1
|
Reyes-Corral M, Gil-González L, González-Díaz Á, Tovar-Luzón J, Ayuso MI, Lao-Pérez M, Montaner J, de la Puerta R, Fernández-Torres R, Ybot-González P. Pretreatment with oleuropein protects the neonatal brain from hypoxia-ischemia by inhibiting apoptosis and neuroinflammation. J Cereb Blood Flow Metab 2025; 45:717-734. [PMID: 39157939 DOI: 10.1177/0271678x241270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Hypoxic-ischemic (HI) encephalopathy is a cerebrovascular injury caused by oxygen deprivation to the brain and remains a major cause of neonatal mortality and morbidity worldwide. Therapeutic hypothermia is the current standard of care but it does not provide complete neuroprotection. Our aim was to investigate the neuroprotective effect of oleuropein (Ole) in a neonatal (seven-day-old) mouse model of HI. Ole, a secoiridoid found in olive leaves, has previously shown to reduce damage against cerebral and other ischemia/reperfusion injuries. Here, we administered Ole as a pretreatment prior to HI induction at 20 or 100 mg/kg. A week after HI, Ole significantly reduced the infarct area and the histological damage as well as white matter injury, by preserving myelination, microglial activation and the astroglial reactive response. Twenty-four hours after HI, Ole reduced the overexpression of caspase-3 and the proinflammatory cytokines IL-6 and TNF-α. Moreover, using UPLC-MS/MS we found that maternal supplementation with Ole during pregnancy and/or lactation led to the accumulation of its metabolite hydroxytyrosol in the brains of the offspring. Overall, our results indicate that pretreatment with Ole confers neuroprotection and can prevent HI-induced brain damage by modulating apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Laura Gil-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Ángela González-Díaz
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Javier Tovar-Luzón
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - María Irene Ayuso
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Spanish National Research Council (CSIC), Spain
| |
Collapse
|
2
|
Amrein Almira A, Chen MW, El Demerdash N, Javdan C, Park D, Lee JK, Martin LJ. Proteasome localization and activity in pig brain and in vivo small molecule screening for activators. Front Cell Neurosci 2024; 18:1353542. [PMID: 38469354 PMCID: PMC10925635 DOI: 10.3389/fncel.2024.1353542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Loss of proteasome function, proteinopathy, and proteotoxicity may cause neurodegeneration across the human lifespan in several forms of brain injury and disease. Drugs that activate brain proteasomes in vivo could thus have a broad therapeutic impact in neurology. Methods Using pigs, a clinically relevant large animal with a functionally compartmental gyrencephalic cerebral cortex, we evaluated the localization and biochemical activity of brain proteasomes and tested the ability of small molecules to activate brain proteasomes. Results By Western blotting, proteasome protein subunit PSMB5 and PSMA3 levels were similar in different pig brain regions. Immunohistochemistry for PSMB5 showed localization in the cytoplasm (diffuse and particulate) and nucleus (cytoplasm < nucleus). Some PSMB5 immunoreactivity was colocalized with mitochondrial (voltage-gated anion channel and cyclophilin D) and cell death (Aven) proteins in the neuronal soma and neuropil in the neocortex of pig and human brains. In the nucleus, PSMB5 immunoreactivity was diffuse, particulate, and clustered, including perinucleolar decorations. By fluorogenic assay, proteasome chymotrypsin-like activities (CTL) in crude tissue soluble fractions were generally similar within eight different pig brain regions. Proteasome CTL activity in the hippocampus was correlated with activity in nasal mucosa biopsies. In pilot analyses of subcellular fractions of pig cerebral cortex, proteasome CTL activity was highest in the cytosol and then ~50% lower in nuclear fractions; ~15-20% of total CTL activity was in pure mitochondrial fractions. With in-gel activity assay, 26S-singly and -doubly capped proteasomes were the dominant forms in the pig cerebral cortex. With a novel in situ histochemical activity assay, MG132-inhibitable proteasome CTL activity was localized to the neuropil, as a mosaic, and to cell bodies, nuclei, and centrosome-like perinuclear satellites. In piglets treated intravenously with pyrazolone derivative and chlorpromazine over 24 h, brain proteasome CTL activity was modestly increased. Discussion This study shows that the proteasome in the pig brain has relative regional uniformity, prominent nuclear and perinuclear presence with catalytic activity, a mitochondrial association with activity, 26S-single cap dominance, and indications from small molecule systemic administration of pyrazolone derivative and chlorpromazine that brain proteasome function appears safely activable.
