1
|
Rzepka MF, Raschzok S, Lee XA, Yazaki K, Dauz J, Sun M, Meister T, Nghiem L, Kabir G, Desjardins JF, Kuebler WM, Kapus A, Connelly KA, Friedberg MK. Inhibition of Myocardin-related Transcription Factor A Ameliorates Pathological Remodeling of the Pressure-loaded Right Ventricle. Am J Respir Cell Mol Biol 2025; 72:158-168. [PMID: 39163574 DOI: 10.1165/rcmb.2023-0465oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024] Open
Abstract
Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions in which RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor-β1 signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. In this study, we investigated whether MRTF-A inhibition improves RV profibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure loading. Rats were assigned into either sham or PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75 mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6 weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and profibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, whereas diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of Yes-associated protein (YAP) and its paralog transcriptional coactivator with PDZ-binding motif (TAZ). We also confirmed, using a second-generation MRTF-A inhibitor CCG-203971, that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to transforming growth factor-β1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of profibrotic signaling in RV pressure loading and as potential targets to improve RV profibrotic remodeling.
Collapse
MESH Headings
- Animals
- Trans-Activators/metabolism
- Male
- Ventricular Remodeling/drug effects
- Fibrosis
- YAP-Signaling Proteins/metabolism
- Rats, Sprague-Dawley
- rhoA GTP-Binding Protein/metabolism
- Acyltransferases
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/pathology
- Transcription Factors/metabolism
- Rats
- Transforming Growth Factor beta1/metabolism
- Signal Transduction/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Ventricular Function, Right/drug effects
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Myofibroblasts/drug effects
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/drug therapy
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Anilides
- Benzamides
- rho GTP-Binding Proteins
Collapse
Affiliation(s)
- Mark F Rzepka
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Sonja Raschzok
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Xavier A Lee
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kana Yazaki
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - John Dauz
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Theo Meister
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Linda Nghiem
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, St. Michael's Hospital and the University of Toronto, Toronto, Ontario, Canada; and
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andras Kapus
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, St. Michael's Hospital and the University of Toronto, Toronto, Ontario, Canada; and
| | - Kim A Connelly
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hayashi Y, Kim S, Fujii T, Pedersen DD, Ozeki T, Jiang H, D’Amore A, Wagner WR. Placement of an elastic, biohybrid patch in a model of right heart failure with pulmonary artery banding. Front Bioeng Biotechnol 2025; 12:1485740. [PMID: 39902173 PMCID: PMC11788599 DOI: 10.3389/fbioe.2024.1485740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction In a model of right heart failure secondary to pulmonary artery banding (PAB), a mechanical approach using an elastic, biodegradable epicardial patch with integrated extracellular matrix digest was evaluated for its potential to inhibit disease progression. Methods Adult male syngeneic Lewis rats aged 6-7 weeks old were used. Biohybrid cardiac patches were generated by co-processing biodegradable poly(ester carbonate urethane) urea (PECUU) and a digest of the porcine cardiac extracellular matrix. Three weeks after PAB, the cardiac patch was attached to the epicardium of the right ventricle (RV). Cardiac function was evaluated using echocardiography and catheterization for 9 weeks after PAB, comparing the patch (n = 7) and sham (n = 10) groups. Results Nine weeks after PAB, the RV wall was thickened, the RV cavity was enlarged with a reduced left ventricular cavity, and RV wall interstitial fibrosis was increased. However, these effects were diminished in the patch group. Left ventricular ejection fraction in the patch group was higher than in the sham group (p < 0.001), right end-systolic pressure was lower (p = 0.045), and tricuspid annular plane systolic excursion improved in the patch group (p = 0.007). In addition, von Willebrand factor expression was significantly greater in the patch group (p = 0.007). Conclusions The placement of a degradable, biohybrid patch onto the RV in a right ventricular failure model with fixed afterload improved myocardial output, moderated pressure stress, and was associated with reduced right ventricular fibrosis.
