1
|
Nappi F, Avtaar Singh SS, de Siena PM. Bicuspid Aortic Valve in Children and Young Adults for Cardiologists and Cardiac Surgeons: State-of-the-Art of Literature Review. J Cardiovasc Dev Dis 2024; 11:317. [PMID: 39452287 PMCID: PMC11509083 DOI: 10.3390/jcdd11100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Bicuspid aortic valve disease is the most prevalent congenital heart disease, affecting up to 2% of the general population. The presentation of symptoms may vary based on the patient's anatomy of fusion, with transthoracic echocardiography being the primary diagnostic tool. Bicuspid aortic valves may also appear with concomitant aortopathy, featuring fundamental structural changes which can lead to valve dysfunction and/or aortic dilatation over time. This article seeks to give a comprehensive overview of the presentation, treatment possibilities and long-term effects of this condition. The databases MEDLINE, Embase, and the Cochrane Library were searched using the terms "endocarditis" or "bicuspid aortic valve" in combination with "epidemiology", "pathogenesis", "manifestations", "imaging", "treatment", or "surgery" to retrieve relevant articles. We have identified two types of bicuspid aortic valve disease: aortic stenosis and aortic regurgitation. Valve replacement or repair is often necessary. Patients need to be informed about the benefits and drawbacks of different valve substitutes, particularly with regard to life-long anticoagulation and female patients of childbearing age. Depending on the expertise of the surgeon and institution, the Ross procedure may be a viable alternative. Management of these patients should take into account the likelihood of somatic growth, risk of re-intervention, and anticoagulation risks that are specific to the patient, alongside the expertise of the surgeon or centre. Further research is required on the secondary prevention of patients with bicuspid aortic valve (BAV), such as lifestyle advice and antibiotics to prevent infections, as the guidelines are unclear and lack strong evidence.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | | - Paolo M. de Siena
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield Hospitals, Sydney St., London SW3 6NP, UK;
| |
Collapse
|
2
|
Hammaréus F, Trenti C, Björck HM, Engvall J, Lekedal H, Krzynska-Trzebiatowska A, Kylhammar D, Lindenberger M, Lundberg AK, Nilsson F, Nilsson L, Swahn E, Jonasson L, Dyverfeldt P. Wall shear stress measured with 4D flow CMR correlates with biomarkers of inflammation and collagen synthesis in mild-to-moderate ascending aortic dilation and tricuspid aortic valves. Eur Heart J Cardiovasc Imaging 2024; 25:1384-1393. [PMID: 38748858 PMCID: PMC11441033 DOI: 10.1093/ehjci/jeae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 10/01/2024] Open
Abstract
AIMS Understanding the mechanisms underlying ascending aortic dilation is imperative for refined risk stratification of these patients, particularly among incidentally identified patients, most commonly presenting with tricuspid valves. The aim of this study was to explore associations between ascending aortic haemodynamics, assessed using four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR), and circulating biomarkers in aortic dilation. METHODS AND RESULTS Forty-seven cases with aortic dilation (diameter ≥ 40 mm) and 50 sex-and age-matched controls (diameter < 40 mm), all with tricuspid aortic valves, underwent 4D flow CMR and venous blood sampling. Associations between flow displacement, wall shear stress (WSS), and oscillatory shear index in the ascending aorta derived from 4D flow CMR, and biomarkers including interleukin-6, collagen type I α1 chain, metalloproteinases (MMPs), and inhibitors of MMPs derived from blood plasma, were investigated. Cases with dilation exhibited lower peak systolic WSS, higher flow displacement, and higher mean oscillatory shear index compared with controls without dilation. No significant differences in biomarkers were observed between the groups. Correlations between haemodynamics and biomarkers were observed, particularly between maximum time-averaged WSS and interleukin-6 (r = 0.539, P < 0.001), and maximum oscillatory shear index and collagen type I α1 chain (r = -0.575, P < 0.001 in cases). CONCLUSION Significant associations were discovered between 4D flow CMR derived whole-cardiac cycle WSS and circulating biomarkers representing inflammation and collagen synthesis, suggesting an intricate interplay between haemodynamics and the processes of inflammation and collagen synthesis in patients with early aortic dilation and tricuspid aortic valves.
Collapse
Affiliation(s)
- Filip Hammaréus
- Department of Internal Medicine in Jönköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Länssjukhuset Ryhov, Sjukhusgatan, 551 85 Jönköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Chiara Trenti
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Hanna M Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Visionsgatan 18, Stockholm, 171 76 Solna, Sweden
| | - Jan Engvall
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Department of Clinical Physiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Hanna Lekedal
- Östersund Hospital, Östersundssjukhus, 831 83 Östersund, Sweden
| | - Aleksandra Krzynska-Trzebiatowska
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - David Kylhammar
- Department of Clinical Physiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Marcus Lindenberger
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Anna K Lundberg
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Fredrik Nilsson
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Lennart Nilsson
- Department of Internal Medicine in Jönköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Länssjukhuset Ryhov, Sjukhusgatan, 551 85 Jönköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Eva Swahn
- Department of Internal Medicine in Jönköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Länssjukhuset Ryhov, Sjukhusgatan, 551 85 Jönköping, Sweden
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Lena Jonasson
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Petter Dyverfeldt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| |
Collapse
|
3
|
Minderhoud SCS, Arrouby A, van den Hoven AT, Bons LR, Chelu RG, Kardys I, Rizopoulos D, Korteland SA, van den Bosch AE, Budde RPJ, Roos-Hesselink JW, Wentzel JJ, Hirsch A. Regional aortic wall shear stress increases over time in patients with a bicuspid aortic valve. J Cardiovasc Magn Reson 2024; 26:101070. [PMID: 39096969 PMCID: PMC11417319 DOI: 10.1016/j.jocmr.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Aortic wall shear stress (WSS) is a known predictor of ascending aortic growth in patients with a bicuspid aortic valve (BAV). The aim of this study was to study regional WSS and changes over time in BAV patients. METHODS BAV patients and age-matched healthy controls underwent four-dimensional (4D) flow cardiovascular magnetic resonance (CMR). Regional, peak systolic ascending aortic WSS, aortic valve function, aortic stiffness measures, and aortic dimensions were assessed. In BAV patients, 4D flow CMR was repeated after 3 years of follow-up and both at baseline and follow-up computed tomography angiography (CTA) were acquired. Aortic growth (volume increase of ≥5%) was measured on CTA. Regional WSS differences within patients' aorta and WSS changes over time were analyzed using linear mixed-effect models and were associated with clinical parameters. RESULTS Thirty BAV patients (aged 34 years [interquartile range (IQR) 25-41]) were included in the follow-up analysis. Additionally, another 16 BAV patients and 32 healthy controls (aged 33 years [IQR 28-48]) were included for other regional analyses. Magnitude, axial, and circumferential WSS increased over time (all p < 0.001) irrespective of aortic growth. The percentage of regions exposed to a magnitude WSS >95th percentile of healthy controls increased from 21% (baseline 506/2400 regions) to 31% (follow-up 734/2400 regions) (p < 0.001). WSS angle, a measure of helicity near the aortic wall, decreased during follow-up. Magnitude WSS changes over time were associated with systolic blood pressure, peak aortic valve velocity, aortic valve regurgitation fraction, aortic stiffness indexes, and normalized flow displacement (all p < 0.05). CONCLUSION An increase in regional WSS over time was observed in BAV patients, irrespective of aortic growth. The increasing WSSs, comprising a larger area of the aorta, warrant further research to investigate the possible predictive value for aortic dissection.
Collapse
Affiliation(s)
- Savine C S Minderhoud
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Aïmane Arrouby
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Allard T van den Hoven
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Lidia R Bons
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Raluca G Chelu
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Isabella Kardys
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Annemien E van den Bosch
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Ricardo P J Budde
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Alexander Hirsch
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Tamagawa Y, Kawamura M, Shibata K, Asada S, Ryugo M, Tsutsumi YI, Monta O. Risk factor analysis for aortic dissection after aortic valve replacement in patients with tricuspid aortic valve. Gen Thorac Cardiovasc Surg 2024; 72:305-310. [PMID: 37656401 DOI: 10.1007/s11748-023-01970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/12/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Aortic dilatation concurrent with aortic valve disease is a common condition. However, the incidence of aortic dissection after aortic valve replacement for tricuspid aortic valve has not been fully investigated. Therefore, we performed a risk factor analysis for the incidence of aortic dissection after aortic valve replacement in patients with tricuspid aortic valve. METHODS We retrospectively reviewed 599 patients who underwent aortic valve replacement at our hospital between January 2000 and December 2020. We performed a risk factor analysis for the incidence of aortic dissection after aortic valve replacement in patients with tricuspid aortic valve. RESULTS Seven patients developed late aortic dissections during the follow-up period. All patients with aortic dissection underwent aortic valve replacement for aortic regurgitation. Multivariable analysis revealed that aortic regurgitation was an independent predictor of aortic dissection (p < 0.0001). The mean ascending aortic diameter at aortic valve replacement for aortic regurgitation was significantly greater in patients with aortic dissection than in those without aortic dissection (46 [43.5-46] mm vs. 39 [36-42] mm, p < 0.001). The predictive cutoff value of ascending aortic diameter was indicated using receiver operating characteristic curve analysis; 46.0 mm (area under the curve: 0.8987). Freedom rates from aortic dissection in patients with aortic regurgitation and an ascending aortic diameter ≥ 46 mm were significantly lower than those in patients with an ascending aortic diameter < 46 mm (66.7% vs. 100% at 5 years, p < 0.0001). CONCLUSION Aortic regurgitation combined with ascending aortic dilatation at aortic valve replacement could be a significant risk factor for late aortic dissection.
Collapse
Affiliation(s)
- Yuki Tamagawa
- Department of Cardiovascular Surgery, Fukui Cardiovascular Center, Fukui City, Fukui Prefecture, Japan
| | - Masashi Kawamura
- Department of Cardiovascular Surgery, Fukui Cardiovascular Center, Fukui City, Fukui Prefecture, Japan.
| | - Kana Shibata
- Department of Cardiovascular Surgery, Fukui Cardiovascular Center, Fukui City, Fukui Prefecture, Japan
| | - Satoshi Asada
- Department of Cardiovascular Surgery, Fukui Cardiovascular Center, Fukui City, Fukui Prefecture, Japan
| | - Masahiro Ryugo
- Department of Cardiovascular Surgery, Fukui Cardiovascular Center, Fukui City, Fukui Prefecture, Japan
| | - Yasush I Tsutsumi
- Department of Cardiovascular Surgery, Fukui Cardiovascular Center, Fukui City, Fukui Prefecture, Japan
| | - Osamu Monta
- Department of Cardiovascular Surgery, Fukui Cardiovascular Center, Fukui City, Fukui Prefecture, Japan
| |
Collapse
|
5
|
Bouaou K, Dietenbeck T, Soulat G, Bargiotas I, Houriez-Gombaud-Saintonge S, De Cesare A, Gencer U, Giron A, Jiménez E, Messas E, Lucor D, Bollache E, Mousseaux E, Kachenoura N. Four-dimensional flow cardiovascular magnetic resonance aortic cross-sectional pressure changes and their associations with flow patterns in health and ascending thoracic aortic aneurysm. J Cardiovasc Magn Reson 2024; 26:101030. [PMID: 38403074 PMCID: PMC10950879 DOI: 10.1016/j.jocmr.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is a silent and threatening dilation of the ascending aorta (AscAo). Maximal aortic diameter which is currently used for ATAA patients management and surgery planning has been shown to inadequately characterize risk of dissection in a large proportion of patients. Our aim was to propose a comprehensive quantitative evaluation of aortic morphology and pressure-flow-wall associations from four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) data in healthy aging and in patients with ATAA. METHODS We studied 17 ATAA patients (64.7 ± 14.3 years, 5 females) along with 17 age- and sex-matched healthy controls (59.7 ± 13.3 years, 5 females) and 13 younger healthy subjects (33.5 ± 11.1 years, 4 females). All subjects underwent a CMR exam, including 4D flow and three-dimensional anatomical images of the aorta. This latter dataset was used for aortic morphology measurements, including AscAo maximal diameter (iDMAX) and volume, indexed to body surface area. 4D flow MRI data were used to estimate 1) cross-sectional local AscAo spatial (∆PS) and temporal (∆PT) pressure changes as well as the distance (∆DPS) and time duration (∆TPT) between local pressure peaks, 2) AscAo maximal wall shear stress (WSSMAX) at peak systole, and 3) AscAo flow vorticity amplitude (VMAX), duration (VFWHM), and eccentricity (VECC). RESULTS Consistency of flow and pressure indices was demonstrated through their significant associations with AscAo iDMAX (WSSMAX:r = -0.49, p < 0.001; VECC:r = -0.29, p = 0.045; VFWHM:r = 0.48, p < 0.001; ∆DPS:r = 0.37, p = 0.010; ∆TPT:r = -0.52, p < 0.001) and indexed volume (WSSMAX:r = -0.63, VECC:r = -0.51, VFWHM:r = 0.53, ∆DPS:r = 0.54, ∆TPT:r = -0.63, p < 0.001 for all). Intra-AscAo cross-sectional pressure difference, ∆PS, was significantly and positively associated with both VMAX (r = 0.55, p = 0.002) and WSSMAX (r = 0.59, p < 0.001) in the 30 healthy subjects (48.3 ± 18.0 years). Associations remained significant after adjustment for iDMAX, age, and systolic blood pressure. Superimposition of ATAA patients to normal aging trends between ∆PS and WSSMAX as well as VMAX allowed identifying patients with substantially high pressure differences concomitant with AscAo dilation. CONCLUSION Local variations in pressures within ascending aortic cross-sections derived from 4D flow MRI were associated with flow changes, as quantified by vorticity, and with stress exerted by blood on the aortic wall, as quantified by wall shear stress. Such flow-wall and pressure interactions might help for the identification of at-risk patients.