Collapse
Affiliation(s)
- Adriana Amrein Almira
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - May W. Chen
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cameron Javdan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dongseok Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Levison SW, Rocha-Ferreira E, Kim BH, Hagberg H, Fleiss B, Gressens P, Dobrowolski R. Mechanisms of Tertiary Neurodegeneration after Neonatal Hypoxic-Ischemic Brain Damage. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2022; 5:28. [PMID: 37601279 PMCID: PMC10438849 DOI: 10.21037/pm-20-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Neonatal encephalopathy linked to hypoxia-ischemia (H-I) which is regarded as the most important neurological problem of the newborn, can lead to a spectrum of adverse neurodevelopmental outcomes such as cerebral palsy, epilepsy, hyperactivity, cognitive impairment and learning difficulties. There have been numerous reviews that have focused on the epidemiology, diagnosis and treatment of neonatal H-I; however, a topic that is less often considered is the extent to which the injury might worsen over time, which is the focus of this review. Similarly, there have been numerous reviews that have focused on mechanisms that contribute to the acute or subacute injury; however, there is a tertiary phase of recovery that can be defined by cellular and molecular changes that occur many weeks and months after brain injury and this topic has not been the focus of any review for over a decade. Therefore, in this article we review both the clinical and pre-clinical data that show that tertiary neurodegeneration is a significant contributor to the final outcome, especially after mild to moderate injuries. We discuss the contributing roles of apoptosis, necroptosis, autophagy, protein homeostasis, inflammation, microgliosis and astrogliosis. We also review the limited number of studies that have shown that significant neuroprotection and preservation of neurological function can be achieved administering drugs during the period of tertiary neurodegeneration. As the tertiary phase of neurodegeneration is a stage when interventions are eminently feasible, it is our hope that this review will stimulate a new focus on this stage of recovery towards the goal of producing new treatment options for neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Steven W. Levison
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Eridan Rocha-Ferreira
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian H. Kim
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
4
|
Oleuropein Activates Neonatal Neocortical Proteasomes, but Proteasome Gene Targeting by AAV9 Is Variable in a Clinically Relevant Piglet Model of Brain Hypoxia-Ischemia and Hypothermia. Cells 2021; 10:cells10082120. [PMID: 34440889 PMCID: PMC8391411 DOI: 10.3390/cells10082120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/26/2022] Open
Abstract
Cerebral hypoxia-ischemia (HI) compromises the proteasome in a clinically relevant neonatal piglet model. Protecting and activating proteasomes could be an adjunct therapy to hypothermia. We investigated whether chymotrypsin-like proteasome activity differs regionally and developmentally in the neonatal brain. We also tested whether neonatal brain proteasomes can be modulated by oleuropein, an experimental pleiotropic neuroprotective drug, or by targeting a proteasome subunit gene using recombinant adeno-associated virus-9 (AAV). During post-HI hypothermia, we treated piglets with oleuropein, used AAV-short hairpin RNA (shRNA) to knock down proteasome activator 28γ (PA28γ), or enforced PA28γ using AAV-PA28γ with green fluorescent protein (GFP). Neonatal neocortex and subcortical white matter had greater proteasome activity than did liver and kidney. Neonatal white matter had higher proteasome activity than did juvenile white matter. Lower arterial pH 1 h after HI correlated with greater subsequent cortical proteasome activity. With increasing brain homogenate protein input into the assay, the initial proteasome activity increased only among shams, whereas HI increased total kinetic proteasome activity. OLE increased the initial neocortical proteasome activity after hypothermia. AAV drove GFP expression, and white matter PA28γ levels correlated with proteasome activity and subunit levels. However, AAV proteasome modulation varied. Thus, neonatal neocortical proteasomes can be pharmacologically activated. HI slows the initial proteasome performance, but then augments ongoing catalytic activity. AAV-mediated genetic manipulation in the piglet brain holds promise, though proteasome gene targeting requires further development.