Collapse
Affiliation(s)
- Yasunari Hayashi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, United States
| | - Taro Fujii
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Drake Dalton Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Takahiro Ozeki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongbin Jiang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Fondazione RiMED, Palermo, Italy
- Medicina di Precisione in Area Medica, Chirurgica e Critica, University of Palermo, Palermo, Italy
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Xu Y, Zhou Q, Luan J, Hou J. Recoverability of zebrafish from decabromodiphenyl ether exposure: The persisted interference with extracellular matrix production and collagen synthesis and the enhancement of arrhythmias. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176349. [PMID: 39299332 DOI: 10.1016/j.scitotenv.2024.176349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
As a widely used brominated flame retardant, the widespread presence of decabromodiphenyl ether (BDE-209) in the natural environment and the toxicity risks it poses are well established, but the recoverability of BDE-209-induced individual injuries remains unknown. Therefore, a 7-day depuration experiment following a 4-day exposure of zebrafish to BDE-209 was conducted to confirm the recoverability and its mode of action. Oxidative stress after depuration was significantly reduced compared with BDE-209 exposure as indicated by the decreased expression level of oxidative stress-related genes and the reduced MDA, Gpx, and GST in zebrafish, indicating a gradual recovery of antioxidant activity. However, BDE-209 inhibition of extracellular matrix (ECM) proteins worsened after depuration. Mechanistically, BDE-209 mediated ECM production and secretion by down-regulating integrin expression. Furthermore, BDE-209 inhibition of collagen synthesis worsened after depuration. Biochemical assays and histopathological observations revealed a same result in zebrafish. Mechanistically, lysine hydroxylation is inhibited thereby affecting collagen synthesis. Interestingly, zebrafish showed arrhythmia after depuration compared to BDE-209 exposure, and abnormal changes in ATPase levels indicated that disturbances in Ca2+ homeostasis contributed to arrhythmia. Collectively, BDE-209-induced interference with ECM production and collagen synthesis persisted after depuration, which will provide new insights for understanding the recovery patterns of individuals under BDE-209 stress.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qi Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jian Luan
- College of Life Sciences, Jilin Normal University, Jilin 136000, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
4
|
Silva J, Azevedo T, Ginja M, Oliveira PA, Duarte JA, Faustino-Rocha AI. Realistic Aspects of Cardiac Ultrasound in Rats: Practical Tips for Improved Examination. J Imaging 2024; 10:219. [PMID: 39330439 PMCID: PMC11433567 DOI: 10.3390/jimaging10090219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Echocardiography is a reliable and non-invasive method for assessing cardiac structure and function in both clinical and experimental settings, offering valuable insights into disease progression and treatment efficacy. The successful application of echocardiography in murine models of disease has enabled the evaluation of disease severity, drug testing, and continuous monitoring of cardiac function in these animals. However, there is insufficient standardization of echocardiographic measurements for smaller animals. This article aims to address this gap by providing a guide and practical tips for the appropriate acquisition and analysis of echocardiographic parameters in adult rats, which may also be applicable in other small rodents used for scientific purposes, like mice. With advancements in technology, such as ultrahigh-frequency ultrasonic transducers, echocardiography has become a highly sophisticated imaging modality, offering high temporal and spatial resolution imaging, thereby allowing for real-time monitoring of cardiac function throughout the lifespan of small animals. Moreover, it allows the assessment of cardiac complications associated with aging, cancer, diabetes, and obesity, as well as the monitoring of cardiotoxicity induced by therapeutic interventions in preclinical models, providing important information for translational research. Finally, this paper discusses the future directions of cardiac preclinical ultrasound, highlighting the need for continued standardization to advance research and improve clinical outcomes to facilitate early disease detection and the translation of findings into clinical practice.
Collapse
Affiliation(s)
- Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mário Ginja
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Alberto Duarte
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory (1H-TOXRUN), University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7004-516 Évora, Portugal
| |
Collapse
|
5
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
7
|
Connelly KA, Wu E, Visram A, Friedberg MK, Batchu SN, Yerra VG, Thai K, Nghiem L, Zhang Y, Kabir G, Desjardins JF, Advani A, Gilbert RE. The SGLT2i Dapagliflozin Reduces RV Mass Independent of Changes in RV Pressure Induced by Pulmonary Artery Banding. Cardiovasc Drugs Ther 2024; 38:57-68. [PMID: 36173474 DOI: 10.1007/s10557-022-07377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class is efficacious in the treatment and prevention of right heart failure has not been explored. HYPOTHESIS We hypothesized that SGLT2 inhibition would reduce the structural, functional, and molecular responses to pressure overload of the right ventricle. METHODS Thirteen-week-old Fischer F344 rats underwent pulmonary artery banding (PAB) or sham surgery prior to being randomized to receive either the SGLT2 inhibitor: dapagliflozin (0.5 mg/kg/day) or vehicle by oral gavage. After 6 weeks of treatment, animals underwent transthoracic echocardiography and invasive hemodynamic studies. Animals were then terminated, and their hearts harvested for structural and molecular analyses. RESULTS PAB induced features consistent with a compensatory response to increased right ventricular (RV) afterload with elevated mass, end systolic pressure, collagen content, and alteration in calcium handling protein expression (all p < 0.05 when compared to sham + vehicle). Dapagliflozin reduced RV mass, including both wet and dry weight as well as normalizing the protein expression of SERCA 2A, phospho-AMPK and LC3I/II ratio expression (all p < 0.05). SIGNIFICANCE Dapagliflozin reduces the structural, functional, and molecular manifestations of right ventricular pressure overload. Whether amelioration of these early changes in the RV may ultimately lead to a reduction in RV failure remains to be determined.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| | - Ellen Wu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Aylin Visram
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, ON, Canada
- Physiology and Experimental Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Veera Ganesh Yerra
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Kerri Thai
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Linda Nghiem
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Yanling Zhang
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Golam Kabir
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - J F Desjardins
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Andrew Advani
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Richard E Gilbert
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| |
Collapse
|
8
|
Krzyżewska A, Baranowska-Kuczko M, Kasacka I, Kozłowska H. Cannabidiol alleviates right ventricular fibrosis by inhibiting the transforming growth factor β pathway in monocrotaline-induced pulmonary hypertension in rats. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166753. [PMID: 37187449 DOI: 10.1016/j.bbadis.2023.166753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cannabidiol (CBD) is a non-intoxicating compound of Cannabis with anti-fibrotic properties. Pulmonary hypertension (PH) is a disease that can lead to right ventricular (RV) failure and premature death. There is evidence that CBD reduces monocrotaline (MCT)-induced PH, including reducing right ventricular systolic pressure (RVSP), vasorelaxant effect on pulmonary arteries, and decreasing expression of profibrotic markers in the lungs. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on profibrotic parameters in the RVs of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters and parameters related to RV dysfunction, i.e. plasma pro-B-type natriuretic peptide (NT-proBNP), cardiomyocyte width, interstitial and perivascular fibrosis area, amount of fibroblasts and fibronectin, as well as overexpression of the transforming growth of factor β1 (TGF-β1), galectin-3 (Gal-3), suppressor of mothers against decapentaplegic 2 (SMAD2), phosphorylated SMAD2 (pSMAD2) and alpha-smooth muscle actin (α-SMA). In contrast, vascular endothelial cadherin (VE-cadherin) levels were decreased in the RVs of MCT-induced PH rats. Administration of CBD reduced the amount of plasma NT-proBNP, the width of cardiomyocytes, the amount of fibrosis area, fibronectin and fibroblast expression, as well as decreased the expression of TGF-β1, Gal-3, SMAD2, pSMAD2, and increased the level of VE-cadherin. Overall, CBD has been found to have the anti-fibrotic potential in MCT-induced PH. As such, CBD may act as an adjuvant therapy for PH, however, further detailed investigations are recommended to confirm our promising results.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland.