Collapse
Affiliation(s)
- Kevin Bouaou
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Thomas Dietenbeck
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Gilles Soulat
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Ioannis Bargiotas
- CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France.
| | | | - Alain De Cesare
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Umit Gencer
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Alain Giron
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Elena Jiménez
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Emmanuel Messas
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Didier Lucor
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, France.
| | - Emilie Bollache
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| | - Elie Mousseaux
- Hôpital Européen Georges Pompidou, INSERM 970, Paris, France.
| | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Paris, France.
| |
Collapse
|
6
|
Trenti C, Fedak PWM, White JA, Garcia J, Dyverfeldt P. Oscillatory shear stress is elevated in patients with bicuspid aortic valve and aortic regurgitation: a 4D flow cardiovascular magnetic resonance cross-sectional study. Eur Heart J Cardiovasc Imaging 2024; 25:404-412. [PMID: 37878753 PMCID: PMC10883729 DOI: 10.1093/ehjci/jead283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
AIMS Patients with bicuspid aortic valve (BAV) and aortic regurgitation have higher rate of aortic complications compared with patients with BAV and stenosis, as well as BAV without valvular disease. Aortic regurgitation alters blood haemodynamics not only in systole but also during diastole. We therefore sought to investigate wall shear stress (WSS) during the whole cardiac cycle in BAV with aortic regurgitation. METHODS AND RESULTS Fifty-seven subjects that underwent 4D flow cardiovascular magnetic resonance imaging were included: 13 patients with BAVs without valve disease, 14 BAVs with aortic regurgitation, 15 BAVs with aortic stenosis, and 22 normal controls with tricuspid aortic valve. Peak and time averaged WSS in systole and diastole and the oscillatory shear index (OSI) in the ascending aorta were computed. Student's t-tests were used to compare values between the four groups where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. BAVs with regurgitation had similar peak and time averaged WSS compared with the patients with BAV without valve disease and with stenosis, and no regions of elevated WSS were found. BAV with aortic regurgitation had twice as high OSI as the other groups (P ≤ 0.001), and mainly in the outer mid-to-distal ascending aorta. CONCLUSION OSI uniquely characterizes altered WSS patterns in BAVs with aortic regurgitation, and thus could be a haemodynamic marker specific for this specific group that is at higher risk of aortic complications. Future longitudinal studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Chiara Trenti
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| | - James A White
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, 4448 Front St SE, Calgary, AB T3M 1M4, Canada
| | - Julio Garcia
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, 4448 Front St SE, Calgary, AB T3M 1M4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB T3B 6A8, Canada
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| |
Collapse
|
7
|
Guo J, Bouaou K, Houriez-Gombaud-Saintonge S, Gueda M, Gencer U, Nguyen V, Charpentier E, Soulat G, Redheuil A, Mousseaux E, Kachenoura N, Dietenbeck T. Deep Learning-Based Analysis of Aortic Morphology From Three-Dimensional MRI. J Magn Reson Imaging 2024. [PMID: 38216546 DOI: 10.1002/jmri.29236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Quantification of aortic morphology plays an important role in the evaluation and follow-up assessment of patients with aortic diseases, but often requires labor-intensive and operator-dependent measurements. Automatic solutions would help enhance their quality and reproducibility. PURPOSE To design a deep learning (DL)-based automated approach for aortic landmarks and lumen detection derived from three-dimensional (3D) MRI. STUDY TYPE Retrospective. POPULATION Three hundred ninety-one individuals (female: 47%, age = 51.9 ± 18.4) from three sites, including healthy subjects and patients (hypertension, aortic dilation, Turner syndrome), randomly divided into training/validation/test datasets (N = 236/77/78). Twenty-five subjects were randomly selected and analyzed by three operators with different levels of expertise. FIELD STRENGTH/SEQUENCE 1.5-T and 3-T, 3D spoiled gradient-recalled or steady-state free precession sequences. ASSESSMENT Reinforcement learning and a two-stage network trained using reference landmarks and segmentation from an existing semi-automatic software were used for aortic landmark detection and segmentation from sinotubular junction to coeliac trunk. Aortic segments were defined using the detected landmarks while the aortic centerline was extracted from the segmentation and morphological indices (length, aortic diameter, and volume) were computed for both the reference and the proposed segmentations. STATISTICAL TESTS Segmentation: Dice similarity coefficient (DSC), Hausdorff distance (HD), average symmetrical surface distance (ASSD); landmark detection: Euclidian distance (ED); model robustness: Spearman correlation, Bland-Altman analysis, Kruskal-Wallis test for comparisons between reference and DL-derived aortic indices; inter-observer study: Williams index (WI). A WI 95% confidence interval (CI) lower bound >1 indicates that the method is within the inter-observer variability. A P-value <0.05 was considered statistically significant. RESULTS DSC was 0.90 ± 0.05, HD was 12.11 ± 7.79 mm, and ASSD was 1.07 ± 0.63 mm. ED was 5.0 ± 6.1 mm. A good agreement was found between all DL-derived and reference aortic indices (r >0.95, mean bias <7%). Our segmentation and landmark detection performances were within the inter-observer variability except the sinotubular junction landmark (CI = 0.96;1.04). DATA CONCLUSION A DL-based aortic segmentation and anatomical landmark detection approach was developed and applied to 3D MRI data for achieve aortic morphology evaluation. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jia Guo
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Kevin Bouaou
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sophia Houriez-Gombaud-Saintonge
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- ESME Sudria Research Lab, Paris, France
| | - Moussa Gueda
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Umit Gencer
- Université de Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Vincent Nguyen
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Etienne Charpentier
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- ESME Sudria Research Lab, Paris, France
- Imagerie Cardio-Thoracique (ICT), Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Gilles Soulat
- Université de Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alban Redheuil
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Imagerie Cardio-Thoracique (ICT), Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Elie Mousseaux
- Université de Paris Cité, PARCC, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Thomas Dietenbeck
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
8
|
Zolfaghari H, Andiapen M, Baumbach A, Mathur A, Kerswell RR. Wall shear stress and pressure patterns in aortic stenosis patients with and without aortic dilation captured by high-performance image-based computational fluid dynamics. PLoS Comput Biol 2023; 19:e1011479. [PMID: 37851683 PMCID: PMC10635572 DOI: 10.1371/journal.pcbi.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/09/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Spatial patterns of elevated wall shear stress and pressure due to blood flow past aortic stenosis (AS) are studied using GPU-accelerated patient-specific computational fluid dynamics. Three cases of moderate to severe AS, one with a dilated ascending aorta and two within the normal range (root diameter less than 4cm) are simulated for physiological waveforms obtained from echocardiography. The computational framework is built based on sharp-interface Immersed Boundary Method, where aortic geometries segmented from CT angiograms are integrated into a high-order incompressible Navier-Stokes solver. The key question addressed here is, given the presence of turbulence due to AS which increases wall shear stress (WSS) levels, why some AS patients undergo much less aortic dilation. Recent case studies of AS have linked the existence of an elevated WSS hotspot (due to impingement of AS on the aortic wall) to the dilation process. Herein we further investigate the WSS distribution for cases with and without dilation to understand the possible hemodynamics which may impact the dilation process. We show that the spatial distribution of elevated WSS is significantly more focused for the case with dilation than those without dilation. We further show that this focal area accommodates a persistent pocket of high pressure, which may have contributed to the dilation process through an increased wall-normal forcing. The cases without dilation, on the contrary, showed a rather oscillatory pressure behaviour, with no persistent pressure "buildup" effect. We further argue that a more proximal branching of the aortic arch could explain the lack of a focal area of elevated WSS and pressure, because it interferes with the impingement process due to fluid suction effects. These phenomena are further illustrated using an idealized aortic geometry. We finally show that a restored inflow eliminates the focal area of elevated WSS and pressure zone from the ascending aorta.
Collapse
Affiliation(s)
- Hadi Zolfaghari
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Mervyn Andiapen
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Andreas Baumbach
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Anthony Mathur
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
| | - Rich R. Kerswell
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Mansoor O, Garcia J. Clinical Use of Blood Flow Analysis through 4D-Flow Imaging in Aortic Valve Disease. J Cardiovasc Dev Dis 2023; 10:251. [PMID: 37367416 DOI: 10.3390/jcdd10060251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Bicuspid aortic valve (BAV), which affects 1% of the general population, results from the abnormal fusion of the cusps of the aortic valve. BAV can lead to the dilatation of the aorta, aortic coarctation, development of aortic stenosis (AS), and aortic regurgitation. Surgical intervention is usually recommended for patients with BAV and bicuspid aortopathy. This review aims to examine 4D-flow imaging as a tool in cardiac magnetic resonance imaging for assessing abnormal blood flow and its clinical application in BAV and AS. We present a historical clinical approach summarizing evidence of abnormal blood flow in aortic valve disease. We highlight how abnormal flow patterns can contribute to the development of aortic dilatation and novel flow-based biomarkers that can be used for a better understanding of the disease progression.
Collapse
Affiliation(s)
- Omer Mansoor
- Undergraduate Medical Education, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julio Garcia
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Jabagi H, Levine D, Gharibeh L, Camillo C, Castillero E, Ferrari G, Takayama H, Grau JB. Implications of Bicuspid Aortic Valve Disease and Aortic Stenosis/Insufficiency as Risk Factors for Thoracic Aortic Aneurysm. Rev Cardiovasc Med 2023; 24:178. [PMID: 39077527 PMCID: PMC11264121 DOI: 10.31083/j.rcm2406178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 07/31/2024] Open
Abstract
Bicuspid Aortic Valves (BAV) are associated with an increased incidence of thoracic aortic aneurysms (TAA). TAA are a common aortic pathology characterized by enlargement of the aortic root and/or ascending aorta, and may become life threatening when left untreated. Typically occurring as the sole pathology in a patient, TAA are largely asymptomatic. However, in some instances, they are accompanied by aortic valve (AV) diseases: either congenital BAV or acquired in the form of Aortic Insufficiency (AI) or aortic stenosis (AS). When TAA are associated with aortic valve disease, determining an accurate and predictable prognosis becomes especially challenging. Patients with AV disease and concomitant TAA lack a widely accepted diagnostic approach, one that integrates our knowledge on aortic valve pathophysiology and encompasses multi-modality imaging approaches. This review summarizes the most recent scientific knowledge regarding the association between AV diseases (BAV, AI, AS) and ascending aortopathies (dilatation, aneurysm, and dissection). We aimed to pinpoint the gaps in monitoring practices and prediction of disease progression in TAA patients with concomitant AV disease. We propose that a morphological and functional analysis of the AV with multi-modality imaging should be included in aortic surveillance programs. This strategy would allow for improved risk stratification of these patients, and possibly new AV phenotypic-specific guidelines with more vigilant surveillance and earlier prophylactic surgery to improve patient outcomes.
Collapse
Affiliation(s)
- Habib Jabagi
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Department of Cardiovascular Surgery, Mt. Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Dov Levine
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Lara Gharibeh
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Chiara Camillo
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | | | - Giovanni Ferrari
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Hiroo Takayama
- Department of Surgery, Columbia University, New York, NY 10027, USA
| | - Juan B. Grau
- Division of Cardiothoracic Surgery, The Valley Hospital, NJ 07450, USA
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
11
|
Vitez L, Starc V, Jug B, Bunc M. Improved Endothelial and Autonomic Function after Transcatheter Aortic Valve Implantation. Rev Cardiovasc Med 2023; 24:140. [PMID: 39076751 PMCID: PMC11273032 DOI: 10.31083/j.rcm2405140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 07/31/2024] Open
Abstract
Background Degenerative aortic stenosis is an atherosclerotic-like process associated with impaired endothelial and autonomic function. Transcatheter aortic valve implantation (TAVI) has become a treatment of choice for patient with severe degenerative aortic stenosis at high surgical risk. The effect of this procedure on endothelial function measured with flow mediated dilatation (FMD) and autonomic function measured with heart rate variability (HRV) at different time-points of disease management (early and late follow-up) remains unknown. Methods We prospectively included 50 patients with severe aortic stenosis who were deemed suitable for TAVI by the Heart Team. FMD and HRV parameters were collected at baseline ( < 24 h pre-TAVI), at early follow-up (up to 48 h post-TAVI) and at late follow-up (3-6 months post-TAVI). Results 43 patients (mean age 81 (75-85); 60% women) completed the study. FMD significantly improved from 2.8 ± 1.5% before TAVI to 4.7 ± 2.7% early after TAVI (p < 0.001) and was later maintained on late follow-up (4.8 ± 2.7%, p = 0.936). Conversely, high-resolution ECG parameters remained preserved at early and improved at late follow-up after TAVI. Significant improvement was detected in a high frequency-domain parameter-HF (from 5231 ± 1783 to 6507 ± 1789 ms 2 ; p = 0.029) and in two Poincare plot parameters: ratio of the short- and long-term R-R variability in the Poincare plot-SD1/SD2 (from 0.682 to 0.884 ms 2 ; p = 0.003) and short-term R-R variability in the Poincare plot-SDRR (from 9.6 to 23.9 ms; p = 0.001). Echocardiographic parameters comprising baseline maximal aortic valve velocity (R = 0.415; p = 0.011), mean aortic gradient (R = 0.373; p = 0.018), indexed stroke volume (R = 0.503; p = 0.006), change in aortic valve maximal velocity (R = 0.365; p = 0.031), change in mean aortic gradient (R = 0.394; p = 0.019) and NT-proBNP (R = 0.491; p = 0.001) were found as significant predictors of change in FMD. Conclusions Endothelial function measured with FMD and autonomic function obtained with HRV parameters significantly improve after TAVI. While endothelial function improves early and is maintained later after TAVI, autonomic function remains stable and improves on late follow-up. This is most likely caused by early hemodynamic changes after resolution of aortic valve obstruction and gradual left ventricular remodeling. Clinical Trial Registration www.clinicaltrials.gov, identifier NCT04286893.
Collapse
Affiliation(s)
- Luka Vitez
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Starc
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Borut Jug
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Matjaž Bunc
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Schafstedde M, Jarmatz L, Brüning J, Hüllebrand M, Nordmeyer S, Harloff A, Hennemuth A. Population-based reference values for 4D flow MRI derived aortic blood flow parameters. Physiol Meas 2023; 44. [PMID: 36735968 DOI: 10.1088/1361-6579/acb8fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Objective. This study assesses age-related differences of thoracic aorta blood flow profiles and provides age- and sex-specific reference values using 4D flow cardiovascular magnetic resonance (CMR) data.Approach. 126 volunteers (age 20-80 years, female 51%) underwent 4D flow CMR and 12 perpendicular analysis planes in the thoracic aorta were specified. For these planes the following parameters were evaluated: body surface area-adjusted aortic area (A'), normalized flow displacement (NFD), the degree of wall parallelism (WPD), the minimal relative cross-sectional area through which 80% of the volume flow passes (A80) and the angle between flow direction and centerline (α).Main results. Age-related differences in blood flow parameters were seen in the ascending aorta with higher values for NFD and angle and lower values for WPD and A80 in older subjects. All parameters describing blood flow patterns correlated with the cross-sectional area in the ascending aorta. No relevant sex-differences regarding blood flow profiles were found.Significance. These age- and sex-specific reference values for quantitative parameters describing blood flow within the aorta might help to study the clinical relevance of flow profiles in the future.