Collapse
|
5
|
Lee JK, Santos PT, Chen MW, O'Brien CE, Kulikowicz E, Adams S, Hardart H, Koehler RC, Martin LJ. Combining Hypothermia and Oleuropein Subacutely Protects Subcortical White Matter in a Swine Model of Neonatal Hypoxic-Ischemic Encephalopathy. J Neuropathol Exp Neurol 2021; 80:182-198. [PMID: 33212486 DOI: 10.1093/jnen/nlaa132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) causes white matter injury that is not fully prevented by therapeutic hypothermia. Adjuvant treatments are needed. We compared myelination in different piglet white matter regions. We then tested whether oleuropein (OLE) improves neuroprotection in 2- to 4-day-old piglets randomized to undergo HI or sham procedure and OLE or vehicle administration beginning at 15 minutes. All groups received overnight hypothermia and rewarming. Injury in the subcortical white matter, corpus callosum, internal capsule, putamen, and motor cortex gray matter was assessed 1 day later. At baseline, piglets had greater subcortical myelination than in corpus callosum. Hypothermic HI piglets had scant injury in putamen and cerebral cortex. However, hypothermia alone did not prevent the loss of subcortical myelinating oligodendrocytes or the reduction in subcortical myelin density after HI. Combining OLE with hypothermia improved post-HI subcortical white matter protection by preserving myelinating oligodendrocytes, myelin density, and oligodendrocyte markers. Corpus callosum and internal capsule showed little HI injury after hypothermia, and OLE accordingly had minimal effect. OLE did not affect putamen or motor cortex neuron counts. Thus, OLE combined with hypothermia protected subcortical white matter after HI. As an adjuvant to hypothermia, OLE may subacutely improve regional white matter protection after HI.
Collapse
Affiliation(s)
- Jennifer K Lee
- From the Department of Anesthesiology and Critical Care Medicine
| | - Polan T Santos
- From the Department of Anesthesiology and Critical Care Medicine
| | - May W Chen
- Division of Neonatology, Department of Pediatrics
| | | | - Ewa Kulikowicz
- From the Department of Anesthesiology and Critical Care Medicine
| | - Shawn Adams
- From the Department of Anesthesiology and Critical Care Medicine
| | - Henry Hardart
- From the Department of Anesthesiology and Critical Care Medicine
| | | | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
6
|
Chen MW, Santos P, Kulikowicz E, Koehler RC, Lee JK, Martin LJ. Targeting the mitochondrial permeability transition pore for neuroprotection in a piglet model of neonatal hypoxic-ischemic encephalopathy. J Neurosci Res 2021; 99:1550-1564. [PMID: 33675112 PMCID: PMC8725033 DOI: 10.1002/jnr.24821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/17/2021] [Indexed: 11/07/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) causes significant morbidity despite treatment with therapeutic hypothermia. Mitochondrial dysfunction may drive the mechanisms underlying neuronal cell death, thereby making mitochondria prime targets for neuroprotection. The mitochondrial permeability transition pore (mPTP) is one such target within mitochondria. In adult animal models, mPTP inhibition is neuroprotective. However, evidence for mPTP inhibition in neonatal models of neurologic disease is less certain. We tested the therapeutic efficacy of the mPTP small molecule inhibitor GNX-4728 and examined the developmental presence of brain mPTP proteins for drug targeting in a neonatal piglet model of hypoxic-ischemic brain injury. Male neonatal piglets were randomized to hypoxia-ischemia (HI) or sham procedure with GNX-4728 (15 mg/kg, IV) or vehicle (saline/cyclodextrin/DMSO, IV). GNX-4728 was administered as a single dose within 5 min after resuscitation from bradycardic arrest. Normal, ischemic, and injured neurons were counted in putamen and somatosensory cortex using hematoxylin and eosin staining. In separate neonatal and juvenile pigs, western blots of putamen mitochondrial-enriched fractions were used to evaluate mitochondrial integrity and the presence of mPTP proteins. We found that a single dose of GNX-4728 did not protect putamen and cortical neurons from cell death after HI. However, loss of mitochondrial matrix integrity occurred within 6h after HI, and while mPTP components are present in the neonatal brain their levels were significantly different compared to that of a mature juvenile brain. Thus, the neonatal brain mPTP may not be a good target for current neurotherapeutic drugs that are developed based on adult mitochondria.