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland; Department of Clinical Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
9
|
Gałdyszyńska M, Zwoliński R, Piera L, Szymański J, Jaszewski R, Drobnik J. Stiff substrates inhibit collagen accumulation via integrin α2β1, FAK and Src kinases in human atrial fibroblast and myofibroblast cultures derived from patients with aortal stenosis. Biomed Pharmacother 2023; 159:114289. [PMID: 36696802 DOI: 10.1016/j.biopha.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The aim of the study was to confirm whether cell substrate stiffness may participate in the regulation of fibrosis. The involvement of integrin α2β1, focal adhesion kinase (FAK) and Src kinase in signal transmission was investigated. Human atrial fibroblasts and myofibroblasts were cultured in both soft (2.23 ± 0.8 kPa) and stiff (8.28 ± 1.06 kPa) polyacrylamide gels. The cells were derived from the right atrium of patients with aortal stenosis undergoing surgery. The isolated cells, identified as fibroblasts or myofibroblasts, were stained positively with α smooth muscle actin, vimentin and desmin. The cultures settled on stiff gel demonstrated lower intracellular collagen and collagen type I telopeptide (PICP) levels; however, no changes in α1 chain of procollagen type I and III expression were noted. Inhibition of α2β1 integrin by TC-I 15 (10-7 and 10-8 M) or α2 integrin subunit silencing augmented intracellular collagen level. Moreover, FAK or Src kinase inhibitors increased collagen content within the culture. Lower TIMP4 secretion was reported within the stiff gel cultures but neither MMP 2 nor TIMP-1, 2 or 3 release was altered. The stiff substrate cultures also demonstrated lower interleukin-6 release. Substrate stiffness modified collagen deposition within the atrial fibroblast and myofibroblast cultures. The elasticity of the cellular environment exerts a regulatory influence on both synthesis and breakdown of collagen. Integrin α2β1, FAK and Src kinase activity participates in signal transmission, which may influence fibrosis in the atria of the human heart.
Collapse
Affiliation(s)
- M Gałdyszyńska
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - R Zwoliński
- Department of Cardiosurgery, Medical University of Lodz, 92-215 Lodz, Poland
| | - L Piera
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - J Szymański
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland
| | - R Jaszewski
- Department of Cardiosurgery, Medical University of Lodz, 92-215 Lodz, Poland
| | - J Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| |
Collapse
|
10
|
Li R, Frangogiannis NG. Integrins in cardiac fibrosis. J Mol Cell Cardiol 2022; 172:1-13. [PMID: 35872324 DOI: 10.1016/j.yjmcc.2022.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Cells sense mechanical stress and changes in their matrix environment through the integrins, a family of heterodimeric surface receptors that bind to extracellular matrix ligands and trigger cytoskeletal remodeling, while transducing a wide range of intracellular signals. Integrins have been extensively implicated in regulation of inflammation, repair and fibrosis in many different tissues. This review manuscript discusses the role of integrin-mediated cascades in myocardial fibrosis. In vitro studies have demonstrated that β1 and αv integrins play an important role in fibrogenic conversion of cardiac fibroblast, acting through direct stimulation of FAK/Src cascades, or via accentuation of growth factor signaling. Fibrogenic actions of αv integrins may be mediated, at least in part, through pericellular activation of latent TGF-β stores. In vivo evidence supporting the role of integrin heterodimers in fibrotic cardiac remodeling is limited to associative evidence, and to experiments using pharmacologic inhibitors, or global loss-of-function approaches. Studies documenting in vivo actions of integrins on fibroblasts using cell-specific strategies are lacking. Integrin effects on leukocytes may also contribute to the pathogenesis of fibrotic myocardial responses by mediating recruitment and activation of fibrogenic macrophages. The profile and role of integrins in cardiac fibrosis may be dependent on the underlying pathologic condition. Considering their cell surface localization and the availability of small molecule inhibitors, integrins may be attractive therapeutic targets for patients with heart failure associated with prominent fibrotic remodeling.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
11
|
Fujioka T, Akazawa Y, Ide H, Karur GR, Bannan B, Grosse-Wortmann L, Sun M, Hui W, Slorach C, Honjo O, Friedberg MK. Reversal of right ventricular pressure loading improves biventricular function independent of fibrosis in a rabbit model of pulmonary artery banding. J Physiol 2022; 600:3689-3703. [PMID: 35801377 DOI: 10.1113/jp283165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Right ventricular (RV) pressure loading leads to RV and left ventricular (LV) dysfunction through RV hypertrophy, dilatation and fibrosis. Relief of RV pressure load improves RV function. However, the impact and mechanisms on biventricular reverse-remodelling and function are only partially characterized. We evaluated the impact of RV pressure overload relief on biventricular remodelling and function in a rabbit model of reversible pulmonary artery banding (PAB). Rabbits were randomized to three groups: (1) Sham-operated controls (n = 7); (2) PAB (NDef, n = 7); (3) PAB followed by band deflation (Def, n = 5). Sham and NDef animals were sacrificed at 6 weeks after PAB surgery. Def animals underwent PAB deflation at 6 weeks and sacrifice at 9 weeks. Biventricular geometry, function, haemodynamics, hypertrophy and fibrosis were compared between groups using echocardiography, magnetic resonance imaging, high-fidelity pressure-tipped catheters and histology. RV pressure loading caused RV dilatation, systolic dysfunction, myocyte hypertrophy and