Collapse
Affiliation(s)
- Marie Schafstedde
- Institute of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany.,Department of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lina Jarmatz
- Institute of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany
| | - Jan Brüning
- Institute of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Markus Hüllebrand
- Institute of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany.,Fraunhofer MEVIS, Bremen, Germany
| | - Sarah Nordmeyer
- Institute of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany.,Department of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany
| | - Andreas Harloff
- Department of Neurology, University Medical Center Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Anja Hennemuth
- Institute of Congenital Heart Disease, German Heart Center Charité, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Fraunhofer MEVIS, Bremen, Germany
| |
Collapse
|
13
|
Yevtushenko P, Goubergrits L, Franke B, Kuehne T, Schafstedde M. Modelling blood flow in patients with heart valve disease using deep learning: A computationally efficient method to expand diagnostic capabilities in clinical routine. Front Cardiovasc Med 2023; 10:1136935. [PMID: 36937926 PMCID: PMC10020717 DOI: 10.3389/fcvm.2023.1136935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The computational modelling of blood flow is known to provide vital hemodynamic parameters for diagnosis and treatment-support for patients with valvular heart disease. However, most diagnosis/treatment-support solutions based on flow modelling proposed utilize time- and resource-intensive computational fluid dynamics (CFD) and are therefore difficult to implement into clinical practice. In contrast, deep learning (DL) algorithms provide results quickly with little need for computational power. Thus, modelling blood flow with DL instead of CFD may substantially enhances the usability of flow modelling-based diagnosis/treatment support in clinical routine. In this study, we propose a DL-based approach to compute pressure and wall-shear-stress (WSS) in the aorta and aortic valve of patients with aortic stenosis (AS). Methods A total of 103 individual surface models of the aorta and aortic valve were constructed from computed tomography data of AS patients. Based on these surface models, a total of 267 patient-specific, steady-state CFD simulations of aortic flow under various flow rates were performed. Using this simulation data, an artificial neural network (ANN) was trained to compute spatially resolved pressure and WSS using a centerline-based representation. An unseen test subset of 23 cases was used to compare both methods. Results ANN and CFD-based computations agreed well with a median relative difference between both methods of 6.0% for pressure and 4.9% for wall-shear-stress. Demonstrating the ability of DL to compute clinically relevant hemodynamic parameters for AS patients, this work presents a possible solution to facilitate the introduction of modelling-based treatment support into clinical practice.
Collapse
Affiliation(s)
- Pavlo Yevtushenko
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Leonid Goubergrits
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Benedikt Franke
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Titus Kuehne
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Schafstedde
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Bicuspid aortic valve (BAV) disease is observed in 1-2% of the general population. In addition to valve-related complications (such as aortic stenosis and aortic regurgitation), individuals with BAV often develop dilatation of the proximal aorta (aortic root and ascending aorta), a condition termed BAV aortopathy. The development of BAV aortopathy can occur independent of valvular alterations and can lead to aneurysm formation, aortic dissection or aortic rupture. This review aims to update the clinician with an approach to BAV aortopathy decision making in keeping with the 2022 American College of Cardiology (ACC)/American Heart Association (AHA) Guideline recommendations. RECENT FINDINGS The ACC/AHA 2022 guidelines provide a contemporary and comprehensive approach to the diagnosis and treatment of aortic pathologies. We review the thresholds for replacement of the aortic root and/or ascending aorta along with the strength and level of evidence recommendations. We also review the various Class 2A and 2B recommendations for earlier intervention, which emphasize the importance of experienced surgeons, and multidisciplinary aortic teams (MATs). SUMMARY BAV aortopathy is a common and heterogenous clinical problem. The decision making around timing of intervention requires a personalized approach that is based on the aortic dimensions, valve function, rate of growth, family history, patient factors, and surgical experience within MATs.
Collapse
Affiliation(s)
- Raj Verma
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gideon Cohen
- Division of Cardiac Surgery, Sunnybrook Hospital, Toronto, Canada
| | - Jillian Colbert
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Wiesemann S, Trauzeddel RF, Musa A, Hickstein R, Mayr T, von Knobelsdorff-Brenkenhoff F, Bollache E, Markl M, Schulz-Menger J. Changes of aortic hemodynamics after aortic valve replacement-A four dimensional flow cardiovascular magnetic resonance follow up study. Front Cardiovasc Med 2023; 10:1071643. [PMID: 36865891 PMCID: PMC9971963 DOI: 10.3389/fcvm.2023.1071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Objectives Non-invasive assessment of aortic hemodynamics using four dimensional (4D) flow magnetic resonance imaging (MRI) provides new information on blood flow patterns and wall shear stress (WSS). Aortic valve stenosis (AS) and/or bicuspid aortic valves (BAV) are associated with altered aortic flow patterns and elevated WSS. Aim of this study was to investigate changes in aortic hemodynamics over time in patients with AS and/or BAV with or without aortic valve replacement. Methods We rescheduled 20 patients for a second 4D flow MRI examination, whose first examination was at least 3 years prior. A total of 7 patients received an aortic valve replacement between baseline and follow up examination (=operated group = OP group). Aortic flow patterns (helicity/vorticity) were assessed using a semi-quantitative grading approach from 0 to 3, flow volumes were evaluated in 9 planes, WSS in 18 and peak velocity in 3 areas. Results While most patients had vortical and/or helical flow formations within the aorta, there was no significant change over time. Ascending aortic forward flow volumes were significantly lower in the OP group than in the NOP group at baseline (NOP 69.3 mL ± 14.2 mL vs. OP 55.3 mL ± 1.9 mL p = 0.029). WSS in the outer ascending aorta was significantly higher in the OP group than in the NOP group at baseline (NOP 0.6 ± 0.2 N/m2 vs. OP 0.8 ± 0.2 N/m2, p = 0.008). Peak velocity decreased from baseline to follow up in the aortic arch only in the OP group (1.6 ± 0.6 m/s vs. 1.2 ± 0.3 m/s, p = 0.018). Conclusion Aortic valve replacement influences aortic hemodynamics. The parameters improve after surgery.
Collapse
Affiliation(s)
- Stephanie Wiesemann
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralf Felix Trauzeddel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Ahmed Musa
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Richard Hickstein
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Thomas Mayr
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Clinic Agatharied, Department of Cardiology, Ludwig Maximilian University of Munich, Hausham, Germany
| | - Emilie Bollache
- CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeanette Schulz-Menger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,*Correspondence: Jeanette Schulz-Menger, ✉
| |
Collapse
|
16
|
Hurd ER, Han M, Mendes JK, Hadley JR, Johnson CR, DiBella EVR, Oshinski JN, Timmins LH. Comparison of Prospective and Retrospective Gated 4D Flow Cardiac MR Image Acquisitions in the Carotid Bifurcation. Cardiovasc Eng Technol 2023; 14:1-12. [PMID: 35618870 DOI: 10.1007/s13239-022-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To evaluate the agreement of 4D flow cMRI-derived bulk flow features and fluid (blood) velocities in the carotid bifurcation using prospective and retrospective gating techniques. METHODS Prospective and retrospective ECG-gated three-dimensional (3D) cine phase-contrast cardiac MRI with three-direction velocity encoding (i.e., 4D flow cMRI) data were acquired in ten carotid bifurcations from men (n = 3) and women (n = 2) that were cardiovascular disease-free. MRI sequence parameters were held constant across all scans except temporal resolution values differed. Velocity data were extracted from the fluid domain and evaluated across the entire volume or at defined anatomic planes (common, internal, external carotid arteries). Qualitative agreement between gating techniques was performed by visualizing flow streamlines and topographical images, and statistical comparisons between gating techniques were performed across the fluid volume and defined anatomic regions. RESULTS Agreement in the kinematic data (e.g., bulk flow features and velocity data) were observed in the prospectively and retrospectively gated acquisitions. Voxel differences in time-averaged, peak systolic, and diastolic-averaged velocity magnitudes between gating techniques across all volunteers were 2.7%, 1.2%, and 6.4%, respectively. No significant differences in velocity magnitudes or components ([Formula: see text], [Formula: see text], [Formula: see text]) were observed. Importantly, retrospective acquisitions captured increased retrograde flow in the internal carotid artery (i.e., carotid sinus) compared to prospective acquisitions (10.4 ± 6.3% vs. 4.6 ± 5.3%; [Formula: see text] < 0.05). CONCLUSION Prospective and retrospective ECG-gated 4D flow cMRI acquisitions provide comparable evaluations of fluid velocities, including velocity vector components, in the carotid bifurcation. However, the increased temporal coverage of retrospective acquisitions depicts increased retrograde flow patterns (i.e., disturbed flow) not captured by the prospective gating technique.
Collapse
Affiliation(s)
- Elliott R Hurd
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
| | - Mengjiao Han
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Jason K Mendes
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - J Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chris R Johnson
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
- School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Edward V R DiBella
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - John N Oshinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT, 84112, USA.
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA.
| |
Collapse
|
17
|
Weiss EK, Jarvis K, Maroun A, Malaisrie SC, Mehta CK, McCarthy PM, Bonow RO, Avery RJ, Allen BD, Carr JC, Rigsby CK, Markl M. Systolic reverse flow derived from 4D flow cardiovascular magnetic resonance in bicuspid aortic valve is associated with aortic dilation and aortic valve stenosis: a cross sectional study in 655 subjects. J Cardiovasc Magn Reson 2023; 25:3. [PMID: 36698129 PMCID: PMC9878800 DOI: 10.1186/s12968-022-00906-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/04/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Bicuspid aortic valve (BAV) disease is associated with increased risk of aortopathy. In addition to current intervention guidelines, BAV mediated changes in aortic 3D hemodynamics have been considered as risk stratification measures. We aimed to evaluate the association of 4D flow cardiovascular magnetic resonance (CMR) derived voxel-wise aortic reverse flow with aortic dilation and to investigate the role of aortic valve regurgitation (AR) and stenosis (AS) on reverse flow in systole and diastole. METHODS 510 patients with BAV (52 ± 14 years) and 120 patients with trileaflet aortic valve (TAV) (61 ± 11 years) and mid-ascending aorta diameter (MAAD) > 35 mm who underwent CMR including 4D flow CMR were retrospectively included. An age and sex-matched healthy control cohort (n = 25, 49 ± 12 years) was selected. Voxel-wise reverse flow was calculated in the aorta and quantified by the mean reverse flow in the ascending aorta (AAo) during systole and diastole. RESULTS BAV patients without AS and AR demonstrated significantly increased systolic and diastolic reverse flow (222% and 13% increases respectively, p < 0.01) compared to healthy controls and also had significantly increased systolic reverse flow compared to TAV patients with aortic dilation (79% increase, p < 0.01). In patients with isolated AR, systolic and diastolic AAo reverse flow increased significantly with AR severity (c = - 83.2 and c = - 205.6, p < 0.001). In patients with isolated AS, AS severity was associated with an increase in both systolic (c = - 253.1, p < 0.001) and diastolic (c = - 87.0, p = 0.02) AAo reverse flow. Right and left/right and non-coronary fusion phenotype showed elevated systolic reverse flow (> 17% increase, p < 0.01). Right and non-coronary fusion phenotype showed decreased diastolic reverse flow (> 27% decrease, p < 0.01). MAAD was an independent predictor of systolic (p < 0.001), but not diastolic, reverse flow (p > 0.1). CONCLUSION 4D flow CMR derived reverse flow associated with BAV was successfully captured even in the absence of AR or AS and in comparison to TAV patients with aortic dilation. Diastolic AAo reverse flow increased with AR severity while AS severity strongly correlated with increased systolic reverse flow in the AAo. Additionally, increasing MAAD was independently associated with increasing systolic AAo reverse flow. Thus, systolic AAo reverse flow may be a valuable metric for evaluating disease severity in future longitudinal outcome studies.
Collapse
Affiliation(s)
- Elizabeth K. Weiss
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Kelly Jarvis
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Anthony Maroun
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - S. Chris Malaisrie
- Division of Cardiac Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Christopher K. Mehta
- Division of Cardiac Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Patrick M. McCarthy
- Division of Cardiac Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Robert O. Bonow
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Ryan J. Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Bradley D. Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - James C. Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| | - Cynthia K. Rigsby
- Department of Medical Imaging, Lurie Children’s Hospital, Chicago, IL USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611 USA
| |
Collapse
|
18
|
Qin JJ, Obeidy P, Gok M, Gholipour A, Grieve SM. 4D-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: A systematic review. Front Cardiovasc Med 2023; 9:1075833. [PMID: 36698944 PMCID: PMC9869052 DOI: 10.3389/fcvm.2022.1075833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Purpose Current intervention guidelines for bicuspid aortic valve (BAV) associated ascending aorta (AAo) dilatation are suboptimal predictors of clinical outcome. There is growing interest in identifying better biomarkers such as wall shear stress (WSS) to help risk stratify BAV aortopathy. The aim of the systematic review is to synthesize existing evidence of the relationship between WSS and aortopathy in the BAV population. Methods A comprehensive literature search of available major databases was performed in May 2022 to include studies that used four-dimensional flow cardiac magnetic resonance (4D-flow) MRI to quantify WSS in the AAo in adult BAV populations. Summary results and statistical analysis were provided for key numerical results. A narrative summary was provided to assess similarities between studies. Results A total of 26 studies that satisfied selection criteria and quality assessment were included in the review. The presence of BAV resulted in significantly elevated WSS magnitude and circumferential WSS, but not axial WSS. The presence of aortic stenosis had additional impact on WSS and flow alterations. BAV phenotypes were associated with different WSS distributions and flow profiles. Altered protein expression in the AAo wall associated with WSS supported the contribution of altered hemodynamics to aortopathy in addition to genetic factors. Conclusion WSS has the potential to be a valid biomarker for BAV aortopathy. Future work would benefit from larger study cohorts with longitudinal evaluations to further characterize WSS association with aortopathy, mortality, and morbidities. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022337077, identifier CRD42022337077.