Collapse
Affiliation(s)
- May W. Chen
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Polan Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lee J. Martin
- Department of Neuroscience and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Lee JK, Liu D, Jiang D, Kulikowicz E, Tekes A, Liu P, Qin Q, Koehler RC, Aggarwal M, Zhang J, Martin LJ. Fractional anisotropy from diffusion tensor imaging correlates with acute astrocyte and myelin swelling in neonatal swine models of excitotoxic and hypoxic-ischemic brain injury. J Comp Neurol 2021; 529:2750-2770. [PMID: 33543493 DOI: 10.1002/cne.25121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
The specific cytopathology that causes abnormal fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) after neonatal hypoxia-ischemia (HI) is not completely understood. The panoply of cell types in the brain might contribute differentially to changes in DTI metrics. Because glia are the predominant cell type in brain, we hypothesized that changes in FA and MD would signify perturbations in glial microstructure. Using a 3-Tesla clinical scanner, we conducted in vivo DTI MRI in nine neonatal piglets at 20-96 h after excitotoxic brain injury from striatal quinolinic acid injection or global HI. FA and MD from putamen, caudate, and internal capsule in toto were correlated with astrocyte swelling, neuronal excitotoxicity, and white matter injury. Low FA correlated with more swollen astrocytes immunophenotyped by aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), and glutamate transporter-1 (GLT-1). Low FA was also related to the loss of neurons with perineuronal GLT-1+ astrocyte decorations, large myelin swellings, lower myelin density, and oligodendrocyte cell death identified by 2',3'-cyclic nucleotide 3'-phosphodiesterase, bridging integrator-1, and nuclear morphology. MD correlated with degenerating oligodendrocytes and depletion of normal GFAP+ astrocytes but not with astrocyte or myelin swelling. We conclude that FA is associated with cytotoxic edema in astrocytes and oligodendrocyte processes as well as myelin injury at the cellular level. MD can detect glial cell death and loss, but it may not discern subtle pathology in swollen astrocytes, oligodendrocytes, or myelin. This study provides a cytopathologic basis for interpreting DTI in the neonatal brain after HI.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dapeng Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manisha Aggarwal
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University, New York, New York, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Later cooling within 6 h and temperatures outside 33-34 °C are not associated with dysfunctional autoregulation during hypothermia for neonatal encephalopathy. Pediatr Res 2021; 89:223-230. [PMID: 32268341 PMCID: PMC7541414 DOI: 10.1038/s41390-020-0876-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/10/2020] [Accepted: 03/07/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cooling delays, temperature outside 33-34 °C, and blood pressure below the mean arterial blood pressure with optimal cerebral autoregulation (MAPOPT) might diminish neuroprotection from therapeutic hypothermia in neonates with hypoxic-ischemic encephalopathy (HIE). We hypothesized that longer time to reach temperature <34 °C and having temperature outside 33-34 °C would be associated with worse autoregulation and greater brain injury. METHODS Neonates with HIE had rectal temperature and near-infrared spectroscopy autoregulation monitoring during hypothermia (n = 63) and rewarming (n = 58). All underwent brain MRI, and a subset received diffusion tensor imaging MRI before day 10 (n = 41). RESULTS Most neonates reached <34 °C at 3-6 h of life. MAPOPT was identified in 54/63 (86%) during hypothermia and in 53/58 (91%) during rewarming. Cooling time was not related to blood pressure deviation from MAPOPT. Later cooling was associated with lower ADC scalar in unilateral posterior centrum semiovale but not in other regions. Temperatures >34 °C were associated with blood pressure above MAPOPT but not with brain injury. CONCLUSIONS In neonates who were predominantly cooled after 3 h, cooling time was not associated with autoregulation or overall brain injury. Blood pressure deviation above MAPOPT was associated with temperature >34 °C. Additional studies are needed in a more heterogeneous population. IMPACT Cooling time to reach target hypothermia temperature within 6 h of birth did not affect cerebral autoregulation measured by NIRS in neonates with hypoxic-ischemic encephalopathy (HIE). Temperature fluctuations >33-34 °C were associated with blood pressures that exceeded the range of optimal autoregulatory vasoreactivity. Cooling time within 6 h of birth and temperatures >33-34 °C were not associated with qualitative brain injury on MRI. Regional apparent diffusion coefficient scalars on diffusion tensor imaging MRI were not appreciably affected by cooling time or temperature >33-34 °C. Additional research in a larger and more heterogeneous population is needed to determine how delayed cooling and temperatures beyond the target hypothermia range affect autoregulation and brain injury.
