of Oxymatrine on Transdifferentiation of Neonatal Rat Cardiac Fibroblasts to Myofibroblasts Induced by Aldosterone via Keap1/Nrf2 Signaling Pathways In Vitro. Med Sci Monit 2019; 25:5375-5388. [PMID: 31325292 PMCID: PMC6662943 DOI: 10.12659/msm.915542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Radix Sophorae flavescentis, has widely reported pharmacological efficacy in treating cardiovascular dysfunction-related diseases. However, the underlying mechanism has been unclear. Here, we investigated the potential inhibitory effects and mechanism of OMT on transdifferentiation of cardiac fibroblast to myofibroblasts induced by aldosterone in vitro. Material/Methods The cardiac fibroblasts (CFBs) proliferation and migration capacity were evaluated by MTT assay, cell cycle assay, and scratch analysis, respectively. The protein expression of the Nrf2/Keap1 signal pathway, FN, Collagen I, Collagen III, α-SMA, CTGF, and mineralocorticoid receptor (MR) protein was detected by Western blot analysis. The mRNA expression of Nrf2 was detected by qRT-PCR. Immunofluorescence staining was used to observe the expression of α-SMA protein. Nrf2 siRNA was used to explore the role of Nrf2 in OMT-treated CFBs. GSH, SOD, and MDA levels and hydroxyproline content were measured by colorimetric assay with commercial kits. The DCFH-DA fluorescent probe was used to assess cellular ROS levels. Results OMT and Curcumin (an Nrf2 agonist) attenuated aldosterone (ALD)-induced proliferation and migration in CFBs, as well as the fibrosis-associated protein expression levels. Moreover, OMT activated Nrf2 and promoted the nucleus translocation of Nrf2. OMT alleviated the elevated levels of α-SMA, Collagen I, Collagen III, and CTGF, which were abrogated by the Nrf2 siRNA transfection. We also found that OMT decreased oxidative stress levels. Conclusions Our results confirm that OMT alleviates transdifferentiation of cardiac fibroblasts to myofibroblasts induced by aldosterone via activating the Nrf2/Keap1 pathway in vitro.
Collapse
Affiliation(s)
- Yu Yang
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Shiping Chen
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Shiquan Gan
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Hong Luo
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Yini Xu
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| | - Xiangchun Shen
- The Department of Pharmacognosy (The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, Union Key Laboratory of Guiyang City - Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland).,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
4
|
Young MJ, Adler GK. Aldosterone, the Mineralocorticoid Receptor and Mechanisms of Cardiovascular Disease. VITAMINS AND HORMONES 2019; 109:361-385. [DOI: 10.1016/bs.vh.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Lother A, Deng L, Huck M, Fürst D, Kowalski J, Esser JS, Moser M, Bode C, Hein L. Endothelial cell mineralocorticoid receptors oppose VEGF-induced gene expression and angiogenesis. J Endocrinol 2019; 240:15-26. [PMID: 30400069 DOI: 10.1530/joe-18-0494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022]
Abstract
Aldosterone is a key factor in adverse cardiovascular remodeling by acting on the mineralocorticoid receptor (MR) in different cell types. Endothelial MR activation mediates hypertrophy, inflammation and fibrosis. Cardiovascular remodeling is often accompanied by impaired angiogenesis, which is a risk factor for the development of heart failure. In this study, we evaluated the impact of MR in endothelial cells on angiogenesis. Deoxycorticosterone acetate (DOCA)-induced hypertension was associated with capillary rarefaction in the heart of WT mice but not of mice with cell type-specific MR deletion in endothelial cells. Consistently, endothelial MR deletion prevented the inhibitory effect of aldosterone on the capillarization of subcutaneously implanted silicon tubes and on capillary sprouting from aortic ring segments. We examined MR-dependent gene expression in cultured endothelial cells by RNA-seq and identified a cluster of differentially regulated genes related to angiogenesis. We found opposing effects on gene expression when comparing activation of the mineralocorticoid receptor in ECs to treatment with vascular endothelial growth factor (VEGF), a potent activator of angiogenesis. In conclusion, we demonstrate here that activation of endothelial cell MR impaired angiogenic capacity and lead to capillary rarefaction in a mouse model of MR-driven hypertension. MR activation opposed VEGF-induced gene expression leading to the dysregulation of angiogenesis-related gene networks in endothelial cells. Our findings underscore the pivotal role of endothelial cell MR in the pathophysiology of hypertension and related heart disease.