Collapse
Affiliation(s)
- Jiaxing Jason Qin
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Peyman Obeidy
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mustafa Gok
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Radiology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Alireza Gholipour
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Stuart M. Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,*Correspondence: Stuart M. Grieve,
| |
Collapse
|
19
|
HAUTANEN SOFIA, KILJANDER TEEMU, KORPELA TARMO, SAARI PETRI, KOKKONEN JORMA, MUSTONEN PIRJO, SILLANMÄKI SAARA, YLÄ-HERTTUALA ELIAS, HUSSO MINNA, HEDMAN MARJA, KAUHANEN PETTERI. 4D Flow Versus 2D Phase Contrast MRI in Populations With Bi- and Tricuspid Aortic Valves. In Vivo 2023; 37:88-98. [PMID: 36593031 PMCID: PMC9843764 DOI: 10.21873/invivo.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
AIM To compare 4D flow magnetic resonance imaging (MRI) and 2D phase contrast (PC) MRI when evaluating bicuspid (BAV) and tricuspid (TAV) aortic valves. MATERIALS AND METHODS A total of 83 subjects (35 BAV, 48 TAV) were explored with 4D flow and 2D PC MRI. Systolic peak velocity, peak flow and regurgitation fraction were analysed at two pre-defined aortic levels (aortic root, mid-tubular). Furthermore, the two methods of 4D flow analysis (Heart and Artery) were compared. RESULTS Correlation between the 2D PC MRI and 4D flow MRI derived parameters ranged from moderate (R=0.58) to high (R=0.90). 4D flow MRI yielded significantly higher peak velocities in the tubular aorta in both groups. Regarding the aortic root, peak velocities were significantly higher in the TAV group with 4D flow MRI, but in the BAV group 4D flow MRI yielded non-significantly lower values. Findings on peak flow differences between the two modalities followed the same pattern as the differences in peak velocities. 4D flow MRI derived regurgitation fraction values were lower in both locations in both groups. Interobserver agreement for different 4D flow MRI acquired parameters varied from poor (ICC=0.07) to excellent (ICC=1.0) in the aortic root, and it was excellent in the tubular aorta (ICC=0.8-1.0). CONCLUSION 4D flow MRI seems to be accurate in comparison to 2D PC MRI in normal aortic valves and in BAV with mild to moderate stenosis. However, the varying interobserver reproducibility and impaired accuracy at higher flow velocities should be taken into account in clinical practice when using the 4D flow method.
Collapse
Affiliation(s)
- SOFIA HAUTANEN
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland,Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
| | - TEEMU KILJANDER
- Department of Cardiology, Tampere University Hospital, Heart Hospital NOVA, Jyväskylä, Finland,Department of Cardiology, Central Finland Central Hospital, Jyväskylä, Finland
| | - TARMO KORPELA
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland,Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
| | - PETRI SAARI
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - JORMA KOKKONEN
- Department of Cardiology, Central Finland Central Hospital, Jyväskylä, Finland
| | - PIRJO MUSTONEN
- Department of Cardiology, Central Finland Central Hospital, Jyväskylä, Finland
| | - SAARA SILLANMÄKI
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - ELIAS YLÄ-HERTTUALA
- Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Kuopio, Finland
| | - MINNA HUSSO
- Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Kuopio, Finland
| | - MARJA HEDMAN
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland,Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland,Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Kuopio, Finland
| | - PETTERI KAUHANEN
- Clinical Radiology, Kuopio University Hospital, Clinical Imaging Center, Kuopio, Finland
| |
Collapse
|
20
|
Dyverfeldt P, Trenti C, Ziegler M, Bjarnegård N, Lindenberger M. Helical flow in tortuous aortas and its relationship to turbulence: A whole-aorta 4D flow MRI study. Front Cardiovasc Med 2023; 10:1124604. [PMID: 37034318 PMCID: PMC10073741 DOI: 10.3389/fcvm.2023.1124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Background Increased vascular tortuosity is a hallmark of ageing of the vascular system, including the aorta. However, the impact of tortuosity on aortic blood flow is unknown. We hypothesized that increased tortuosity would be associated with increased blood flow helicity and with decreased degree of blood flow turbulence as measured by the turbulent kinetic energy (TKE). Methods 4D Flow MR images covering the entire aorta from the aortic valve to the iliac bifurcation were acquired in 23 normal volunteers aged 18-30 years ("Young") and 23 normal volunteers aged 66-76 years ("Old") without aortic disease. The aorta was segmented and divided into four regions: the ascending, descending, suprarenal abdominal and infrarenal abdominal aorta. Tortuosity, helicity, TKE, flow velocity, and Reynolds number were computed for the whole aorta and for each section. Results Tortuosity and helicity were higher whereas TKE, velocity, and Reynolds number were lower in Old than in Young, for all aortic regions (p < 0.05) except for helicity in the descending aorta. Tortuosity correlated positively with helicity and negatively with TKE for all aortic regions (Spearman rho=±0.45-±0.72, p < =0.002) except for TKE in the ascending aorta. Further, helicity correlated with TKE in the descending, suprarenal abdominal and infrarenal abdominal aorta (Spearman rho=-0.56--0.77). Conclusion Tortuosity increases with age and blood flow in tortuous aortas is more helical. Increasing helicity, in turn, is associated with decreasing TKE.
Collapse
Affiliation(s)
- Petter Dyverfeldt
- Cardiovascular Sciences; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Correspondence: Petter Dyverfeldt
| | - Chiara Trenti
- Cardiovascular Sciences; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Magnus Ziegler
- Cardiovascular Sciences; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Niclas Bjarnegård
- Cardiovascular Sciences; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Marcus Lindenberger
- Cardiovascular Sciences; Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
21
|
van Andel MM, van Ooij P, de Waard V, Gottwald LM, van Kimmenade RR, Scholte AJ, Dickinson MG, Zwinderman AH, Mulder BJ, Nederveen AJ, Groenink M. Abnormal aortic hemodynamics are associated with risk factors for aortic complications in patients with marfan syndrome. IJC HEART & VASCULATURE 2022; 43:101128. [PMID: 36268203 PMCID: PMC9576530 DOI: 10.1016/j.ijcha.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Background It is difficult to assess the risk for aortic dissection beyond the aortic root in patients with Marfan syndrome (MFS). To aid risk assessment in these patients, we investigated aortic flow and wall shear stress (WSS) by 4D flow magnetic resonance imaging (MRI) in patients with MFS and compared the results with healthy volunteers. We hypothesized that MFS patients with a high-risk profile for aortic dissection would show abnormal hemodynamics in aortic regions associated with aortic dissection. Methods MFS patients (n = 55) and healthy subjects (n = 25), matched for age and sex, prospectively underwent 4D flow MRI. 4D flow maps were constructed to detect elevated (defined as higher than the three-dimensional 95 % confidence interval) and deviant directed (defined as vector angle differences higher than 120°) WSS in MFS patients as compared to the controls. Univariate and multivariate associations with risk factors for aortic dissection in MFS patients were assessed. Results The maximum incidence for elevated WSS was 20 % (CI 9 %-31 %) and found in the ascending aorta. The maximum for deviant directed WSS was 39 % (CI 26 %-52 %) and found in the inner descending aorta. Significantly more male patients had deviant directed WSS in the inner proximal descending aorta (63 % vs 24 %, p = 0.014). Multivariate analysis showed that deviant directed WSS was associated with male sex (p = 0.019), and a haplo-insufficient FBN1 mutation type (p = 0.040). In 60 % of MFS patients with a previous aortic root replacement surgery, abnormal hemodynamics were found in the ascending aorta. No significant differences between hemodynamics were found in the descending aorta between operated and non-operated patients. Conclusion Deviant directed WSS in the proximal descending aorta is associated with known risk factors for aortic dissection in MFS patients, namely male sex and a haploinsufficient FBN1 mutation type.
Collapse
Affiliation(s)
- Mitzi M. van Andel
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Pim van Ooij
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Lukas M. Gottwald
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Arthur J. Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael G. Dickinson
- Department of Cardiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Aeilko H. Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Barbara J.M. Mulder
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Maarten Groenink
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands,Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands,Corresponding author at: Amsterdam UMC, University of Amsterdam, Department of Cardiology and Radiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Lee J, El Hangouche N, Pathrose A, Soulat G, Barker AJ, Thomas JD, Markl M. Bicuspid aortic valve morphology and hemodynamics by same-day echocardiography and cardiac MRI. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2022; 38:2047-2056. [PMID: 35294708 DOI: 10.1007/s10554-022-02593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the impact of bicuspid aortic valve (BAV) on valve morphology and motion as well as proximal and aortic hemodynamics using a same-day echocardiography and cardiac MRI. Transthoracic echocardiography, two-dimensional cine MRI of the aortic valve, and aortic 4D flow MRI were performed on the same day in 9 normofunctional BAV patients (age = 41 ± 12, 3 female), 4 BAV with moderate to severe aortic stenosis (AS) (age = 63 ± 5, 1 female), and 36 healthy tricuspid aortic valve controls (age = 52 ± 10, 21 female). Valve opening and closing timings and transvalvular peak velocity were measured using B-mode and Doppler echocardiogram, respectively. Valve orifice morphology at a fully-opened state was characterized using cine MRI. Ascending aortic (AAo) wall shear stress (WSS) was measured using 4D flow MRI data. Valve motion timings were similar between BAV and controls. BAV was associated with an increased orifice aspect ratio (1.44 ± 0.11 vs. 1.10 ± 0.13, P < 0.001), transvalvular peak velocity (1.5 ± 0.3 vs. 1.2 ± 0.2 m/s, P < 0.001) and maximum AAo WSS (1.62 ± 0.31 vs. 0.91 ± 0.24 Pa, P < 0.001). The increased orifice aspect ratio was associated with the increase in transvalvular peak velocity (r = 0.80, P < 0.0001) and maximum AAo WSS (r = 0.83, P < 0.0001). Transvalvular peak velocity was also positively correlated with maximum AAo WSS (r = 0.83, P < 0.0001). A same-day echo and MRI imaging allows for a comprehensive assessment of the impact of aortic valve disease on valve function and hemodynamics. In this pilot application to BAV, we found increased orifice aspect ratio may be responsible for increased transvalvular peak velocity and maximum AAo WSS.
Collapse
Affiliation(s)
- Jeesoo Lee
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA.
| | - Nadia El Hangouche
- Department of Cardiology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Ashitha Pathrose
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA
| | - Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James D Thomas
- Department of Cardiology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
23
|
Girfoglio M, Ballarin F, Infantino G, Nicoló F, Montalto A, Rozza G, Scrofani R, Comisso M, Musumeci F. Non-intrusive PODI-ROM for patient-specific aortic blood flow in presence of a LVAD device. Med Eng Phys 2022; 107:103849. [DOI: 10.1016/j.medengphy.2022.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 06/23/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
|
24
|
Shan Y, Li J, Wu B, Barker AJ, Markl M, Lin J, Shu X, Wang Y. Aortic Viscous Energy Loss for Assessment of Valve-related
Hemodynamics in Asymptomatic Severe Aortic Stenosis. Radiol Cardiothorac Imaging 2022; 4:e220010. [PMCID: PMC9434981 DOI: 10.1148/ryct.220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 08/29/2023]
Abstract
Purpose To investigate whether functional assessment of aberrant flow patterns by viscous energy loss (E′L ) using four-dimensional (4D) flow MRI could determine aortic stenosis (AS) severity in accordance with transvalvular energy loss and aid in surgical decision-making in asymptomatic patients with severe AS. Materials and Methods In this prospective, single-center study, E′L was measured in the thoracic aorta of 74 consecutive asymptomatic patients with severe AS and preserved left ventricular ejection fraction who presented between January 2015 and December 2017, and 23 healthy volunteers using 4D flow MRI. Transvalvular energy loss was assessed based on the energy loss index (ELI) measured using Doppler echocardiography. The association between E′L and AS-related events including aortic valve replacement was evaluated by receiver operating characteristic curve analysis, Kaplan-Meier analysis, and multivariable Cox regression analysis. Results Among 74 asymptomatic patients with severe AS (mean age, 60 years ± 9 [SD]; 43 men; 56 with bicuspid aortic valve), 33 experienced AS-related events during a median follow-up of 42 months (IQR, 30–53 months). Altered flow patterns in severe AS resulted in a sevenfold increase in peak systolic E′L in the ascending aorta compared with controls (13.9 mW ± 3.4 vs 1.80 mW ± 0.44; P < .001). Peak systolic E′L in the ascending aorta was independently associated with the ELI (standardized β, −0.52; P < .001) and showed better discrimination for AS-related events (area under the curve, 0.83; 95% CI: 0.74, 0.93; P < .001) than conventional echocardiographic parameters. After adjustment for confounding variables, peak systolic E′L in the ascending aorta was associated with a significant increase in AS-related events (P < .001 for adjusted hazard ratio). Conclusion Changes in AS-mediated poststenotic three-dimensional outflow patterns can be quantified by 4D flow MRI-derived energetic markers to aid in the risk stratification and clinical management of asymptomatic patients with severe AS. Keywords: Aortic Stenosis, 4D Flow MRI, Flow Energetics, Vascular, Aorta, Aortic Valve, MR Angiography Supplemental material is available for this article. © RSNA, 2022
Collapse
Affiliation(s)
| | | | - Boting Wu
- From the Shanghai Institute of Medical Imaging (Y.S., J. Lin, X.S.,
Y.W.), Shanghai Institute of Cardiovascular Diseases (J. Li, X.S., Y.W.),
Department of Cardiovascular Surgery (J. Li), and Department of Transfusion
(B.W.), Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai 200032,
China; Department of Radiology, Children’s Hospital Colorado, University
of Colorado Denver, Anschutz Medical Campus, Aurora, Colo (A.J.B.); and
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (M.M.)
| | - Alex J. Barker
- From the Shanghai Institute of Medical Imaging (Y.S., J. Lin, X.S.,
Y.W.), Shanghai Institute of Cardiovascular Diseases (J. Li, X.S., Y.W.),
Department of Cardiovascular Surgery (J. Li), and Department of Transfusion
(B.W.), Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai 200032,
China; Department of Radiology, Children’s Hospital Colorado, University
of Colorado Denver, Anschutz Medical Campus, Aurora, Colo (A.J.B.); and
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (M.M.)