Collapse
|
9
|
The Spinal Cord Damage in a Rat Asphyxial Cardiac Arrest/Resuscitation Model. Neurocrit Care 2020; 34:844-855. [PMID: 32968971 DOI: 10.1007/s12028-020-01094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND After cardiac arrest/resuscitation (CA/R), animals often had massive functional restrictions including spastic paralysis of hind legs, disturbed balance and reflex abnormalities. Patients who have survived CA also develop movement restrictions/disorders. A successful therapy requires detailed knowledge of the intrinsic damage pattern and the respective mechanisms. Beside neurodegenerations in the cerebellum and cortex, neuronal loss in the spinal cord could be a further origin of such movement artifacts. METHODS Thus, we aimed to evaluate the CA/R-induced degeneration pattern of the lumbar medulla spinalis by immunocytochemical expression of SMI 311 (marker of neuronal perikarya and dendrites), IBA1 (microglia marker), GFAP (marker of astroglia), calbindin D28k (marker of the cellular neuroprotective calcium-buffering system), MnSOD (neuroprotective antioxidant), the transcription factor PPARγ and the mitochondrial marker protein PDH after survival times of 7 and 21 days. The CA/R specimens were compared with those from sham-operated and completely naïve rats. RESULTS & CONCLUSION: The main ACA/R-mediated results were: (1) degeneration of lumbar spinal cord motor neurons, characterized by neuronal pyknotization and peri-neuronal tissue artifacts; (2) attendant activation of microglia in the short-term group; (3) attendant activation of astroglia in the long-term group; (4) degenerative pattern in the intermediate gray matter; (5) activation of the endogenous anti-oxidative defense systems calbindin D28k and MnSOD; (6) activation of the transcription factor PPARγ, especially in glial cells of the gray matter penumbra; and (7) activation of mitochondria. Moreover, marginal signs of anesthesia-induced cell stress were already evident in sham animals when compared with completely naïve spinal cords. A correlation between the NDS and the motor neuronal loss could not be verified. Thus, the NDS appears to be unsuitable as prognostic tool.