Collapse
Affiliation(s)
- Achim Lother
- A Lother, Institute of experimental and clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Lisa Deng
- L Deng, Institute of experimental and clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Michael Huck
- M Huck, Institute of experimental and clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - David Fürst
- D Fürst, Institute of experimental and clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Jessica Kowalski
- J Kowalski, Institute of experimental and clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Jennifer Susanne Esser
- J Esser, Heart Center, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- M Moser, Heart Center, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- C Bode, Heart Center, Cardiology and Angiology I, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- L Hein, Institute of experimental and clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Rouet‐Benzineb P, Merval R, Polidano E. Effects of hypoestrogenism and/or hyperaldosteronism on myocardial remodeling in female mice. Physiol Rep 2018; 6:e13912. [PMID: 30430766 PMCID: PMC6236131 DOI: 10.14814/phy2.13912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
We investigated the potential adverse effects of hyperaldosteronism and/or hypoestrogenism on cardiac phenotype, and examined their combined effects in female mice overexpressing cardiac aldosterone synthase (AS). We focused on some signaling cascades challenging defensive responses to adapt and/or to survive in the face of double deleterious stresses, such as Ca2+ -homeostasis, pro/anti-hypertrophic, endoplasmic reticulum stress (ER stress), pro- or anti-apoptotic effectors, and MAP kinase activation, and redox signaling. These protein expressions were assessed by immunoblotting at 9 weeks after surgery. Female wild type (FWT) and FAS mice were fed with phytoestrogen-free diet; underwent ovariectomy (Ovx) or sham-operation (Sham). Ovx increased gain weight and hypertrophy index. Transthoracic echocardiograghy was performed. Both Ovx-induced heart rate decrease and fractional shortening increase were associated with collagen type III shift. Cardiac estrogen receptor (ERα, ERβ) protein expression levels were downregulated in Ovx mice. Hypoestrogenism increased plasma aldosterone and MR protein expression in FAS mice. Both aldosterone and Ovx played as mirror effects on up and downstream signaling effectors of calcium/redox homeostasis, apoptosis, such as concomitant CaMKII activation and calcineurin down-regulation, MAP kinase inhibition (ERK1/2, p38 MAPK) and Akt activation. The ratio Bcl2/Bax is in favor to promote cell survivor. Finally, myocardium had dynamically orchestrated multiple signaling cascades to restore tolerance to hostile environment thereby contributing to a better maintenance of Ca2+ /redox homeostasis. Ovx-induced collagen type III isoform shift and its upregulation may be important for the biomechanical transduction of the heart and the recovery of cardiac function in FAS mice. OVX antagonized aldosterone signaling pathways.
Collapse
|
7
|
Garbuzenko DV, Arefyev NO, Kazachkov EL. Antiangiogenic therapy for portal hypertension in liver cirrhosis: Current progress and perspectives. World J Gastroenterol 2018; 24:3738-3748. [PMID: 30197479 PMCID: PMC6127663 DOI: 10.3748/wjg.v24.i33.3738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Developing medicines for hemodynamic disorders that are characteristic of cirrhosis of the liver is a relevant problem in modern hepatology. The increase in hepatic vascular resistance to portal blood flow and subsequent hyperdynamic circulation underlie portal hypertension (PH) and promote its progression, despite the formation of portosystemic collaterals. Angiogenesis and vascular bed restructurization play an important role in PH pathogenesis as well. In this regard, strategic directions in the therapy for PH in cirrhosis include selectively decreasing hepatic vascular resistance while preserving or increasing portal blood flow, and correcting hyperdynamic circulation and pathological angiogenesis. The aim of this review is to describe the mechanisms of angiogenesis in PH and the methods of antiangiogenic therapy. The PubMed database, the Google Scholar retrieval system, and the reference lists from related articles were used to search for relevant publications. Articles corresponding to the aim of the review were selected for 2000-2017 using the keywords: “liver cirrhosis”, “portal hypertension”, “pathogenesis”, “angiogenesis”, and “antiangiogenic therapy”. Antiangiogenic therapy for PH was the inclusion criterion. In this review, we have described angiogenesis inhibitors and their mechanism of action in relation to PH. Although most of them were studied only in animal experiments, this selective therapy for abnormally growing newly formed vessels is pathogenetically reasonable to treat PH and associated complications.