| | - Michael Markl
- From the Shanghai Institute of Medical Imaging (Y.S., J. Lin, X.S.,
Y.W.), Shanghai Institute of Cardiovascular Diseases (J. Li, X.S., Y.W.),
Department of Cardiovascular Surgery (J. Li), and Department of Transfusion
(B.W.), Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai 200032,
China; Department of Radiology, Children’s Hospital Colorado, University
of Colorado Denver, Anschutz Medical Campus, Aurora, Colo (A.J.B.); and
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (M.M.)
| | - Jiang Lin
- From the Shanghai Institute of Medical Imaging (Y.S., J. Lin, X.S.,
Y.W.), Shanghai Institute of Cardiovascular Diseases (J. Li, X.S., Y.W.),
Department of Cardiovascular Surgery (J. Li), and Department of Transfusion
(B.W.), Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai 200032,
China; Department of Radiology, Children’s Hospital Colorado, University
of Colorado Denver, Anschutz Medical Campus, Aurora, Colo (A.J.B.); and
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (M.M.)
| | - Xianhong Shu
- From the Shanghai Institute of Medical Imaging (Y.S., J. Lin, X.S.,
Y.W.), Shanghai Institute of Cardiovascular Diseases (J. Li, X.S., Y.W.),
Department of Cardiovascular Surgery (J. Li), and Department of Transfusion
(B.W.), Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai 200032,
China; Department of Radiology, Children’s Hospital Colorado, University
of Colorado Denver, Anschutz Medical Campus, Aurora, Colo (A.J.B.); and
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (M.M.)
| | - Yongshi Wang
- From the Shanghai Institute of Medical Imaging (Y.S., J. Lin, X.S.,
Y.W.), Shanghai Institute of Cardiovascular Diseases (J. Li, X.S., Y.W.),
Department of Cardiovascular Surgery (J. Li), and Department of Transfusion
(B.W.), Zhongshan Hospital Fudan University, 180 Fenglin Road, Shanghai 200032,
China; Department of Radiology, Children’s Hospital Colorado, University
of Colorado Denver, Anschutz Medical Campus, Aurora, Colo (A.J.B.); and
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (M.M.)
| |
Collapse
|
25
|
Garrido-Oliver J, Aviles J, Córdova MM, Dux-Santoy L, Ruiz-Muñoz A, Teixido-Tura G, Maso Talou GD, Morales Ferez X, Jiménez G, Evangelista A, Ferreira-González I, Rodriguez-Palomares J, Camara O, Guala A. Machine learning for the automatic assessment of aortic rotational flow and wall shear stress from 4D flow cardiac magnetic resonance imaging. Eur Radiol 2022; 32:7117-7127. [PMID: 35976395 DOI: 10.1007/s00330-022-09068-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Three-dimensional (3D) time-resolved phase-contrast cardiac magnetic resonance (4D flow CMR) allows for unparalleled quantification of blood velocity. Despite established potential in aortic diseases, the analysis is time-consuming and requires expert knowledge, hindering clinical application. The present research aimed to develop and test a fully automatic machine learning-based pipeline for aortic 4D flow CMR analysis. METHODS Four hundred and four subjects were prospectively included. Ground-truth to train the algorithms was generated by experts. The cohort was divided into training (323 patients) and testing (81) sets and used to train and test a 3D nnU-Net for segmentation and a Deep Q-Network algorithm for landmark detection. In-plane (IRF) and through-plane (SFRR) rotational flow descriptors and axial and circumferential wall shear stress (WSS) were computed at ten planes covering the ascending aorta and arch. RESULTS Automatic aortic segmentation resulted in a median Dice score (DS) of 0.949 and average symmetric surface distance of 0.839 (0.632-1.071) mm, comparable with the state of the art. Aortic landmarks were located with a precision comparable with experts in the sinotubular junction and first and third supra-aortic vessels (p = 0.513, 0.592 and 0.905, respectively) but with lower precision in the pulmonary bifurcation (p = 0.028), resulting in precise localisation of analysis planes. Automatic flow assessment showed excellent (ICC > 0.9) agreement with manual quantification of SFRR and good-to-excellent agreement (ICC > 0.75) in the measurement of IRF and axial and circumferential WSS. CONCLUSION Fully automatic analysis of complex aortic flow dynamics from 4D flow CMR is feasible. Its implementation could foster the clinical use of 4D flow CMR. KEY POINTS • 4D flow CMR allows for unparalleled aortic blood flow analysis but requires aortic segmentation and anatomical landmark identification, which are time-consuming, limiting 4D flow CMR widespread use. • A fully automatic machine learning pipeline for aortic 4D flow CMR analysis was trained with data of 323 patients and tested in 81 patients, ensuring a balanced distribution of aneurysm aetiologies. • Automatic assessment of complex flow characteristics such as rotational flow and wall shear stress showed good-to-excellent agreement with manual quantification.
Collapse
Affiliation(s)
| | - Jordina Aviles
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marcos Mejía Córdova
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Gisela Teixido-Tura
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Xabier Morales Ferez
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Guillermo Jiménez
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Arturo Evangelista
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Ferreira-González
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-ESP, Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Jose Rodriguez-Palomares
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Department of Cardiology, Hospital Vall d'Hebron Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Oscar Camara
- Physense, BCN Medtech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Andrea Guala
- Vall d'Hebron Institute of Research, Barcelona, Spain.
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
26
|
Fatehi Hassanabad A, King MA, Di Martino E, Fedak PWM, Garcia J. Clinical implications of the biomechanics of bicuspid aortic valve and bicuspid aortopathy. Front Cardiovasc Med 2022; 9:922353. [PMID: 36035900 PMCID: PMC9411999 DOI: 10.3389/fcvm.2022.922353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
Bicuspid aortic valve (BAV), which affects up to 2% of the general population, results from the abnormal fusion of the cusps of the aortic valve. Patients with BAV are at a higher risk for developing aortic dilatation, a condition known as bicuspid aortopathy, which is associated with potentially life-threatening sequelae such as aortic dissection and aortic rupture. Although BAV biomechanics have been shown to contribute to aortopathy, their precise impact is yet to be delineated. Herein, we present the latest literature related to BAV biomechanics. We present the most recent definitions and classifications for BAV. We also summarize the current evidence pertaining to the mechanisms that drive bicuspid aortopathy. We highlight how aberrant flow patterns can contribute to the development of aortic dilatation. Finally, we discuss the role cardiac magnetic resonance imaging can have in assessing and managing patient with BAV and bicuspid aortopathy.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Melissa A. King
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Elena Di Martino
- Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Centre for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Julio Garcia
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Julio Garcia
| |
Collapse
|
27
|
Chongthammakun V, Pan AY, Earing MG, Damluji AA, Goot BH, Cava JR, Gerardin JF. The association between cardiac magnetic resonance-derived aortic stiffness parameters and aortic dilation in young adults with bicuspid aortic valve: With and without coarctation of aorta. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 20:100194. [PMID: 38560418 PMCID: PMC10978397 DOI: 10.1016/j.ahjo.2022.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 04/04/2024]
Abstract
Background Bicuspid aortic valve (BAV) is associated with progressive aortic dilation. Studies in aortopathies have shown a correlation between increased aortic stiffness and aortic dilation. We aimed to evaluate aortic stiffness measures as predictors of progressive aortic dilation by cardiac magnetic resonance (CMR) in BAV patients. Methods This is a retrospective study of 49 patients with BAV (median age 21.1 years at first CMR visit) with ≥2 CMR at the Wisconsin Adult Congenital Heart Disease Program (WAtCH). Circumferential aortic strain, distensibility, and β-stiffness index were obtained from CMR-derived aortic root cine imaging, and aortic dimensions were measured at aortic root and ascending aorta. A linear mixed-model and logistic regression were used to identify important predictors of progressive aortic dilation. Results Over a median of 3.8 years follow-up, the annual growth rates of aortic root and ascending aorta dimensions were 0.25 and 0.16 mm/year, respectively. Aortic strain and distensibility decreased while β-stiffness index increased with age. Aortic root strain and distensibility were associated with progressive dilation of the ascending aorta. Baseline aortic root diameter was an independent predictor of >1 mm/year growth rate of the aortic root (adjusted OR 1.34, 95 % CI 1.03-1.74, p = 0.028). Most patients (61 %) had coexisting coarctation of aorta. Despite the higher prevalence of hypertension in patients with aortic coarctation, hypertension or coarctation had no effect on baseline aorta dimensions, stiffness, or progressive aortic dilation. Conclusion Some CMR-derived aortic stiffness parameters correlated with progressive aortic dilation in BAV and should be further investigated in larger and older BAV cohorts.
Collapse
Affiliation(s)
- Vasutakarn Chongthammakun
- Adult Congenital Heart Disease Program, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, United States of America
- Herma Heart Institute, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Amy Y. Pan
- Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Michael G. Earing
- Sections of Cardiology and Pediatric Cardiology, University of Chicago, Chicago, IL, United States of America
| | - Abdulla A. Damluji
- Inova Center of Outcomes Research, Inova Heart and Vascular Institute, Falls Church, VA, United States of America
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Benjamin H. Goot
- Herma Heart Institute, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Joseph R. Cava
- Herma Heart Institute, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Jennifer F. Gerardin
- Herma Heart Institute, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
28
|
Kiema M, Sarin JK, Kauhanen SP, Torniainen J, Matikka H, Luoto ES, Jaakkola P, Saari P, Liimatainen T, Vanninen R, Ylä-Herttuala S, Hedman M, Laakkonen JP. Wall Shear Stress Predicts Media Degeneration and Biomechanical Changes in Thoracic Aorta. Front Physiol 2022; 13:934941. [PMID: 35874533 PMCID: PMC9301078 DOI: 10.3389/fphys.2022.934941] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives: In thoracic aortic aneurysm (TAA) of the ascending aorta (AA), AA is progressively dilating due to the weakening of the aortic wall. Predicting and preventing aortic dissections and ruptures in TAA continues to be challenging, and more accurate assessment of the AA dilatation, identification of high-risk patients, and timing of repair surgery are required. We investigated whether wall shear stress (WSS) predicts pathological and biomechanical changes in the aortic wall in TAA. Methods: The study included 12 patients with bicuspid (BAV) and 20 patients with the tricuspid aortic valve (TAV). 4D flow magnetic resonance imaging (MRI) was performed a day before aortic replacement surgery. Biomechanical and histological parameters, including assessing of wall strength, media degeneration, elastin, and cell content were analyzed from the resected AA samples. Results: WSSs were greater in the outer curves of the AA compared to the inner curves in all TAA patients. WSSs correlated with media degeneration of the aortic wall (ρ = -0.48, p < 0.01), elastin content (ρ = 0.47, p < 0.01), and aortic wall strength (ρ = -0.49, p = 0.029). Subsequently, the media of the outer curves was thinner, more rigid, and tolerated lower failure strains. Failure values were shown to correlate with smooth muscle cell (SMC) density (ρ = -0.45, p < 0.02), and indicated the more MYH10+ SMCs the lower the strength of the aortic wall structure. More macrophages were detected in patients with severe media degeneration and the areas with lower WSSs. Conclusion: The findings indicate that MRI-derived WSS predicts pathological and biomechanical changes in the aortic wall in patients with TAA and could be used for identification of high-risk patients.
Collapse
Affiliation(s)
- Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko K. Sarin
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Medical Physics, Medical Imaging Center, Pirkanmaa Hospital District, Tampere, Finland
| | - S. Petteri Kauhanen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Jari Torniainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Hanna Matikka
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Emma-Sofia Luoto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Jaakkola
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
| | - Petri Saari
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Oulu University Hospital, Oulu, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Johanna P. Laakkonen,
| |
Collapse
|
29
|
Jauhiainen S, Kiema M, Hedman M, Laakkonen JP. Large Vessel Cell Heterogeneity and Plasticity: Focus in Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2022; 42:811-818. [PMID: 35587695 DOI: 10.1161/atvbaha.121.316237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Smooth muscle cells and endothelial cells have a remarkable level of plasticity in vascular pathologies. In thoracic and abdominal aortic aneurysms, smooth muscle cells have been suggested to undergo phenotypic switching and to contribute to degradation of the aortic wall structure in response to, for example, inflammatory mediators, dysregulation of growth factor signaling or oxidative stress. Recently, endothelial-to-mesenchymal transition, and a clonal expansion of degradative smooth muscle cells and immune cells, as well as mesenchymal stem-like cells have been suggested to contribute to the progression of aortic aneurysms. What are the factors driving the aortic cell phenotype changes and how vascular flow, known to affect aortic wall structure and to be altered in aortic aneurysms, could affect aortic cell remodeling? In this review, we summarize the current literature on aortic cell heterogeneity and phenotypic switching in relation to changes in vascular flow and aortic wall structure in aortic aneurysms in clinical samples with special focus on smooth muscle and endothelial cells. The differences between thoracic and abdominal aortic aneurysms are discussed.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| | - Marja Hedman
- Institute of Clinical Medicine (M.H.), University of Eastern Finland, Kuopio
- Department of Clinical Radiology, Kuopio University Hospital, Finland (M.H.)
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland (M.H.)
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences (S.J., M.K., J.P.L.), University of Eastern Finland, Kuopio
| |
Collapse
|
30
|
The Haemodynamic and Pathophysiological Mechanisms of Calcific Aortic Valve Disease. Biomedicines 2022; 10:biomedicines10061317. [PMID: 35740339 PMCID: PMC9220142 DOI: 10.3390/biomedicines10061317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
|
31
|
Ebel S, Kühn A, Aggarwal A, Köhler B, Behrendt B, Gohmann R, Riekena B, Lücke C, Ziegert J, Vogtmann C, Preim B, Kropf S, Jung B, Denecke T, Grothoff M, Gutberlet M. Quantitative normal values of helical flow, flow jets and wall shear stress of healthy volunteers in the ascending aorta. Eur Radiol 2022; 32:8597-8607. [PMID: 35612663 DOI: 10.1007/s00330-022-08866-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES 4D flow MRI enables quantitative assessment of helical flow. We sought to generate normal values and elucidate changes of helical flow (duration, volume, length, velocities and rotational direction) and flow jet (displacement, flow angle) as well as wall shear stress (WSS). METHODS We assessed the temporal helical existence (THEX), maximum helical volume (HVmax), accumulated helical volume (HVacc), accumulated helical volume length (HVLacc), maximum forward velocity (maxVfor), maximum circumferential velocity (maxVcirc), rotational direction (RD) and maximum wall shear stress (WSS) as reported elsewhere using the software tool Bloodline in 86 healthy volunteers (46 females, mean age 41 ± 13 years). RESULTS WSS decreased by 42.1% and maxVfor by 55.7% across age. There was no link between age and gender regarding the other parameters. CONCLUSION This study provides age-dependent normal values regarding WSS and maxVfor and age- and gender-independent normal values regarding THEX, HVmax, HVacc, HVLacc, RD and maxVcirc. KEY POINTS • 4D flow provides numerous new parameters; therefore, normal values are mandatory. • Wall shear stress decreases over age. • Maximum helical forward velocity decreases over age.