Collapse
|
10
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
11
|
Lee JK, Liu D, Raven EP, Jiang D, Liu P, Qin Q, Kulikowicz E, Santos PT, Adams S, Zhang J, Koehler RC, Martin LJ, Tekes A. Mean Diffusivity in Striatum Correlates With Acute Neuronal Death but Not Lesser Neuronal Injury in a Pilot Study of Neonatal Piglets With Encephalopathy. J Magn Reson Imaging 2020; 52:1216-1226. [PMID: 32396711 DOI: 10.1002/jmri.27181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diffusion MRI is routinely used to evaluate brain injury in neonatal encephalopathy. Although abnormal mean diffusivity (MD) is often attributed to cytotoxic edema, the specific contribution from neuronal pathology is unclear. PURPOSE To determine whether MD from high-resolution diffusion tensor imaging (DTI) can detect variable degrees of neuronal degeneration and pathology in piglets with brain injury induced by excitotoxicity or global hypoxia-ischemia (HI) with or without overt infarction. STUDY TYPE Prospective. ANIMAL MODEL Excitotoxic brain injury was induced in six neonatal piglets by intrastriatal stereotaxic injection of the glutamate receptor agonist quinolinic acid (QA). Three piglets underwent global HI or a sham procedure. Piglets recovered for 20-96 hours before undergoing MRI (n = 9). FIELD STRENGTH/SEQUENCE 3.0T MRI with DTI, T1 - and T2 -weighted imaging. ASSESSMENT MD, fractional anisotropy (FA), and qualitative T2 injury were assessed in the putamen and caudate. The cell bodies of normal neurons, degenerating neurons (excitotoxic necrosis, ischemic necrosis, or necrosis-apoptosis cell death continuum), and injured neurons with equivocal degeneration were counted by histopathology. STATISTICAL TESTS Spearman correlations were used to compare MD and FA to normal, degenerating, and injured neurons. T2 injury and neuron counts were evaluated by descriptive analysis. RESULTS The QA insult generated titratable levels of neuronal pathology. In QA, HI, and sham piglets, lower MD correlated with higher ratios of degenerating-to-total neurons (P < 0.05), lower ratios of normal-to-total neurons (P < 0.05), and greater numbers of degenerating neurons (P < 0.05). MD did not correlate with abnormal neurons exhibiting nascent injury (P > 0.99). Neuron counts were not related to FA (P > 0.30) or to qualitative injury from T2 -weighted MRI. DATA CONCLUSION MD is more accurate than FA for detecting neuronal degeneration and loss during acute recovery from neonatal excitotoxic and HI brain injury. MD does not reliably detect nonfulminant, nascent, and potentially reversible neuronal injury. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2 J. Magn. Reson. Imaging 2020;52:1216-1226.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Dapeng Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erika P Raven
- Department of Radiology, New York University (NYU), New York, New York, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Shawn Adams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University (NYU), New York, New York, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest. Sci Rep 2020; 10:5926. [PMID: 32245979 PMCID: PMC7125097 DOI: 10.1038/s41598-020-62435-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Existing cerebrovascular blood pressure autoregulation metrics have not been translated to clinical care for pediatric cardiac arrest, in part because signal noise causes high index time-variability. We tested whether a wavelet method that uses near-infrared spectroscopy (NIRS) or intracranial pressure (ICP) decreases index variability compared to that of commonly used correlation indices. We also compared whether the methods identify the optimal arterial blood pressure (ABPopt) and lower limit of autoregulation (LLA). 68 piglets were randomized to cardiac arrest or sham procedure with continuous monitoring of cerebral blood flow using laser Doppler, NIRS and ICP. The arterial blood pressure (ABP) was gradually reduced until it dropped to below the LLA. Several autoregulation indices were calculated using correlation and wavelet methods, including the pressure reactivity index (PRx and wPRx), cerebral oximetry index (COx and wCOx), and hemoglobin volume index (HVx and wHVx). Wavelet methodology had less index variability with smaller standard deviations. Both wavelet and correlation methods distinguished functional autoregulation (ABP above LLA) from dysfunctional autoregulation (ABP below the LLA). Both wavelet and correlation methods also identified ABPopt with high agreement. Thus, wavelet methodology using NIRS may offer an accurate vasoreactivity monitoring method with reduced signal noise after pediatric cardiac arrest.