LV compression which improved after PAB deflation. RV end-diastolic pressure (RVEDP) decreased after PAB deflation, although remaining elevated vs. Sham. LV end-diastolic pressure (LVEDP) was unchanged following PAB deflation. RV and LV collagen volumes in the NDef and Def group were increased vs. Sham, whereas RV and LV collagen volumes were similar between NDef and Def groups. RV myocyte hypertrophy (r = 0.75, P < 0.001) but not collagen volume was related to RVEDP. LV myocyte hypertrophy (r = 0.58, P = 0.016) and collagen volume (r = 0.56, P = 0.031) correlated with LVEDP. In conclusion, relief of RV pressure overload improves RV and LV geometry, hypertrophy and function independent of fibrosis. The long-term implications of persistent fibrosis and increased biventricular filling pressures, even after pressure load relief, need further study. KEY POINTS: Right ventricular (RV) pressure loading in a pulmonary artery banding rabbit model is associated with RV dilatation, left ventricular (LV) compression; biventricular myocyte hypertrophy, fibrosis and dysfunction. The mechanisms and impact of RV pressure load relief on biventricular remodelling and function has not been extensively studied. Relief of RV pressure overload improves biventricular geometry in conjunction with improved RV myocyte hypertrophy and function independent of reduced fibrosis. These findings raise questions as to the importance of fibrosis as a therapeutic target.
Collapse
Affiliation(s)
- Tao Fujioka
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yohei Akazawa
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Haruki Ide
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gauri Rani Karur
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Badr Bannan
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lars Grosse-Wortmann
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Mei Sun
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Wei Hui
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Cameron Slorach
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Li B, Li P, Xia W, You B, Yu Q, Zhang B, Huang R, Wang R, Liu Y, Chen Z, Gan Y, He Y, Hennenberg M, Stief CG, Chen X. Phosphoproteomics identifies potential downstream targets of the integrin α2β1 inhibitor BTT-3033 in prostate stromal cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1380. [PMID: 34733932 PMCID: PMC8506561 DOI: 10.21037/atm-21-3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Background Integrin α2β1 inhibitor BTT-3033 (1-(4-fluorophenyl)-N-methyl-N-[4[[(phenylamino)carbonyl]amino]phenyl]-1H-pyrazole-4-sulfonamide) was recently reported to inhibit neurogenic and thromboxane A2-induced human prostate smooth muscle contraction, and thus represents a target with a different inhibition spectrum than that of α1-blockers in benign prostate hyperplasia (BPH) treatments. Clarifying the underlying mechanisms of the inhibition effects will provide insights into the role of integrin α2β1 in prostate contraction and enable new intracellular targets for smooth muscle contraction to be explored. Methods ProteomeHD was used to predict and enrich the top co-regulated proteins of integrin α2 (ITGA2). A phosphoproteomic analysis was conducted on human prostate stromal cells (WPMY-1) treated with 1 or 10 µM of BTT-3033 or solvent for controls. A clustering analysis was conducted to identify the intracellular targets that were inhibited in a dose-dependent manner. Gene ontology (GO) and annotation enrichments were conducted to examine any functional alterations and identify possible downstream targets. A Kinase-substrate enrichment analysis (KSEA) was conducted to identify kinases-substrate relationships. Results Enrichments of the actin cytoskeleton and guanosine triphosphatases (GTPases) signaling were predicted from the co-regulated proteins with ITGA2. LIM domain kinases, including LIM domain and actin-binding 1 (LIMA1), zyxin (ZYX), and thyroid receptor-interacting protein 6 (TRIP6), which are functionally associated with focal adhesions and the cytoskeleton, were present in the clusters with dose-dependent phosphorylation inhibition pattern. 15 substrates were dose-dependently inhibited according to the KSEA, including polo-like kinase 1 (PLK1), and GTPases signaling proteins, such as disheveled segment polarity protein 2 (DVL2). Conclusions In this study, we proposed that the mechanisms underlying the contractile and proliferative effects of integrin α2β1 are the LIM domain kinases, including the ZYX family, and substrates, including PLK1 and DVL2.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Pan Li
- Department of Pathology, LMU Munich, Munich, Germany
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyang You
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital, Central South University, Changsha, China
| | - Qingfeng Yu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Akazawa Y, Fujioka T, Ide H, Yazaki K, Honjo O, Sun M, Friedberg MK. Impaired right and left ventricular function and relaxation induced by pulmonary regurgitation are not reversed by tardive antifibrosis treatment. Am J Physiol Heart Circ Physiol 2021; 321:H38-H51. [PMID: 34048283 DOI: 10.1152/ajpheart.00467.