1
|
Alsabbagh Y, Erben Y, Vandenberg J, Farres H. New Trends of Personalized Medicine in the Management of Abdominal Aortic Aneurysm: A Review. J Pers Med 2024; 14:1148. [PMID: 39728062 DOI: 10.3390/jpm14121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant vascular condition characterized by the dilation of the abdominal aorta, presenting a substantial risk of rupture and associated high mortality rates. Current management strategies primarily rely on aneurysm diameter and growth rates to predict rupture risk and determine the timing of surgical intervention. However, this approach has limitations, as ruptures can occur in smaller AAAs below surgical thresholds, and many large AAAs remain stable without intervention. This review highlights the need for more precise and individualized assessment tools that integrate biomechanical parameters such as wall stress, wall strength, and hemodynamic factors. Advancements in imaging modalities like ultrasound elastography, computed tomography (CT) angiography, and magnetic resonance imaging (MRI), combined with artificial intelligence, offer enhanced capabilities to assess biomechanical indices and predict rupture risk more accurately. Incorporating these technologies can lead to personalized medicine approaches, improving decision-making regarding the timing of interventions. Additionally, emerging treatments focusing on targeted delivery of therapeutics to weakened areas of the aortic wall, such as nanoparticle-based drug delivery, stem cell therapy, and gene editing techniques like CRISPR-Cas9, show promise in strengthening the aortic wall and halting aneurysm progression. By validating advanced screening modalities and developing targeted treatments, the future management of AAA aims to reduce unnecessary surgeries, prevent ruptures, and significantly improve patient outcomes.
Collapse
Affiliation(s)
- Yaman Alsabbagh
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Young Erben
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jonathan Vandenberg
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Houssam Farres
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
2
|
Mazzolai L, Teixido-Tura G, Lanzi S, Boc V, Bossone E, Brodmann M, Bura-Rivière A, De Backer J, Deglise S, Della Corte A, Heiss C, Kałużna-Oleksy M, Kurpas D, McEniery CM, Mirault T, Pasquet AA, Pitcher A, Schaubroeck HAI, Schlager O, Sirnes PA, Sprynger MG, Stabile E, Steinbach F, Thielmann M, van Kimmenade RRJ, Venermo M, Rodriguez-Palomares JF. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur Heart J 2024; 45:3538-3700. [PMID: 39210722 DOI: 10.1093/eurheartj/ehae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
3
|
Chen J, Hu L, Liu Z. Medical treatments for abdominal aortic aneurysm: an overview of clinical trials. Expert Opin Investig Drugs 2024; 33:979-992. [PMID: 38978286 DOI: 10.1080/13543784.2024.2377747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm is a progressive, segmental, abdominal aortic dilation associated with a high mortality rate. Abdominal aortic aneurysms with diameters larger than 55 mm are associated with a high risk of rupture, and the most effective treatment options are surgical repair. Close observation and lifestyle adjustments are recommended for smaller abdominal aortic aneurysms with lower rupture risk. The development of medical therapies that limit or prevent the progression, expansion, and eventual rupture of abdominal aortic aneurysms remains an unmet clinical need. AREAS COVERED This review provides an overview of completed and ongoing clinical trials examining the efficacies of various drug classes, including antibiotics, antihypertensive drugs, hypolipidemic drugs, hypoglycemic drugs, and other potential therapies for abdominal aortic aneurysms. A search of PubMed, Web of Science, Clinical Trials, and another six clinical trial registries was conducted in January 2024. EXPERT OPINION None of the drugs have enough evidence to indicate that they can effectively inhibit the dilation of abdominal aortic aneurysm. More clinical trial data is required to support the efficacy of propranolol. Future research should also explore different drug delivery mechanisms, such as nanoparticles, to elevate drug concentration at the aneurysm wall.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lanting Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Liu Y, Wang H, Yu M, Cai L, Zhao Y, Cheng Y, Deng Y, Zhao Y, Lu H, Wu X, Zhao G, Xue C, Liu H, Surakka I, Schwendeman A, Lu HS, Daugherty A, Chang L, Zhang J, Temel RE, Chen YE, Guo Y. Hypertriglyceridemia as a Key Contributor to Abdominal Aortic Aneurysm Development and Rupture: Insights from Genetic and Experimental Models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311621. [PMID: 39211871 PMCID: PMC11361217 DOI: 10.1101/2024.08.07.24311621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without effective medications. This study integrated genetic, proteomic, and metabolomic data to identify causation between increased triglyceride (TG)-rich lipoproteins and AAA risk. Three hypertriglyceridemia mouse models were employed to test the hypothesis that increased plasma TG concentrations accelerate AAA development and rupture. In the angiotensin II-infusion AAA model, most Lpl -deficient mice with severely high plasma TG concentrations died of aortic rupture. Consistently, Apoa5 -deficient mice with moderately increased TG concentrations had accelerated AAA development, while human APOC3 transgenic mice with dramatically increased TG concentrations exhibited aortic dissection and rupture. Increased TG concentrations and palmitate inhibited lysyl oxidase maturation. Administration of antisense oligonucleotide targeting Angptl3 profoundly inhibited AAA progression in human APOC3 transgenic mice and Apoe -deficient mice. These results indicate that hypertriglyceridemia is a key contributor to AAA pathogenesis, highlighting the importance of triglyceride-rich lipoprotein management in treating AAA.