Collapse
Affiliation(s)
| | - Nikolay Olegovich Arefyev
- Department of Pathological Anatomy and Forensic Medicine, South Ural State Medical University, Chelyabinsk 454092, Russia
| | - Evgeniy Leonidovich Kazachkov
- Department of Pathological Anatomy and Forensic Medicine, South Ural State Medical University, Chelyabinsk 454092, Russia
| |
Collapse
|
8
|
Wu C, Zhang H, Zhang J, Xie C, Fan C, Zhang H, Wu P, Wei Q, Tan W, Xu L, Wang L, Xue Y, Guan M. Inflammation and Fibrosis in Perirenal Adipose Tissue of Patients With Aldosterone-Producing Adenoma. Endocrinology 2018; 159:227-237. [PMID: 29059354 DOI: 10.1210/en.2017-00651] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
The prevalence of primary aldosteronism is much higher than previously thought. Recent studies have shown that primary aldosteronism is related to a higher risk of cardiovascular events. However, the underlying mechanism is not yet clear. Here we investigate the characteristics, including inflammation, fibrosis, and adipokine expression, of adipose tissues from different deposits in patients with aldosterone-producing adenoma (APA). Inflammation and fibrosis changes were evaluated in perirenal and subcutaneous adipose tissues obtained from patients with APA (n = 16), normotension (NT; n = 10), and essential hypertension (EH; n = 5) undergoing laparoscopic surgery. We also evaluated the effect of aldosterone in isolated human perirenal adipose tissue stromal vascular fraction (SVF) cells and investigated the effect of aldosterone in mouse 3T3-L1 and brown preadipocytes. Compared with the EH group, significantly higher levels of interleukin-6 (IL-6) and tumor necrosis factor-α messenger RNA (mRNA) and protein were observed in perirenal adipose tissue of patients with APA. Expression of genes related to fibrosis and adipogenesis in perirenal adipose tissue was notably higher in patients with APA than in patients with NT and EH. Aldosterone significantly induced IL-6 and fibrosis gene mRNA expression in differentiated SVF cells. Aldosterone treatment enhanced mRNA expression of genes associated with inflammation and fibrosis and stimulated differentiation of 3T3-L1 and brown preadipocytes. In conclusion, these data indicate that high aldosterone in patients with APA may induce perirenal adipose tissue dysfunction and lead to inflammation and fibrosis, which may be involved in the high risk of cardiovascular events observed in patients with primary aldosteronism.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adenoma/complications
- Adenoma/metabolism
- Adenoma/physiopathology
- Adenoma/surgery
- Adipocytes, Brown/immunology
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipogenesis
- Adipokines/metabolism
- Adrenalectomy
- Aldosterone/metabolism
- Animals
- Cells, Cultured
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Essential Hypertension/complications
- Female
- Fibrosis
- Humans
- Hyperaldosteronism/etiology
- Intra-Abdominal Fat/immunology
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/pathology
- Male
- Mice
- Middle Aged
- Panniculitis/etiology
- Panniculitis/immunology
- Panniculitis/metabolism
- Panniculitis/pathology
- Stromal Cells/immunology
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Subcutaneous Fat, Abdominal/immunology
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huijian Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiajun Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cuihua Xie
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cunxia Fan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongbin Zhang
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lingling Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Horizontal alignment of 5' -> 3' intergene distance segment tropy with respect to the gene as the conserved basis for DNA transcription. Future Sci OA 2017; 3:FSO160. [PMID: 28344824 PMCID: PMC5351715 DOI: 10.4155/fsoa-2016-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023] Open
Abstract
AIM To study the conserved basis for gene expression in comparative cell types at opposite ends of the cell pressuromodulation spectrum, the lymphatic endothelial cell and the blood microvascular capillary endothelial cell. METHODS The mechanism for gene expression is studied in terms of the 5' -> 3' direction paired point tropy quotients (prpTQs) and the final 5' -> 3' direction episodic sub-episode block sums split-integrated weighted average-averaged gene overexpression tropy quotient (esebssiwaagoTQ). RESULTS The final 5' -> 3' esebssiwaagoTQ classifies an lymphatic endothelial cell overexpressed gene as a supra-pressuromodulated gene (esebssiwaagoTQ ≥ 0.25 < 0.75) every time and classifies a blood microvascular capillary endothelial cell overexpressed gene every time as an infra-pressuromodulated gene (esebssiwaagoTQ < 0.25) (100% sensitivity; 100% specificity). CONCLUSION Horizontal alignment of 5' -> 3' intergene distance segment tropy wrt the gene is the basis for DNA transcription in the pressuromodulated state.