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary regurgitation (PR) after repair of tetralogy of Fallot (rTOF) is associated with progressive right (RV) and left (LV) ventricular dysfunction and fibrosis. However, angiotensin II receptor blockade therapy has shown mixed and often disappointing results. The aim of this study was to serially assess changes in biventricular remodeling, dysfunction, and interactions in a rat model of isolated severe PR and to study the effects of angiotensin II receptor blockade. PR was induced in Sprague-Dawley rats by leaflet laceration. Shams (n = 6) were compared with PR (n = 5) and PR + losartan treatment (n = 6). In the treatment group, oral losartan (50 mg·kg-1·day-1) was started 6 wk after PR induction and continued for 6 wk until the terminal experiment. In all groups, serial echocardiography was performed every 2 wk until the terminal experiment where biventricular myocardium was harvested and analyzed for fibrosis. PR and PR + losartan rats experienced early progressive RV dilatation by 2 wk which then stabilized. RV systolic dysfunction occurred from 4 wk after insult and gradually progressed. In PR rats, RV dilatation caused diastolic LV compression and impaired relaxation. PR rats developed increased RV fibrosis compared with shams. Although losartan decreased RV fibrosis, RV dilatation and dysfunction were not improved. This suggests that RV dilatation is an early consequence of PR and affects LV relaxation. RV dysfunction may progress independent of further remodeling. Reduced RV fibrosis was not associated with improved RV function and may not be a viable therapeutic target in rTOF with predominant RV volume loading.NEW & NOTEWORTHY The time-course of RV dilatation and the mechanisms of biventricular dysfunction caused by PR have not been well characterized and the effect of losartan in volume-overloaded RV remains controversial. Our findings suggest that severe PR induces early onset of RV dilatation and dysfunction with little progression after the first 4 wk. The RV dilatation distorts LV geometry with associated impaired LV relaxation. Losartan reduced RV fibrosis but did not reverse RV dilatation and dysfunction.
Collapse
Affiliation(s)
- Yohei Akazawa
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tao Fujioka
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Kana Yazaki
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Meagher PB, Lee XA, Lee J, Visram A, Friedberg MK, Connelly KA. Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells 2021; 10:cells10040770. [PMID: 33807373 PMCID: PMC8066890 DOI: 10.3390/cells10040770] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a common finding that is associated with the progression of heart failure (HF) and impacts all chambers of the heart. Despite intense research, the treatment of HF has primarily focused upon strategies to prevent cardiomyocyte remodeling, and there are no targeted antifibrotic strategies available to reverse cardiac fibrosis. Cardiac fibrosis is defined as an accumulation of extracellular matrix (ECM) proteins which stiffen the myocardium resulting in the deterioration cardiac function. This occurs in response to a wide range of mechanical and biochemical signals. Integrins are transmembrane cell adhesion receptors, that integrate signaling between cardiac fibroblasts and cardiomyocytes with the ECM by the communication of mechanical stress signals. Integrins play an important role in the development of pathological ECM deposition. This review will discuss the role of integrins in mechano-transduced cardiac fibrosis in response to disease throughout the myocardium. This review will also demonstrate the important role of integrins as both initiators of the fibrotic response, and modulators of fibrosis through their effect on cardiac fibroblast physiology across the various heart chambers.
Collapse
Affiliation(s)
- Patrick B. Meagher
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Xavier Alexander Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Joseph Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Mark K. Friedberg
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Labatt Family Heart Center and Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kim A. Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +141-686-45201
| |
Collapse
|
15
|
Ishii R, Okumura K, Akazawa Y, Malhi M, Ebata R, Sun M, Fujioka T, Kato H, Honjo O, Kabir G, Kuebler WM, Connelly K, Maynes JT, Friedberg MK. Heart Rate Reduction Improves Right Ventricular Function and Fibrosis in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 63:843-855. [PMID: 32915674 DOI: 10.1165/rcmb.2019-0317oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The potential benefit of heart rate reduction (HRR), independent of β-blockade, on right ventricular (RV) function in pulmonary hypertension (PH) remains undecided. We studied HRR effects on RV fibrosis and function in PH and RV pressure-loading models. Adult rats were randomized to 1) sham controls, 2) monocrotaline (MCT)-induced PH, 3) SU5416 + hypoxia (SUHX)-induced PH, or 4) pulmonary artery banding (PAB). Ivabradine (IVA) (10 mg/kg/d) was administered from 2 weeks after PH induction or PAB. Exercise tolerance, echocardiography, and pressure-volume hemodynamics were obtained at a terminal experiment 3 weeks later. RV myocardial samples were analyzed for putative mechanisms of HRR effects through fibrosis, profibrotic molecular signaling, and Ca++ handling. The effects of IVA versus carvedilol on human induced pluripotent stem cell-derived cardiomyocytes beat rate and relaxation properties were evaluated in vitro. Despite unabated severely elevated RV systolic pressures, IVA improved RV systolic and diastolic function, profibrotic signaling, and RV fibrosis in PH/PAB rats. RV systolic-elastance (control, 121 ± 116; MCT, 49 ± 36 vs. MCT+IVA, 120 ± 54; PAB, 70 ± 20 vs. PAB+IVA, 168 ± 76; SUHX, 86 ± 56 vs. SUHX +IVA, 218 ± 111; all P < 0.05), the time constant of RV relaxation, echo indices of RV function, and fibrosis (fibrosis: control, 4.6 ± 1%; MCT, 13.4 ± 6.5 vs. MCT+IVA, 6.7 ± 2.6%; PAB, 11.4 ± 4.5 vs. PAB+IVA, 6.4 ± 5.1%; SUHX, 10 ± 4.6 vs. SUHX+IVA, 3.9 ± 2.2%; all P < 0.001) were improved by IVA versus controls. IVA had a dose-response effect on induced pluripotent stem cell-derived cardiomyocytes beat rate by delaying Ca++ loss from the cytoplasm. In experimental PH or RV pressure loading, HRR improves RV fibrosis, function, and exercise endurance independent of β-blockade. The balance between adverse tachycardia and bradycardia requires further study, but judicious HRR may provide a promising strategy to improve RV function in clinical PH.