Collapse
|
13
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
14
|
Santos PT, O'Brien CE, Chen MW, Hopkins CD, Adams S, Kulikowicz E, Singh R, Koehler RC, Martin LJ, Lee JK. Proteasome Biology Is Compromised in White Matter After Asphyxic Cardiac Arrest in Neonatal Piglets. J Am Heart Assoc 2019; 7:e009415. [PMID: 30371275 PMCID: PMC6474957 DOI: 10.1161/jaha.118.009415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Neurological deficits in hypoxic‐ischemic encephalopathy, even with therapeutic hypothermia, are partially attributed to white matter injury. We theorized that proteasome insufficiency contributes to white matter injury. Methods and Results Neonatal piglets received hypoxia‐ischemia (HI) or sham procedure with normothermia, hypothermia, or hypothermia+rewarming. Some received a proteasome activator drug (oleuropein) or white matter–targeted, virus‐mediated proteasome knockdown. We measured myelin oligodendrocyte glycoprotein, proteasome subunit 20S (P20S), proteasome activity, and carbonylated and ubiquitinated protein levels in white matter and cerebral cortex. HI reduced myelin oligodendrocyte glycoprotein levels regardless of temperature, and myelin oligodendrocyte glycoprotein loss was associated with increased ubiquitinated and carbonylated protein levels. Ubiquitinated and carbonyl‐damaged proteins increased in white matter 29 hours after HI during hypothermia to exceed levels at 6 to 20 hours. In cortex, ubiquitinated proteins decreased. Ubiquitinated and carbonylated protein accumulation coincided with lower P20S levels in white matter; P20S levels also decreased in cerebral cortex. However, proteasome activity in white matter lagged behind that in cortex 29 hours after HI during hypothermia. Systemic oleuropein enhanced white matter P20S and protected the myelin, whereas proteasome knockdown exacerbated myelin oligodendrocyte glycoprotein loss and ubiquitinated protein accumulation after HI. At the cellular level, temperature and HI interactively affected macroglial P20S enrichment in subcortical white matter. Rewarming alone increased macroglial P20S immunoreactivity, but this increase was blocked by HI. Conclusions Oxidized and ubiquitinated proteins accumulate with HI‐induced white matter injury. Proteasome insufficiency may drive this injury. Hypothermia did not prevent myelin damage, protect the proteasome, or preserve oxidized and ubiquitinated protein clearance after HI.
Collapse
Affiliation(s)
- Polan T Santos
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Caitlin E O'Brien
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - May W Chen
- 2 Division of Neonatology Department of Pediatrics Johns Hopkins University Baltimore MD
| | - C Danielle Hopkins
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Shawn Adams
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Ewa Kulikowicz
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Rashmi Singh
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Lee J Martin
- 3 Department of Pathology Johns Hopkins University Baltimore MD
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| |
Collapse
|
15
|
O'Brien CE, Santos PT, Kulikowicz E, Reyes M, Koehler RC, Martin LJ, Lee JK. Hypoxia-Ischemia and Hypothermia Independently and Interactively Affect Neuronal Pathology in Neonatal Piglets with Short-Term Recovery. Dev Neurosci 2019; 41:17-33. [PMID: 31108487 DOI: 10.1159/000496602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
Therapeutic hypothermia is the standard of clinical care for moderate neonatal hypoxic-ischemic encephalopathy. We investigated the independent and interactive effects of hypoxia-ischemia (HI) and temperature on neuronal survival and injury in basal ganglia and cerebral cortex in neonatal piglets. Male piglets were randomized to receive HI injury or sham procedure followed by 29 h of normothermia, sustained hypothermia induced at 2 h, or hypothermia with rewarming during fentanyl-nitrous oxide anesthesia. Viable and injured neurons and apoptotic profiles were counted in the anterior putamen, posterior putamen, and motor cortex at 29 h after HI injury or sham procedure. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) identified genomic DNA fragmentation to confirm cell death. Though hypothermia after HI preserved viable neurons in the anterior and posterior putamen, hypothermia prevented neuronal injury in only the anterior putamen. Hypothermia initiated 2 h after injury did not protect against apoptotic cell death in either the putamen or motor cortex, and rewarming from hypothermia was associated with increased apoptosis in the motor cortex. In non-HI shams, sustained hypothermia during anesthesia was associated with neuronal injury and corresponding viable neuron loss in the anterior putamen and motor cortex. TUNEL confirmed increased neurodegeneration in the putamen of hypothermic shams. Anesthetized, normothermic shams did not show abnormal neuronal cytopathology in the putamen or motor cortex, thereby demonstrating minimal contribution of the anesthetic regimen to neuronal injury during normothermia. We conclude that the efficacy of hypothermic protection after HI is region specific and that hypothermia during anesthesia in the absence of HI may be associated with neuronal injury in the developing brain. Studies examining the potential interactions between hypothermia and anesthesia, as well as with longer durations of hypothermia, are needed.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA,