Collapse
|
10
|
De Keulenaer GW, Segers VFM, Zannad F, Brutsaert DL. The future of pleiotropic therapy in heart failure. Lessons from the benefits of exercise training on endothelial function. Eur J Heart Fail 2017; 19:603-614. [PMID: 28105791 DOI: 10.1002/ejhf.735] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
A novel generation of drugs is introduced in the treatment of heart failure (HF). These drugs, including phosphodiesterase-5 inhibitors, guanylate cyclase stimulators and activators, share the feature that their action is either endothelial-mediated or substitutes for endothelial pathways, in particular the nitric oxide-cyclic guanosine monophosphate pathway, thereby influencing homeostatic balances in virtually each organ system in a pleiotropic fashion. Unfortunately, recent clinical trials with some of these drugs have shown disappointing results, at least in the setting of HF with a preserved ejection fraction. This suggests that their clinical use may require approaches that diverge from traditional pharmacological approaches, the latter often titrated on the effects of drugs on haemodynamic parameters or single biomarkers. In this paper we preconize that HF drugs with an endothelial profile should be applied conform to principles of endothelial physiology and systems pharmacology. This type of drug therapy should be viewed as a systems physio-pharmacological intervention and its clinical use accustomed to systems pharmacological principles, comparable to the systemic endothelial-mediated benefits induced by exercise training in HF. We will review the actions of these drugs and define criteria to which trials with these drugs should comply in order to increase chances of success.
Collapse
Affiliation(s)
- Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, Middelheim Hospital, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Faiez Zannad
- CHU Nancy, Pôle de Cardiologie, Institut Lorrain du Cœur et des Vaisseaux, Vandoeuvre-lès-Nancy, France
| | - Dirk L Brutsaert
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
11
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
12
|
Re-Epithelialization of Pathological Cutaneous Wounds Is Improved by Local Mineralocorticoid Receptor Antagonism. J Invest Dermatol 2016; 136:2080-2089. [PMID: 27262545 DOI: 10.1016/j.jid.2016.05.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 05/11/2016] [Indexed: 11/24/2022]
Abstract
Impaired cutaneous wound healing is a social burden. It occurs as a consequence of glucocorticoid treatment in several pathologies. Glucocorticoids (GC) bind not only to the glucocorticoid receptor but also to the mineralocorticoid receptor (MR), both expressed by keratinocytes. In addition to its beneficial effects through the glucocorticoid receptor, GC exposure may lead to inappropriate MR occupancy. We hypothesized that dermatological use of MR antagonists (MRA) might be beneficial by overcoming the negative impact of GC treatment on pathological wounds. The potent GC clobetasol, applied as an ointment to mouse skin, or added to cultured human skin explants, induced delayed wound closure and outgrowth of epidermis with reduced proliferation of keratinocytes. Delayed wound re-epithelialization was rescued by local MRA application. Normal skin was unaffected by MRA. The benefit of MR blockade is explained by the increased expression of MR in clobetasol-treated mouse skin. Blockade of the epithelial sodium channel by phenamil also rescued cultured human skin explants from GC-impaired growth of the epidermis. MRA application over post-biopsy wounds of clobetasol-treated skin zones of healthy volunteers (from the Interest of Topical Spironolactone's Administration to Prevent Corticoid-induced Epidermal Atrophy clinical trial) also accelerated wound closure. In conclusion, we propose repositioning MRA for cutaneous application to improve delayed wound closure occurring in pathology.
Collapse
|
13
|
Ayuzawa N, Nagase M, Ueda K, Nishimoto M, Kawarazaki W, Marumo T, Aiba A, Sakurai T, Shindo T, Fujita T. Rac1-Mediated Activation of Mineralocorticoid Receptor in Pressure Overload–Induced Cardiac Injury. Hypertension 2016; 67:99-106. [DOI: 10.1161/hypertensionaha.115.06054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Nobuhiro Ayuzawa
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Miki Nagase
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Kohei Ueda
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Mitsuhiro Nishimoto
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Wakako Kawarazaki
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Takeshi Marumo
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Atsu Aiba
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Takayuki Sakurai
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Takayuki Shindo
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| | - Toshiro Fujita
- From the Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (N.A., K.U., M. Nishimoto, W.K., T.M., T.F.), and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine (A.A.), The University of Tokyo, Tokyo, Japan; Department of Anatomy and Life Structure, Faculty of Medicine, Juntendo University, Tokyo, Japan (M. Nagase); CREST, Japan Science and Technology Agency, Tokyo, Japan (T.M., T.F.); and Department of
| |
Collapse
|
14
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|