Collapse
Affiliation(s)
- Ryo Ishii
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Kenichi Okumura
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Yohei Akazawa
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Manpreet Malhi
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Ryota Ebata
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Mei Sun
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Tao Fujioka
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Hideyuki Kato
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Osami Honjo
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Golam Kabir
- The Keenan Research Center for Biomedical Research of St. Michael's Hospital, Toronto, Canada; and
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kim Connelly
- The Keenan Research Center for Biomedical Research of St. Michael's Hospital, Toronto, Canada; and
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Mark K Friedberg
- The Labatt Family Heart Center, Division of Cardiology and Cardiovascular Surgery, Hospital for Sick Children and University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Asymmetric Regional Work Contributes to Right Ventricular Fibrosis, Inefficiency, and Dysfunction in Pulmonary Hypertension versus Regurgitation. J Am Soc Echocardiogr 2020; 34:537-550.e3. [PMID: 33383122 DOI: 10.1016/j.echo.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Right ventricular (RV) pressure loading from pulmonary hypertension (PH) and volume loading from pulmonary regurgitation (PR) lead to RV dysfunction, a critical determinant of clinical outcomes, but their impact on regional RV mechanics and fibrosis is poorly characterized. The aim of this study was to test the hypothesis that regional myocardial mechanics and efficiency in RV pressure and volume loading are associated with RV fibrosis and dysfunction. METHODS Eight PH, six PR, and five sham-control rats were studied. The PH rat model was induced using Sugen5416, a vascular endothelial growth factor receptor 2 inhibitor, combined with chronic hypoxia. PR rats were established by surgical laceration of the pulmonary valve leaflets. Six (n = 4) or 9 (n = 4) weeks after Sugen5416 and hypoxia and 12 weeks after PR surgery, myocardial strain and RV pressure were measured and RV pressure-strain loops generated. We further studied RV regional mechanics in 11 patients with PH. Regional myocardial work was calculated as the pressure-strain loop area (mm Hg ∙ %). Regional myocardial work efficiency was quantified through wasted work (ratio of systolic lengthening to shortening work). The relation of regional myocardial work to RV fibrosis and dysfunction was analyzed. RESULTS In rats, PH and PR induced similar RV dilatation, but fractional area change (%) was lower in PH than in PR. RV lateral wall work was asymmetrically higher in PH compared with sham, while septal work was similar to sham. In PR, lateral and septal work were symmetrically higher versus sham. Myocardial wasted work ratio was asymmetrically increased in the PH septum versus sham. Fibrosis in the RV lateral wall, but not septum, was higher in PH than PR. RV fibrosis burden was linearly related to regional work and to measures of RV systolic and diastolic function but not to wasted myocardial work ratio. Patients with PH demonstrated similar asymmetric and inefficient regional myocardial mechanics. CONCLUSIONS Asymmetric RV work and increased wasted septal work in experimental PH are associated with RV fibrosis and dysfunction. Future investigation should examine whether assessment of asymmetric regional RV work and efficiency can predict clinical RV failure and influence patient management.
Collapse
|
17
|
Salemi Z, Azizi R, Fallahian F, Aghaei M. Integrin α2β1 inhibition attenuates prostate cancer cell proliferation by cell cycle arrest, promoting apoptosis and reducing epithelial-mesenchymal transition. J Cell Physiol 2020; 236:4954-4965. [PMID: 33305380 DOI: 10.1002/jcp.30202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Integrin α2β1 plays an important role in cellular migration and metastasis processes associated with prostate cancer. The aim of this study was to assess whether selective inhibition of integrin α2β1 is an effective strategy to target metastatic prostate cancer cells. In this regard, we examined the effects of the inhibitor BTT-3033, which selectively interferes with the connection between integrin a2b1 and its ligand, on migration, epithelial-mesenchymal transition (EMT), cell cycle arrest, apoptosis, and specific intracellular signaling pathways using LNcap-FGC and DU-145 prostate cancer cell lines. Western blot analysis and immunocytochemistry assays showed that inhibition of integrin a2b1 inhibits EMT, through the increased expression of E-cadherin and decreased expression of N-cadherin and vimentin. Scratch wound healing assays revealed a direct effect on integrin α2β1 in the migration capacity of cells. In addition, treatment with BTT-3033 induced a reduction in cell viability and proliferation, as assessed by MTT and BrdU assays. In addition, the results show that BTT-3033 inhibits cell proliferation by inducing G1 cell cycle arrest. Moreover, inhibition of integrin α2β1 induces apoptosis through the activation of ROS, Bax protein upregulation, caspase-3 activation, and depletion of ΔΨm. Molecular signaling studies showed that integrin α2β1 was a positive regulator of MKK7 phosphorylation. In conclusion, our results reveal a critical role for integrin a2b1 in the proliferation of prostate cancer cells, as demonstrated by EMT inhibition, cell cycle arrest, and apoptosis induction in response to treatment with its specific inhibitor BT-3033.