Collapse
Affiliation(s)
- Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany.
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - Alexander Kühn
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Abhinav Aggarwal
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
- Department of Radiology, Mata Chanan Devi Hospital of New Delhi, New Delhi, India
| | - Benjamin Köhler
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Benjamin Behrendt
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Robin Gohmann
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Boris Riekena
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Christian Lücke
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Juliane Ziegert
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Charlotte Vogtmann
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Bernhard Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Department for Biometry and Medical Informatics, University of Magdeburg, Magdeburg, Germany
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, University of Bern, Bern, Switzerland
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Matthias Grothoff
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Centre, Leipzig, Germany
| |
Collapse
|
32
|
Sotelo J, Franco P, Guala A, Dux-Santoy L, Ruiz-Muñoz A, Evangelista A, Mella H, Mura J, Hurtado DE, Rodríguez-Palomares JF, Uribe S. Fully Three-Dimensional Hemodynamic Characterization of Altered Blood Flow in Bicuspid Aortic Valve Patients With Respect to Aortic Dilatation: A Finite Element Approach. Front Cardiovasc Med 2022; 9:885338. [PMID: 35665243 PMCID: PMC9157575 DOI: 10.3389/fcvm.2022.885338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposePrognostic models based on cardiovascular hemodynamic parameters may bring new information for an early assessment of patients with bicuspid aortic valve (BAV), playing a key role in reducing the long-term risk of cardiovascular events. This work quantifies several three-dimensional hemodynamic parameters in different patients with BAV and ranks their relationships with aortic diameter.Materials and MethodsUsing 4D-flow CMR data of 74 patients with BAV (49 right-left and 25 right-non-coronary) and 48 healthy volunteers, aortic 3D maps of seventeen 17 different hemodynamic parameters were quantified along the thoracic aorta. Patients with BAV were divided into two morphotype categories, BAV-Non-AAoD (where we include 18 non-dilated patients and 7 root-dilated patients) and BAV-AAoD (where we include the 49 patients with dilatation of the ascending aorta). Differences between volunteers and patients were evaluated using MANOVA with Pillai's trace statistic, Mann–Whitney U test, ROC curves, and minimum redundancy maximum relevance algorithm. Spearman's correlation was used to correlate the dilation with each hemodynamic parameter.ResultsThe flow eccentricity, backward velocity, velocity angle, regurgitation fraction, circumferential wall shear stress, axial vorticity, and axial circulation allowed to discriminate between volunteers and patients with BAV, even in the absence of dilation. In patients with BAV, the diameter presented a strong correlation (> |+/−0.7|) with the forward velocity and velocity angle, and a good correlation (> |+/−0.5|) with regurgitation fraction, wall shear stress, wall shear stress axial, and vorticity, also for morphotypes and phenotypes, some of them are correlated with the diameter. The velocity angle proved to be an excellent biomarker in the differentiation between volunteers and patients with BAV, BAV morphotypes, and BAV phenotypes, with an area under the curve bigger than 0.90, and higher predictor important scores.ConclusionsThrough the application of a novel 3D quantification method, hemodynamic parameters related to flow direction, such as flow eccentricity, velocity angle, and regurgitation fraction, presented the best relationships with a local diameter and effectively differentiated patients with BAV from healthy volunteers.
Collapse
Affiliation(s)
- Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
| | - Pamela Franco
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Guala
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Lydia Dux-Santoy
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Aroa Ruiz-Muñoz
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Hernan Mella
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joaquín Mura
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Daniel E. Hurtado
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José F. Rodríguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, CIBER-CV, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
- Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Radiology, Schools of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Sergio Uribe
| |
Collapse
|
33
|
Circulating Monocyte Subsets and Transcatheter Aortic Valve Replacement. Int J Mol Sci 2022; 23:ijms23105303. [PMID: 35628113 PMCID: PMC9141814 DOI: 10.3390/ijms23105303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR), as an alternative to open heart surgery, has revolutionized the treatment of severe aortic valve stenosis (AVS), the most common valvular disorder in the elderly. AVS is now considered a form of atherosclerosis and, like the latter, partly of inflammatory origin. Patients with high-grade AVS have a highly disturbed blood flow associated with high levels of shear stress. The immediate reopening of the valve during TAVR leads to a sudden restoration of a normal blood flow hemodynamic. Despite its good prognosis for patients, TAVR remains associated with bleeding or thrombotic postprocedural complications, involving mechanisms that are still poorly understood. Many studies report the close link between blood coagulation and inflammation, termed thromboinflammation, including monocytes as a major actor. The TAVR procedure represents a unique opportunity to study the influence of shear stress on human monocytes, key mediators of inflammation and hemostasis processes. The purpose of this study was to conduct a review of the literature to provide a comprehensive overview of the impact of TAVR on monocyte phenotype and subset repartition and the association of these parameters with the clinical outcomes of patients with severe AVS who underwent TAVR.
Collapse
|
34
|
Hu P, Chen H, Wang LH, Jiang JB, Li JM, Tang MY, Guo YC, Zhu QF, Pu ZX, Lin XP, Ng S, Liu XB, Wang JA. Elevated N-terminal pro C-type natriuretic peptide is associated with mortality in patients undergoing transcatheter aortic valve replacement. BMC Cardiovasc Disord 2022; 22:164. [PMID: 35413789 PMCID: PMC9004019 DOI: 10.1186/s12872-022-02615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Unlike N-terminal pro-B-type natriuretic peptide (NT-proBNP), which have been extensively studied, little is known about the role of N-terminal pro-C-type natriuretic peptide (NT-proCNP) for predicting survival post transcatheter aortic valve replacement (TAVR). Methods A total of 309 patients were included in the analysis. Patients were grouped into quartiles (Q1–4) according to the baseline NT-proCNP value. Blood for NT-proCNP analysis was obtained prior to TAVR procedure. The primary endpoint was mortality after a median follow-up of 32 months. Multivariable Cox proportional hazards regression models analyzed prognostic factors. The predictive capability was compared between NT-proBNP and NT-proCNP using receiver operator curve (ROC) analysis. Results A total of 309 subjects with the mean age of 76.8 ± 6.3 years, among whom 58.6% were male, were included in the analysis. A total of 58 (18.8%) patients died during follow-up. Cox multivariable analyses indicated society of thoracic surgeons (STS)-score was a strong independent predictor for mortality (hazard ratio (HR) 1.08, 95% confidential interval (CI) 1.05–1.12, P < 0.001). Elevated NT-proCNP was associated with a higher risk of cardiovascular mortality (HR 1.02, 95% CI 1.00–1.03, P = 0.025) and All-cause mortality (HR 1.01, 95% CI 1.00–1.03, P = 0.027), whereas NT-proBNP showed a small effect size on mortality. ROC analysis indicated that NT-proCNP was superior to NT-proBNP for TAVR risk evaluation in patients with left ventricular ejection fraction (LVEF) < 50% [(Area under the curve (AUC)-values of 0.79 (0.69; 0.87) vs. 0.59 (0.48; 0.69), P = 0.0453]. Conclusions NT-proCNP and STS-Score were the independent prognostic factors of mortality among TAVR patients. Furthermore, NT-proCNP was superior to NT-proBNP for TAVR risk evaluation in patients with LVEF < 50%. Trial registration NCT02803294, 16/06/2016. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02615-8.
Collapse
Affiliation(s)
- Po Hu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Han Chen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Li-Han Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Ju-Bo Jiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jia-Min Li
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
| | - Meng-Yao Tang
- Renal Division, Brigham and Women's Hospital, Boston, MA, USA.,Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yu-Chao Guo
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Qi-Feng Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Zhao-Xia Pu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Department of Echocardiography, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Xin-Ping Lin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Department of Echocardiography, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Stella Ng
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
| | - Xian-Bao Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
| | - Jian-An Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
35
|
Trenti C, Ziegler M, Bjarnegård N, Ebbers T, Lindenberger M, Dyverfeldt P. Wall shear stress and relative residence time as potential risk factors for abdominal aortic aneurysms in males: a 4D flow cardiovascular magnetic resonance case-control study. J Cardiovasc Magn Reson 2022; 24:18. [PMID: 35303893 PMCID: PMC8932193 DOI: 10.1186/s12968-022-00848-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) can lead to catastrophic events such as dissection or rupture, and are an expression of general aortic disease. Low wall shear stress (WSS), high oscillatory shear index (OSI), and high relative residence time (RRT) have been correlated against increased uptake of inflammatory markers in the vessel wall and may improve risk stratification of AAA. We sought to obtain a comprehensive view of WSS, OSI, and RRT in the whole aorta for patients with AAA and age-matched elderly controls and young normal controls. METHODS 4D Flow cardiovascular magnetic resonance images of the whole aorta were acquired in 18 AAA patients (70.8 ± 3.4 years), 22 age-matched controls (71.4 ± 3.4 years), and 23 young subjects (23.3 ± 3.1 years), all males. Three-dimensional segmentations of the whole aorta were created for all timeframes using a semi-automatic approach. The aorta was divided into five segments: ascending aorta, arch, descending aorta, suprarenal and infrarenal abdominal aorta. For each segment, average values of peak WSS, OSI, and RRT were computed. Student's t-tests were used to compare values between the three cohorts (AAA patients vs elderly controls, and elderly controls vs young controls) where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. RESULTS AAA patients had lower peak WSS in the descending aorta as well as in the abdominal aorta compared to elderly controls (p ≤ 0.001), similar OSI, but higher RRT in the descending and abdominal aorta (p ≤ 0.001). Elderly controls had lower peak WSS compared to young controls throughout the aorta (p < 0.001), higher OSI in all segments except for the infrarenal aorta (p < 0.001), and higher RRT throughout the aorta, except the infrarenal aorta (p < 0.001). CONCLUSIONS This study provides novel insights into WSS, OSI, and RRT in patients with AAA in relation to normal ageing, highlighting how AAA patients have markedly abnormal hemodynamic stresses not only in the infrarenal, but in the entire aorta. Moreover, we identified RRT as a marker for abnormal AAA hemodynamics. Further investigations are needed to explore if RRT or other measures of hemodynamics stresses best predict AAA growth and/or rupture.
Collapse
Affiliation(s)
- Chiara Trenti
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Magnus Ziegler
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Niclas Bjarnegård
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Marcus Lindenberger
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
36
|
Govindarajan V, Kolanjiyil A, Johnson NP, Kim H, Chandran KB, McPherson DD. Improving transcatheter aortic valve interventional predictability via fluid-structure interaction modelling using patient-specific anatomy. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211694. [PMID: 35154799 PMCID: PMC8826300 DOI: 10.1098/rsos.211694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 05/03/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) is now a standard treatment for high-surgical-risk patients with severe aortic valve stenosis. TAVR is being explored for broader indications including degenerated bioprosthetic valves, bicuspid valves and for aortic valve (AV) insufficiency. It is, however, challenging to predict whether the chosen valve size, design or its orientation would produce the most-optimal haemodynamics in the patient. Here, we present a novel patient-specific evaluation framework to realistically predict the patient's AV performance with a high-fidelity fluid-structure interaction analysis that included the patient's left ventricle and ascending aorta (AAo). We retrospectively evaluated the pre- and post-TAVR dynamics of a patient who underwent a 23 mm TAVR and evaluated against the patient's virtually de-calcified AV serving as a hypothetical benchmark. Our model predictions were consistent with clinical data. Stenosed AV produced a turbulent flow during peak-systole, while aortic flow with TAVR and de-calcified AV were both in the laminar-to-turbulent transitional regime with an estimated fivefold reduction in viscous dissipation. For TAVR, dissipation was highest during early systole when valve deformation was the greatest, suggesting that an efficient valve opening may reduce energy loss. Our study demonstrates that such patient-specific modelling frameworks can be used to improve predictability and in the planning of AV interventions.
Collapse
Affiliation(s)
- Vijay Govindarajan
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
| | - Arun Kolanjiyil
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nils P Johnson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
| | - Hyunggun Kim
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
- Department of Bio-Mechatronic Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Korea
| | - Krishnan B Chandran
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - David D McPherson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
| |
Collapse
|
37
|
Ferdian E, Dubowitz DJ, Mauger CA, Wang A, Young AA. WSSNet: Aortic Wall Shear Stress Estimation Using Deep Learning on 4D Flow MRI. Front Cardiovasc Med 2022; 8:769927. [PMID: 35141290 PMCID: PMC8818720 DOI: 10.3389/fcvm.2021.769927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Wall shear stress (WSS) is an important contributor to vessel wall remodeling and atherosclerosis. However, image-based WSS estimation from 4D Flow MRI underestimates true WSS values, and the accuracy is dependent on spatial resolution, which is limited in 4D Flow MRI. To address this, we present a deep learning algorithm (WSSNet) to estimate WSS trained on aortic computational fluid dynamics (CFD) simulations. The 3D CFD velocity and coordinate point clouds were resampled into a 2D template of 48 × 93 points at two inward distances (randomly varied from 0.3 to 2.0 mm) from the vessel surface (“velocity sheets”). The algorithm was trained on 37 patient-specific geometries and velocity sheets. Results from 6 validation and test cases showed high accuracy against CFD WSS (mean absolute error 0.55 ± 0.60 Pa, relative error 4.34 ± 4.14%, 0.92 ± 0.05 Pearson correlation) and noisy synthetic 4D Flow MRI at 2.4 mm resolution (mean absolute error 0.99 ± 0.91 Pa, relative error 7.13 ± 6.27%, and 0.79 ± 0.10 Pearson correlation). Furthermore, the method was applied on in vivo 4D Flow MRI cases, effectively estimating WSS from standard clinical images. Compared with the existing parabolic fitting method, WSSNet estimates showed 2–3 × higher values, closer to CFD, and a Pearson correlation of 0.68 ± 0.12. This approach, considering both geometric and velocity information from the image, is capable of estimating spatiotemporal WSS with varying image resolution, and is more accurate than existing methods while still preserving the correct WSS pattern distribution.