| | - Polan T Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Reyes
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Govindan RB, Brady KM, Massaro AN, Perin J, Jennings JM, DuPlessis AJ, Koehler RC, Lee JK. Comparison of Frequency- and Time-Domain Autoregulation and Vasoreactivity Indices in a Piglet Model of Hypoxia-Ischemia and Hypothermia. Dev Neurosci 2019; 40:1-13. [PMID: 31048593 PMCID: PMC6824917 DOI: 10.1159/000499425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The optimal method to detect impairments in cerebrovascular pressure autoregulation in neonates with hypoxic-ischemic encephalopathy (HIE) is unclear. Improving autoregulation monitoring methods would significantly advance neonatal neurocritical care. METHODS We tested several mathematical algorithms from the frequency and time domains in a piglet model of HIE, hypothermia, and hypotension. We used laser Doppler flowmetry and induced hypotension to delineate the gold standard lower limit of autoregulation (LLA). Receiver operating characteristics curve analyses were used to determine which indices could distinguish blood pressure above the LLA from that below the LLA in each piglet. RESULTS Phase calculation in the frequency band with maximum coherence, as well as the correlation between mean arterial pressure (MAP) and near-infrared spectroscopy relative total tissue hemoglobin (HbT) or regional oxygen saturation (rSO2), accurately discriminated functional from dysfunctional autoregulation. Neither hypoxia-ischemia nor hypothermia affected the accuracy of these indices. Coherence alone and gain had low diagnostic value relative to phase and correlation. CONCLUSION Our findings indicate that phase shift is the most accurate component of autoregulation monitoring in the developing brain, and it can be measured using correlation or by calculating phase when coherence is maximal. Phase and correlation autoregulation indices from MAP and rSO2 and vasoreactivity indices from MAP and HbT are accurate metrics that are suitable for clinical HIE studies.
Collapse
Affiliation(s)
- Rathinaswamy B Govindan
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Ken M Brady
- Department of Anesthesiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - An N Massaro
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
- Neonatology, Children's National Health System, Washington, District of Columbia, USA
| | - Jamie Perin
- Center for Child and Community Health Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacky M Jennings
- Center for Child and Community Health Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adre J DuPlessis
- Fetal Medicine Institute, Children's National Health System, Washington, District of Columbia, USA
- The George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
17
|
Spatial T-maze identifies cognitive deficits in piglets 1 month after hypoxia-ischemia in a model of hippocampal pyramidal neuron loss and interneuron attrition. Behav Brain Res 2019; 369:111921. [PMID: 31009645 DOI: 10.1016/j.bbr.2019.111921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022]
Abstract
Neonatal brain injury from hypoxia-ischemia (HI) causes major morbidity. Piglet HI is an established method for testing neuroprotective treatments in large, gyrencephalic brain. Though many neurobehavior tests exist for rodents, such tests and their associations with neuropathologic injury remain underdeveloped and underutilized in large, neonatal HI animal models. We examined whether spatial T-maze and inclined beam tests distinguish cognitive and motor differences between HI and sham piglets and correlate with neuropathologic injury. Neonatal piglets were randomized to whole-body HI or sham procedure, and they began T-maze and inclined beam testing 17 days later. HI piglets had more incorrect T-maze turns than did shams. Beam walking time did not differ between groups. Neuropathologic evaluations at 33 days validated the injury with putamen neuron loss after HI to below that of sham procedure. HI decreased the numbers of CA3 pyramidal neurons but not CA1 pyramidal neurons or dentate gyrus granule neurons. Though the number of hippocampal parvalbumin-positive interneurons did not differ between groups, HI reduced the number of CA1 interneuron dendrites. Piglets with more incorrect turns had greater CA3 neuron loss, and piglets that took longer in the maze had fewer CA3 interneurons. The number of putamen neurons was unrelated to T-maze or beam performance. We conclude that neonatal HI causes hippocampal CA3 neuron loss, CA1 interneuron dendritic attrition, and putamen neuron loss at 1-month recovery. The spatial T-maze identifies learning and memory deficits that are related to loss of CA3 pyramidal neurons and fewer parvalbumin-positive interneurons independent of putamen injury.
Collapse
|