Collapse
Affiliation(s)
- Zahra Salemi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.,Department of Biochemistry, Arak University of Medical Sciences, Arak, IR, Iran
| | - Reza Azizi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Faranak Fallahian
- Department of Clinical Biochemistry, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
19
|
Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020; 10:1541-1560. [PMID: 33224773 PMCID: PMC7666919 DOI: 10.21037/cdt-20-477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.
Collapse
Affiliation(s)
- Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, Groningen, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | | | - Wolfgang M. Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Akazawa Y, Okumura K, Ishii R, Slorach C, Hui W, Ide H, Honjo O, Sun M, Kabir G, Connelly K, Friedberg MK. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension. J Appl Physiol (1985) 2020; 129:238-246. [PMID: 32644912 DOI: 10.1152/japplphysiol.00148.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Right ventricular (RV) dysfunction determines mortality in patients with pulmonary arterial hypertension (PAH) and RV pressure loading. Experimental models commonly use Sugen hypoxia (SuHx)-induced PAH, monocrotaline (MCT)-induced PAH, or pulmonary artery banding (PAB). Because PAH models cannot interrogate RV effects or therapies independent of pulmonary vascular effects, we aimed to compare RV function and fibrosis in experimental PAB vs. PAH. Thirty rats were randomized to either sham controls, PAB, SuHx-, or MCT-induced PAH. RV pressures and function were assessed by high-fidelity pressure-tipped catheters and by echocardiography. RV myocyte hypertrophy, fibrosis, and capillary density were quantified from hematoxylin-eosin, picrosirius red-stained, and CD31-immunostained RV sections, respectively. RV pressures and the RV-to-left ventricular pressure ratio were significantly increased in all three groups to a similar degree (PAB 65 ± 17 mmHg, SuHx 72 ± 16 mmHg, and MCT 70 ± 12 mmHg) vs. controls (23 ± 2 mmHg, all P < 0.01). RV dilatation, hypertrophy, and fibrosis were similarly increased, and capillary density decreased, in the three models (RV fibrosis; PAB 13.3 ± 3.6%, SuHx 9.8 ± 3.0% and MCT 10.9 ± 2.4% vs control 5.5 ± 1.1%, all P < 0.05). RV function was similarly decreased in all models vs. controls. We observed comparable RV dilatation, hypertrophy, systolic and diastolic dysfunction, fibrosis, and capillary rarefaction in rat models of PAB, SuHx-, and MCT-induced PAH. These results suggest that PAB, when sufficiently severe, induces features of maladaptive RV remodeling and can be used to investigate RV pathophysiology and therapy effects independent of pulmonary vascular resistance.NEW & NOTEWORTHY Although animal models of pulmonary arterial hypertension and pressure loading are important to study right ventricular (RV) pathophysiology, pulmonary arterial hypertension models cannot interrogate RV responses independent of pulmonary vascular effects. Comparing three commonly used rat models under similar elevated RV pressure, we found that all models resulted in comparable maladaptive RV remodeling and dysfunction. Thus, these findings suggest that the pulmonary artery banding model can be used to investigate mechanisms of RV dysfunction in RV pressure overload and the effect of potential therapies.
Collapse
Affiliation(s)
- Yohei Akazawa
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenichi Okumura
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryo Ishii
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cameron Slorach
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Hui
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haruki Ide
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Golam Kabir
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kim Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Steffens S, Van Linthout S, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1850-1862. [DOI: 10.1093/cvr/cvaa137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Cardiac injury may have multiple causes, including ischaemic, non-ischaemic, autoimmune, and infectious triggers. Independent of the underlying pathophysiology, cardiac tissue damage induces an inflammatory response to initiate repair processes. Immune cells are recruited to the heart to remove dead cardiomyocytes, which is essential for cardiac healing. Insufficient clearance of dying cardiomyocytes after myocardial infarction (MI) has been shown to promote unfavourable cardiac remodelling, which may result in heart failure (HF). Although immune cells are integral key players of cardiac healing, an unbalanced or unresolved immune reaction aggravates tissue damage that triggers maladaptive remodelling and HF. Neutrophils and macrophages are involved in both, inflammatory as well as reparative processes. Stimulating the resolution of cardiac inflammation seems to be an attractive therapeutic strategy to prevent adverse remodelling. Along with numerous experimental studies, the promising outcomes from recent clinical trials testing canakinumab or colchicine in patients with MI are boosting the interest in novel therapies targeting inflammation in cardiovascular disease patients. The aim of this review is to discuss recent experimental studies that provide new insights into the signalling pathways and local regulators within the cardiac microenvironment promoting the resolution of inflammation and tissue regeneration. We will cover ischaemia- and non-ischaemic-induced as well as infection-related cardiac remodelling and address potential targets to prevent adverse cardiac remodelling.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Via Paradisa, Pisa 56124, Italy
| |
Collapse
|
22
|
Xu L, Wang H, Jiang F, Sun H, Zhang D. LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway. Aging (Albany NY) 2020; 12:3126-3139. [PMID: 32087602 PMCID: PMC7066930 DOI: 10.18632/aging.102668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
Abstract