Collapse
Affiliation(s)
- Edward Ferdian
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- *Correspondence: Edward Ferdian
| | - David J. Dubowitz
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Charlene A. Mauger
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King's College London, London, United Kingdom
- Alistair A. Young
| |
Collapse
|
38
|
Nishimura T, Sueyoshi E, Koike H, Uetani M. Initial experience with intensity distribution analysis of hemodynamic parameters in the thoracic aorta using four-dimensional magnetic resonance imaging: A comparison between groups with different ejection fractions. Medicine (Baltimore) 2022; 101:e28563. [PMID: 35029224 PMCID: PMC8757938 DOI: 10.1097/md.0000000000028563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to investigate whether there were significant differences in the intensity distributions of thoracic aorta hemodynamic parameters between groups with different ejection fractions (EF) using four-dimensional flow magnetic resonance imaging and to investigate the relationships between each parameter.A total of 26 patients, 13 each with EF of >60% and <30%, underwent cardiac four-dimensional flow magnetic resonance imaging (EF >60%: mean age: 54 ± 11.6 years, EF <30%: mean age: 49.2 ± 17.2 years). The thoracic aorta was divided into the proximal and distal ascending aorta (AAo), aortic arch, and the proximal and distal descending aorta, and each section was further divided into the anterior wall, posterior wall, lesser curvature, and greater curvature. The intensity distributions of wall shear stress (WSS), energy loss (EL), and vorticity (Vort) (hemodynamic parameters) and the concordance rates between these distributions were analyzed.The concordance rate between the intensity distributions of EL and Vort was high. Only the intensity distributions of EL and Vort in the distal AAo differed significantly between the groups (P < .001). In the EF >60% group, these intensity distributions showed higher values in the greater curvature of the AAo, whereas in the EF <30% group higher values were seen in the lesser curvature of the AAo.Although there was no significant intergroup difference in the WSS intensity distribution, in the EF <30% group the WSS intensity distribution tended to exhibit higher values in the lesser curvature of the distal AAo, and the WSS intensity distribution values for the greater curvature tended to gradually increase from the arch to the proximal descending aorta.The only significant differences between the EF groups were found in the intensity distributions of EL and Vort in the distal AAo. This suggests that the distributions of atherosclerosis may be EF-dependent.
Collapse
|
39
|
Geeraert P, Jamalidinan F, Burns F, Jarvis K, Bristow MS, Lydell C, Hidalgo Tobon SS, de Celis Alonso B, Fedak PWM, White JA, Garcia J. Hemodynamic Assessment in Bicuspid Aortic Valve Disease and Aortic Dilation: New Insights From Voxel-By-Voxel Analysis of Reverse Flow, Stasis, and Energetics. Front Bioeng Biotechnol 2022; 9:725113. [PMID: 35096784 PMCID: PMC8793887 DOI: 10.3389/fbioe.2021.725113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023] Open
Abstract
Objectives: Clinical management decisions surrounding ascending aorta (AAo) dilation in bicuspid aortic valve (BAV) disease benefit from personalized predictive tools. 4D-flow MRI may provide patient-specific markers reflective of BAV-associated aortopathy. This study aims to explore novel 4D-flow MRI parametric voxel-by-voxel forward flow, reverse flow, kinetic energy and stasis in BAV disease. We hypothesize that novel parametric voxel-by-voxel markers will be associated with aortic dilation and referral for surgery and can enhance our understanding of BAV hemodynamics beyond standard metrics. Methods: A total of 96 subjects (73 BAV patients, 23 healthy controls) underwent MRI scan. Healthy controls had no known cardiovascular disease. Patients were clinically referred for AAo dilation assessment. Indexed diameters were obtained by dividing the aortic diameter by the patient’s body surface area. Patients were followed for the occurrence of aortic surgery. 4D-flow analysis was performed by a single observer in five regions: left ventricular outflow tract (LVOT), AAo, arch, proximal descending aorta (PDAo), and distal descending aorta (DDAo). In each region peak velocity, kinetic energy (KE), forward flow (FF), reverse flow (RF), and stasis were measured on a voxel-by-voxel basis. T-tests (or non-parametric equivalent) compared flow parameters between cohorts. Univariate and multivariate analyses explored associations between diameter and parametric voxel-by-voxel parameters. Results: Compared to controls, BAV patients showed reduced stasis (p < 0.01) and increased RF and FF (p < 0.01) throughout the aorta, and KE remained similar. In the AAo, indexed diameter correlated with age (R = 0.326, p = 0.01), FF (R = −0.648, p < 0.001), RF (R = −0.441, p < 0.001), and stasis (R = −0.288, p < 0.05). In multivariate analysis, FF showed a significant inverse association with AAo indexed diameter, independent of age. During a median 179 ± 180 days of follow-up, 23 patients (32%) required aortic surgery. Compared to patients not requiring surgery, they showed increased KE and peak velocity in the proximal aorta (p < 0.01), accompanied by increased RF and reduced stasis throughout the entire aorta (p < 0.01). Conclusion: Novel voxel-by-voxel reverse flow and stasis were altered in BAV patients and are associated with aortic dilation and surgical treatment.
Collapse
Affiliation(s)
- Patrick Geeraert
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Fatemehsadat Jamalidinan
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Fiona Burns
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Kelly Jarvis
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Michael S. Bristow
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Carmen Lydell
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | | | - Benito de Celis Alonso
- Faculty of Mathematical and Physical Sciences, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Paul W. M. Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - James A. White
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Julio Garcia
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Julio Garcia,
| |
Collapse
|
40
|
Minderhoud SCS, Roos-Hesselink JW, Chelu RG, Bons LR, van den Hoven AT, Korteland SA, van den Bosch AE, Budde RPJ, Wentzel JJ, Hirsch A. Wall shear stress angle is associated with aortic growth in bicuspid aortic valve patients. Eur Heart J Cardiovasc Imaging 2022; 23:1680-1689. [PMID: 34977931 DOI: 10.1093/ehjci/jeab290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/18/2021] [Indexed: 02/01/2023] Open
Abstract
AIMS Aortic wall shear stress (WSS) distributions in bicuspid aortic valve (BAV) patients have been associated with aortic dilatation, but prospective, longitudinal data are missing. This study assessed differences in aortic WSS distributions between BAV patients and healthy controls and determined the association of WSS with aortic growth in patients. METHODS AND RESULTS Sixty subjects underwent four-dimensional (4D) flow cardiovascular magnetic resonance of the thoracic aorta (32 BAV patients and 28 healthy controls). Peak velocity, pulse wave velocity, aortic distensibility, peak systolic WSS (magnitude, axial, and circumferential), and WSS angle were assessed. WSS angle is defined as the angle between the WSSmagnitude and WSSaxial component. In BAV patients, three-year computed tomography angiography-based aortic volumetric growth was determined in the proximal and entire ascending aorta. WSSaxial was significantly lower in BAV patients compared with controls (0.93 vs. 0.72 Pa, P = 0.047) and WSScircumferential and WSS angle were significantly higher (0.29 vs. 0.64 Pa and 18° vs. 40°, both P < 0.001). Significant volumetric growth of the proximal ascending aorta occurred in BAV patients (from 49.1 to 52.5 cm3, P = 0.003). In multivariable analysis corrected for baseline aortic volume and diastolic blood pressure, WSS angle was the only parameter independently associated with proximal aortic growth (P = 0.031). In the entire ascending aorta, besides the WSS angle, the WSSmagnitude was also independently associated with growth. CONCLUSION Increased WSScircumferential and especially WSS angle are typical in BAV patients. WSS angle was found to predict aortic growth. These findings highlight the potential role of WSS measurements in BAV patients to stratify patients at risk for aortic dilation.
Collapse
Affiliation(s)
- Savine C S Minderhoud
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Raluca G Chelu
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lidia R Bons
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Allard T van den Hoven
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
41
|
Desai L, Stefek H, Berhane H, Robinson J, Rigsby C, Markl M. Four-Dimensional flow Magnetic Resonance Imaging for Assessment of Pediatric Coarctation of the Aorta. J Magn Reson Imaging 2022; 55:200-208. [PMID: 34173693 PMCID: PMC9084555 DOI: 10.1002/jmri.27802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Coarctation of the aorta (CoA) typically requires repair, but re-interventions and vascular complications occur, particularly with associated defects like bicuspid aortic valve (BAV). Magnetic resonance imaging (MRI) may identify anatomic and hemodynamic factors contributing to clinical complications. PURPOSE To investigate 4D flow MRI characteristics in pediatric CoA to determine parameters for long-term clinical surveillance. STUDY TYPE Retrospective. POPULATION CoA (n = 21), CoA with BAV (n = 24), BAV alone (n = 29), and healthy control (n = 25). FIELD STRENGTH/SEQUENCE A 1.5 T, 3D CE IR FLASH MRA, 4D flow MRI using 3D time resolved PC-MRI with velocity encoding. ASSESSMENT Thoracic aorta diameters were measured from 3D CE-MRA. Peak systolic velocities and wall shear stress were calculated and flow patterns were visualized throughout the thoracic aorta using 4D flow. Repair characteristics, re-interventions, and need for anti-hypertensive medications were recorded. STATISTICS Descriptive statistics, ANOVA with post hoc t-testing and Bonferroni correction, Kruskal-Wallis H, intraclass correlation coefficient, Fleiss' kappa. RESULTS Patients with CoA with or without repair had smaller transverse arch diameters compared to BAV alone and control cohorts (P < 0.05), higher peak systolic flow velocities and wall shear stress compared to controls in the transverse arch and descending aorta (P < 0.05), and flow derangements in the descending aorta. The most common CoA repairs were extended end-to-end anastomosis (n = 22/45, 48.9%, age at repair 1 ± 2 years, seven re-interventions) and stent/interposition graft placement (n = 10/45, 22.2%, age at repair 12 ± 3 years, one re-intervention). Anti-hypertensive medications were prescribed to 33.3% (n = 15/45) of CoA and 34.4% of BAV alone patients (n = 10/29). DATA CONCLUSIONS Despite repair, CoA alters hemodynamics and flow patterns in the transverse arch and descending aorta. These findings may contribute to vascular remodeling and secondary complications. 4D flow MRI may be valuable in risk stratification, treatment selection and postintervention assessment. Long-term, prospective studies are warranted to correlate patient and MRI factors with clinical outcomes. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Lajja Desai
- Ann and Robert H. Lurie Children’s Hospital of
Chicago, Chicago, Illinois, USA,Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| | | | - Haben Berhane
- Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| | - Joshua Robinson
- Ann and Robert H. Lurie Children’s Hospital of
Chicago, Chicago, Illinois, USA,Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| | - Cynthia Rigsby
- Ann and Robert H. Lurie Children’s Hospital of
Chicago, Chicago, Illinois, USA
| | - Michael Markl
- Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| |
Collapse
|
42
|
Multiparametric MRI identifies subtle adaptations for demarcation of disease transition in murine aortic valve stenosis. Basic Res Cardiol 2022; 117:29. [PMID: 35643805 PMCID: PMC9148878 DOI: 10.1007/s00395-022-00936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023]
Abstract
Aortic valve stenosis (AS) is the most frequent valve disease with relevant prognostic impact. Experimental model systems for AS are scarce and comprehensive imaging techniques to simultaneously quantify function and morphology in disease progression are lacking. Therefore, we refined an acute murine AS model to closely mimic human disease characteristics and developed a high-resolution magnetic resonance imaging (MRI) approach for simultaneous in-depth analysis of valvular, myocardial as well as aortic morphology/pathophysiology to identify early changes in tissue texture and critical transition points in the adaptive process to AS. AS was induced by wire injury of the aortic valve. Four weeks after surgery, cine loops, velocity, and relaxometry maps were acquired at 9.4 T to monitor structural/functional alterations in valve, aorta, and left ventricle (LV). In vivo MRI data were subsequently validated by histology and compared to echocardiography. AS mice exhibited impaired valve opening accompanied by significant valve thickening due to fibrotic remodelling. While control mice showed bell-shaped flow profiles, AS resulted not only in higher peak flow velocities, but also in fragmented turbulent flow patterns associated with enhanced circumferential strain and an increase in wall thickness of the aortic root. AS mice presented with a mild hypertrophy but unaffected global LV function. Cardiac MR relaxometry revealed reduced values for both T1 and T2 in AS reflecting subtle myocardial tissue remodelling with early alterations in mitochondrial function in response to the enhanced afterload. Concomitantly, incipient impairments of coronary flow reserve and myocardial tissue integrity get apparent accompanied by early troponin release. With this, we identified a premature transition point with still compensated cardiac function but beginning textural changes. This will allow interventional studies to explore early disease pathophysiology and novel therapeutic targets.