Hearts often undergo abnormal remodelling and hypertrophic growth in response to pathological stress. Long non-coding RNAs (LncRNAs) can change cardiac function and participate in regulation of cardiac hypertrophy. The present study aims to identify the role of AK045171 in cardiac hypertrophy and the underlying mechanism in hypertrophic cascades. Mice with cardiac hypertrophy were established through transverse aortic constriction (TAC). Cardiac hypertrophy in cardiomyocytes was induced by angiotensin II (angII). The expression of AK045171 and its target gene SP1 was examined in cardiomyocytes transfected with miRNA. The AK045171 expression level was downregulated in mice after TAC surgery. Overexpression of AK045171 attenuated cardiac hypertrophy both in vitro and in vivo. The mechanism study indicated that AK045171 binds with SP1, which promotes transcription activation of MEG3. It is suggested that overexpression of AK045171 might have clinical potential to suppress cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Li Xu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hongjiang Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Feng Jiang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Sun
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Dapeng Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
23
|
Wei L, Chen Q, Zheng Y, Nan L, Liao N, Mo S. Potential Role of Integrin α₅β₁/Focal Adhesion Kinase (FAK) and Actin Cytoskeleton in the Mechanotransduction and Response of Human Gingival Fibroblasts Cultured on a 3-Dimension Lactide-Co-Glycolide (3D PLGA) Scaffold. Med Sci Monit 2020; 26:e921626. [PMID: 32034900 PMCID: PMC7027369 DOI: 10.12659/msm.921626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The stability of orthodontic treatment is thought to be significantly affected by the compression and retraction of gingival tissues, but the underlying molecular mechanism is not fully elucidated. The objectives of our study were to explore the effects of mechanical force on the ECM-integrin-cytoskeleton linkage response in human gingival fibroblasts (HGFs) cultured on 3-dimension (3D) lactide-co-glycolide (PLGA) biological scaffold and to further study the mechanotransduction pathways that could be involved. MATERIAL AND METHODS A compressive force of 25 g/m² was applied to the HGFs-PLGA 3D co-cultured model. Rhodamine-phalloidin staining was used to evaluate the filamentous actin (F-actin) cytoskeleton. The expression level of type I collagen (COL-1) and the activation of the integrin alpha₅ß₁/focal adhesion kinase (FAK) signaling pathway were determined by using real-time PCR and Western blotting analysis. The impacts of the applied force on the expression levels of FAK, phosphorylated focal adhesion kinase (p-FAK), and COL-1 were also measured in cells treated with integrin alpha₅ß₁ inhibitor (Ac-PHSCN-NH 2, ATN-161). RESULTS Mechanical force increased the expression of integrin alpha₅ß₁, FAK (p-FAK), and COL-1 in HGFs, and induced the formation of stress fibers. Blocking integrin alpha₅ß₁ reduced the expression of FAK (p-FAK), while the expression of COL-1 was not fully inhibited. CONCLUSIONS The integrin alpha₅ß₁/FAK signaling pathway and actin cytoskeleton appear to be involved in the mechanotransduction of HGFs. There could be other mechanisms involved in the promotion effect of mechanical force on collagen synthesis in addition to the integrin alpha₅ß₁ pathway.
Collapse
Affiliation(s)
- Liying Wei
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qun Chen
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yi Zheng
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Lan Nan
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ni Liao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Shuixue Mo
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
24
|
Zhang Q, Liu H, Yang J. Regulation of TGF-β1 on PI3KC3 and its role in hypertension-induced vascular injuries. Exp Ther Med 2018; 17:1717-1727. [PMID: 30783440 PMCID: PMC6364233 DOI: 10.3892/etm.2018.7128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the expression and role of transforming growth factor (TGF)-β1/phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3) in the peripheral blood in patients with hypertension. A total of 28 patients with primary hypertension and 20 healthy control subjects were included. Peripheral blood samples were collected. The mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell counting kit-8 assay, Transwell chamber assay and flow cytometry were performed to detect the cell proliferation, migration ability and cellular apoptosis, respectively. Laser scanning confocal microscopy was used to detect the intracellular autophagosomes. The expression of TGF-β1 was significantly elevated, whereas the expression of PI3KC3 was significantly downregulated in the patients with hypertension compared with controls. There was negative correlation between the TGF-β1 and PI3KC3 expression. Following treatment with TGF-β1, the protein expression of PI3KC3 was significantly decreased in human umbilical vein endothelial cells (HUVECs), and the autophagic activity was significantly decreased. Furthermore, following the treatment of TGF-β1 the proliferation of HUVECs was significantly reduced in the HUVECs, the hypoxia-induced apoptosis rates were significantly elevated and the number of penetrating cells were significantly declined (indicating declined migration ability). However, the overexpression of PI3KC3 significantly ameliorated the proliferation, migration ability and hypoxia tolerance of TGF-β1-treated HUVECs. In conclusion, the present results indicated that TGF-β1 expression was elevated in the peripheral blood in hypertensive patients and negatively correlated with the PI3KC3 expression; and that TGF-β1 regulates the PI3KC3 signaling pathway to inhibit the autophagic activity of vascular endothelial cells, and regulate the cell proliferation, migration and anti-apoptosis ability, thus aggregating the endothelial cell injuries in hypertension. The results of the current study revealed a novel mechanism of TGF-β1 in the regulation of endothelial cell injury in hypertension, which may provide a potential target for disease therapy.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Hu Liu
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Jun Yang
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| |
Collapse
|