Collapse
|
43
|
Balint B, Kollmann C, Gauer S, Federspiel JM, Schäfers HJ. Endothelial nitric oxide synthase alterations are independent of turbulence in the aorta of patients with a unicuspid aortic valve. JTCVS OPEN 2021; 8:157-169. [PMID: 36004114 PMCID: PMC9390404 DOI: 10.1016/j.xjon.2021.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/16/2021] [Indexed: 10/26/2022]
|
44
|
Hälvä R, Vaara SM, Peltonen JI, Kaasalainen TT, Holmström M, Lommi J, Suihko S, Rajala H, Kylmälä M, Kivistö S, Syväranta S. Peak flow measurements in patients with severe aortic stenosis: a prospective comparative study between cardiovascular magnetic resonance 2D and 4D flow and transthoracic echocardiography. J Cardiovasc Magn Reson 2021; 23:132. [PMID: 34775954 PMCID: PMC8591846 DOI: 10.1186/s12968-021-00825-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aortic valve stenosis (AS) is the most prevalent valvular disease in the developed countries. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is an emerging imaging technique, which has been suggested to improve the evaluation of AS severity compared to two-dimensional (2D) flow and transthoracic echocardiography (TTE). We investigated the reliability of CMR 2D flow and 4D flow techniques in measuring aortic transvalvular peak systolic flow in patients with severe AS. METHODS We prospectively recruited 90 patients referred for aortic valve replacement due to severe AS (73.3 ± 11.3 years, aortic valve area 0.7 ± 0.1 cm2, and 54/36 tricuspid/bicuspid), and 10 non-valvular disease controls. All the patients underwent echocardiography and 2D flow and 4D flow CMR. Peak flow velocity measurements were compared using Wilcoxon signed rank sum test and Bland-Altman analysis. RESULTS 4D flow underestimated peak flow velocity in the AS group when compared with TTE (bias - 1.1 m/s, limits of agreement ± 1.4 m/s) and 2D flow (bias - 1.2 m/s, limits of agreement ± 1.6 m/s). The differences between values obtained by TTE (median 4.3 m/s, range 2.7-6.1 m/s) and 2D flow (median 4.5 m/s, range 2.9-6.5 m/s) compared to 4D flow (median 3.1 m/s, range 1.7-5.1 m/s) were significant (p < 0.001). The difference between 2D flow and TTE were insignificant (bias 0.07 m/s, limits of agreement ± 1.5 m/s). In non-valvular disease controls, peak flow velocity was measured higher by 4D flow than 2D flow (1.4 m/s, 1.1-1.7 m/s and 1.3 m/s, 1.1-1.5 m/s, respectively; bias 0.2 m/s, limits of agreement ± 0.16 m/s). CONCLUSIONS CMR 4D flow significantly underestimates systolic peak flow velocity in patients with severe AS. 2D flow, in turn, estimated the AS velocity accurately, with measured peak flow velocities comparable to TTE.
Collapse
Affiliation(s)
- Reetta Hälvä
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu M. Vaara
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha I. Peltonen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Touko T. Kaasalainen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miia Holmström
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jyri Lommi
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Suihko
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Helena Rajala
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Kylmälä
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Kivistö
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suvi Syväranta
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
45
|
Vogl BJ, Niemi NR, Griffiths LG, Alkhouli MA, Hatoum H. Impact of calcific aortic valve disease on valve mechanics. Biomech Model Mechanobiol 2021; 21:55-77. [PMID: 34687365 DOI: 10.1007/s10237-021-01527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The aortic valve is a highly dynamic structure characterized by a transvalvular flow that is unsteady, pulsatile, and characterized by episodes of forward and reverse flow patterns. Calcific aortic valve disease (CAVD) resulting in compromised valve function and increased pressure overload on the ventricle potentially leading to heart failure if untreated, is the most predominant valve disease. CAVD is a multi-factorial disease involving molecular, tissue and mechanical interactions. In this review, we aim at recapitulating the biomechanical loads on the aortic valve, summarizing the current and most recent research in the field in vitro, in-silico, and in vivo, and offering a clinical perspective on current strategies adopted to mitigate or approach CAVD.
Collapse
Affiliation(s)
- Brennan J Vogl
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Nicholas R Niemi
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hoda Hatoum
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA. .,Health Research Institute, Michigan Technological University, Houghton, MI, USA. .,Center of Biocomputing and Digital Health, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
46
|
Tanaka S, Imamura T, Ushijima R, Sobajima M, Fukuda N, Ueno H, Hirai T, Kinugawa K. Improvement in Vascular Endothelial Function following Transcatheter Aortic Valve Implantation. MEDICINA-LITHUANIA 2021; 57:medicina57101008. [PMID: 34684045 PMCID: PMC8539962 DOI: 10.3390/medicina57101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Background and objectives: Endothelial dysfunction is associated with exercise intolerance and adverse cardiovascular events. Transcatheter aortic valve implantation (TAVI) is applied to treat elderly patients with severe aortic stenosis, but less is known about the impact of TAVI on endothelial dysfunction, which can be assessed by measuring flow-mediated vasodilation (FMD). In this parameter, a low value indicates impaired endothelial function. Materials and Methods: Vascular endothelial function was evaluated by FMD of the brachial artery just before and one week after TAVI. Factors associated with the normalization of FMD and their prognostic impact were investigated. Results: Fifty-one patients who underwent TAVI procedure (median 86 years old, 12 men) were included. FMD improved significantly from baseline to one week following TAVI (from 5.3% [3.7%, 6.7%] to 6.3% [4.7%, 8.1%], p < 0.001). Among 33 patients with baseline low FMD (≤6.0%), FMD normalized up to >6.0% following TAVI in 15 patients. Baseline higher cardiac index was independently associated with normalization of FMD following TAVI (odds ratio 11.8, 95% confidence interval 1.12–124; p < 0.04). Conclusions: Endothelial dysfunction improved following TAVI in many patients with severe aortic stenosis. The implication of this finding is the next concern.
Collapse
Affiliation(s)
- Shuhei Tanaka
- Second Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan; (S.T.); (R.U.); (M.S.); (N.F.); (H.U.); (K.K.)
| | - Teruhiko Imamura
- Second Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan; (S.T.); (R.U.); (M.S.); (N.F.); (H.U.); (K.K.)
- Correspondence: ; Tel.: +81-76-434-7297
| | - Ryuichi Ushijima
- Second Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan; (S.T.); (R.U.); (M.S.); (N.F.); (H.U.); (K.K.)
| | - Mitsuo Sobajima
- Second Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan; (S.T.); (R.U.); (M.S.); (N.F.); (H.U.); (K.K.)
| | - Nobuyuki Fukuda
- Second Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan; (S.T.); (R.U.); (M.S.); (N.F.); (H.U.); (K.K.)
| | - Hiroshi Ueno
- Second Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan; (S.T.); (R.U.); (M.S.); (N.F.); (H.U.); (K.K.)
| | | | - Koichiro Kinugawa
- Second Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan; (S.T.); (R.U.); (M.S.); (N.F.); (H.U.); (K.K.)
| |
Collapse
|
47
|
Gao Q, Liu X, Wang H, Wu P, Jin M, Wei R, Wang W, Niu Z, Zhao S, Li F. Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing. Med Biol Eng Comput 2021; 59:2237-2252. [PMID: 34528164 DOI: 10.1007/s11517-021-02417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Divergence-free smoothing with wall treatment (DFSwt) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFSwt method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFSwt. The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions.
Collapse
Affiliation(s)
- Qi Gao
- School of Aeronautics and Astronautics, Zhejiang University, Yuquan Campus, 38 Zheda Road, Xihu District, Hangzhou, 310027, China.
| | - Xingli Liu
- Hangzhou Shengshi Technology Co., Ltd., Hangzhou, China
| | - Hongping Wang
- The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Peng Wu
- Artificial Organ Technology Lab, Bio-manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Mansu Jin
- Hangzhou Shengshi Technology Co., Ltd., Hangzhou, China
| | - RunJie Wei
- Hangzhou Shengshi Technology Co., Ltd., Hangzhou, China
| | - Wei Wang
- Department of Structural Heart Disease, Chinese Academy of Medical Sciences & Fuwai Hospital; State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, 167 Beilishi Road, Xicheng District, 100037, Beijing, China
| | - Zhaozhuo Niu
- Cardiac Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Chinese Academy of Medical Sciences & Fuwai Hospital, Peking Union Medical College, 167 Beilishi Road, Xicheng District, 100037, Beijing, China.
| | - Fei Li
- Department of Structural Heart Disease, Chinese Academy of Medical Sciences & Fuwai Hospital; State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, 167 Beilishi Road, Xicheng District, 100037, Beijing, China. .,Department of Cardiac Surgery, Peking University First Hospital, Beijing, China.
| |
Collapse
|
48
|
Haunschild J, Barnard SJ, Misfeld M, Saeed D, Davierwala P, Leontyev S, Mende M, Borger MA, Etz CD. Proximal aortic aneurysms: correlation of maximum aortic diameter and aortic wall thickness. Eur J Cardiothorac Surg 2021; 60:322-330. [PMID: 33822923 DOI: 10.1093/ejcts/ezab147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES The goal of therapy of proximal aortic aneurysms is to prevent an aortic catastrophe, e.g. acute dissection or rupture. The decision to intervene is currently based on maximum aortic diameter complemented by known risk factors like bicuspid aortic valve, positive family history or rapid growth rate. When applying Laplace's law, wall tension is determined by pressure × radius divided by aortic wall thickness. Because current imaging modalities lack precision, wall thickness is currently neglected. The purpose of our study was therefore to correlate maximum aortic diameter with aortic wall thickness and known indices for adverse aortic events. METHODS Aortic samples from 292 patients were collected during cardiac surgery, of whom 158 presented with a bicuspid aortic valve and 134, with a tricuspid aortic valve. Aortic specimens were obtained during the operation and stored in 4% formaldehyde. Histological staining and analysis were performed to determine the thickness of the aortic wall. RESULTS Patients were 62 ± 13 years old at the time of the operation; 77% were men. The mean aortic dimensions were 44 mm, 41 mm and 51 mm at the aortic root, sinotubular junction and ascending aorta, respectively. Aortic valve stenosis was the most frequent (49%) valvular dysfunction, followed by aortic valve regurgitation (33%) and combined dysfunction (10%). The maximum aortic diameter at the ascending level did not correlate with the thickness of the media (R = 0.07) or the intima (R = 0.28) at the convex sample site. There was also no correlation of the ascending aortic diameter with age (R = -0.18) or body surface area (R = 0.07). The thickness of the intima (r = 0.31) and the media (R = 0.035) did not correlate with the Svensson index of aortic risk. Similarly, there was a low (R = 0.29) or absent (R = -0.04) correlation between the aortic size index and the intima or media thickness, respectively. There was a similar relationship of median thickness of the intima in the 4 aortic height index risk categories (P < 0.001). CONCLUSIONS Aortic diameter and conventional indices of aortic risk do not correlate with aortic wall thickness. Other indices may be required in order to identify patients at high risk for aortic complications.
Collapse
Affiliation(s)
- Josephina Haunschild
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany.,Saxonian Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany
| | - Sarah Jane Barnard
- Saxonian Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany
| | - Martin Misfeld
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany.,Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,The Discipline of Medicine, The Central Clinical School, The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diyar Saeed
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Piroze Davierwala
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Sergey Leontyev
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Meinhard Mende
- Centre for Clinical Trials, University of Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Michael A Borger
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Christian D Etz
- University Department for Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany.,Saxonian Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany
| |
Collapse
|
49
|
Michelena HI, Corte AD, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkaar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Radiol Cardiothorac Imaging 2021; 3:e200496. [PMID: 34505060 DOI: 10.1148/ryct.2021200496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes. © 2021 Jointly between the RSNA, the European Association for Cardio-Thoracic Surgery, The Society of Thoracic Surgeons, and the American Association for Thoracic Surgery. The articles are identical except for minor stylistic and spelling differences in keeping with each journal's style. All rights reserved. Keywords: Bicuspid Aortic Valve, Aortopathy, Nomenclature, Classification.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Borja Fernández
- Departamento de Biologia Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, GA, USA
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raj Makkaar
- Cedars Sinai Heart Institute, Los Angeles, CA, USA
| | - Martin B Leon
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael Markl
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, CT, USA
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, PA, USA
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A&M School of Medicine, Dallas Campus, Dallas, TX, USA
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, BC, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Lars G Svensson
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gebrine El Khoury
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
50
|
Michelena HI, Della Corte A, Evangelista A, Maleszewski JJ, Edwards WD, Roman MJ, Devereux RB, Fernández B, Asch FM, Barker AJ, Sierra-Galan LM, De Kerchove L, Fernandes SM, Fedak PWM, Girdauskas E, Delgado V, Abbara S, Lansac E, Prakash SK, Bissell MM, Popescu BA, Hope MD, Sitges M, Thourani VH, Pibarot P, Chandrasekaran K, Lancellotti P, Borger MA, Forrest JK, Webb J, Milewicz DM, Makkar R, Leon MB, Sanders SP, Markl M, Ferrari VA, Roberts WC, Song JK, Blanke P, White CS, Siu S, Svensson LG, Braverman AC, Bavaria J, Sundt TM, El Khoury G, De Paulis R, Enriquez-Sarano M, Bax JJ, Otto CM, Schäfers HJ. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. J Thorac Cardiovasc Surg 2021; 162:e383-e414. [PMID: 34304896 DOI: 10.1016/j.jtcvs.2021.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
Collapse
Affiliation(s)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Arturo Evangelista
- Department of Cardiology, Hospital Vall d'Hebron, Vall d'Hebron Research Institute (VHIR) Ciber-CV, Barcelona, Spain
| | | | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, NY
| | | | - Borja Fernández
- Departamento de Biologia Animal, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Ciber-CV, Málaga, Spain
| | | | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colo
| | - Lilia M Sierra-Galan
- Cardiovascular Division, American British Cowdray Medical Center, Mexico City, Mexico
| | - Laurent De Kerchove
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Susan M Fernandes
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Palo Alto, Calif; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suhny Abbara
- Cardiothoracic Imaging Division, Department of Radiology, UT Southwestern Medical Center, Dallas, Tex
| | - Emmanuel Lansac
- Department of Cardiac Surgery, Institute Mutualiste Montsouris, Paris, France
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute to Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Michael D Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERCV, ISCIII (CB16/11/00354), CERCA Programme, Barcelona, Spain
| | - Vinod H Thourani
- Department of Cardiovascular Surgery, Marcus Valve Center, Piedmont Heart Institute, Atlanta, Ga
| | - Phillippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute, Laval University Québec, Québec, Canada
| | | | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium; Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Michael A Borger
- University Clinic of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - John K Forrest
- Yale University School of Medicine & Yale New Haven Hospital, New Haven, Conn
| | - John Webb
- St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Tex
| | - Raj Makkar
- Cedars Sinai Heart Institute, Los Angeles, Calif
| | - Martin B Leon
- Division of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, NY
| | - Stephen P Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Victor A Ferrari
- Cardiovascular Medicine Division, University of Pennsylvania Medical Center and Penn Cardiovascular Institute, Philadelphia, Pa
| | - William C Roberts
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Texas A& M School of Medicine, Dallas Campus, Dallas, Tex
| | - Jae-Kwan Song
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Philipp Blanke
- Department of Radiology, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Charles S White
- Department of Radiology, University of Maryland School of Medicine, Baltimore, Md
| | - Samuel Siu
- Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Lars G Svensson
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alan C Braverman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Joseph Bavaria
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Mass
| | - Gebrine El Khoury
- Division of Cardiothoracic and Vascular Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital and Unicamillus University Rome, Rome, Italy
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|