Collapse
|
5
|
Barkhordarian M, Tran HHV, Menon A, Pulipaka SP, Aguilar IK, Fuertes A, Dey S, Chacko AA, Sethi T, Bangolo A, Weissman S. Innovation in pathogenesis and management of aortic aneurysm. World J Exp Med 2024; 14:91408. [PMID: 38948412 PMCID: PMC11212750 DOI: 10.5493/wjem.v14.i2.91408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 06/19/2024] Open
Abstract
Aortic aneurysm (AA) refers to the persistent dilatation of the aorta, exceeding three centimeters. Investigating the pathophysiology of this condition is important for its prevention and management, given its responsibility for more than 25000 deaths in the United States. AAs are classified based on their location or morphology. various pathophysiologic pathways including inflammation, the immune system and atherosclerosis have been implicated in its development. Inflammatory markers such as transforming growth factor β, interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase-2 and many more may contribute to this phenomenon. Several genetic disorders such as Marfan syndrome, Ehler-Danlos syndrome and Loeys-Dietz syndrome have also been associated with this disease. Recent years has seen the investigation of novel management of AA, exploring the implication of different immune suppressors, the role of radiation in shrinkage and prevention, as well as minimally invasive and newly hypothesized surgical methods. In this narrative review, we aim to present the new contributing factors involved in pathophysiology of AA. We also highlighted the novel management methods that have demonstrated promising benefits in clinical outcomes of the AA.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Axel Fuertes
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Angel Ann Chacko
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tanni Sethi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
6
|
Crane A, Shanahan RM, Hudson JS, Nowicki KW, Gersey ZC, Agarwal P, Jacobs RC, Lang MJ, Gross B. Pharmaceutical Modulation of Intracranial Aneurysm Development and Rupture. J Clin Med 2024; 13:3324. [PMID: 38893035 PMCID: PMC11173282 DOI: 10.3390/jcm13113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Management of intracranial aneurysms (IAs) is determined by patient age, risk of rupture, and comorbid conditions. While endovascular and microsurgical interventions offer solutions to mitigate the risk of rupture, pharmacological management strategies may complement these approaches or serve as alternatives in appropriate cases. The pathophysiology of IAs allows for the targeting of inflammation to prevent the development and rupture of IAs. The aim of this review is to provide an updated summary of different pharmaceutical management strategies for IAs. Acetylsalicylic acid and renin-angiotensin-aldosterone system (RAAS) inhibitor antihypertensives have some evidence supporting their protective effect. Studies of selective cyclooxygenase-2 (COX-2) inhibitors, statins, ADP inhibitors, and other metabolism-affecting drugs have demonstrated inconclusive findings regarding their association with aneurysm growth or rupture. In this manuscript, we highlight the evidence supporting each drug's effectiveness.
Collapse
Affiliation(s)
- Alex Crane
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Regan M. Shanahan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Joseph S. Hudson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Kamil W. Nowicki
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Zachary C. Gersey
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Prateek Agarwal
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Rachel C. Jacobs
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Michael J. Lang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Bradley Gross
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| |
Collapse
|
7
|
Chao CL, Applewhite B, Reddy NK, Matiuto N, Dang C, Jiang B. Advances and challenges in regenerative therapies for abdominal aortic aneurysm. Front Cardiovasc Med 2024; 11:1369785. [PMID: 38895536 PMCID: PMC11183335 DOI: 10.3389/fcvm.2024.1369785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide and carries a mortality of greater than 80% after rupture. Despite extensive efforts to develop pharmacological treatments, there is currently no effective agent to prevent aneurysm growth and rupture. Current treatment paradigms only rely on the identification and surveillance of small aneurysms, prior to ultimate open surgical or endovascular repair. Recently, regenerative therapies have emerged as promising avenues to address the degenerative changes observed in AAA. This review briefly outlines current clinical management principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a thorough discussion of regenerative approaches is provided. These include cellular approaches (vascular smooth muscle cells, endothelial cells, and mesenchymal stem cells) as well as the delivery of therapeutic molecules, gene therapies, and regenerative biomaterials. Lastly, additional barriers and considerations for clinical translation are provided. In conclusion, regenerative approaches hold significant promise for in situ reversal of tissue damages in AAA, necessitating sustained research and innovation to achieve successful and translatable therapies in a new era in AAA management.
Collapse
Affiliation(s)
- Calvin L. Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| | - Nidhi K. Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Natalia Matiuto
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, United States
| |
Collapse
|
8
|
Wanhainen A, Van Herzeele I, Bastos Goncalves F, Bellmunt Montoya S, Berard X, Boyle JR, D'Oria M, Prendes CF, Karkos CD, Kazimierczak A, Koelemay MJW, Kölbel T, Mani K, Melissano G, Powell JT, Trimarchi S, Tsilimparis N, Antoniou GA, Björck M, Coscas R, Dias NV, Kolh P, Lepidi S, Mees BME, Resch TA, Ricco JB, Tulamo R, Twine CP, Branzan D, Cheng SWK, Dalman RL, Dick F, Golledge J, Haulon S, van Herwaarden JA, Ilic NS, Jawien A, Mastracci TM, Oderich GS, Verzini F, Yeung KK. Editor's Choice -- European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. Eur J Vasc Endovasc Surg 2024; 67:192-331. [PMID: 38307694 DOI: 10.1016/j.ejvs.2023.11.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 225.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVE The European Society for Vascular Surgery (ESVS) has developed clinical practice guidelines for the care of patients with aneurysms of the abdominal aorta and iliac arteries in succession to the 2011 and 2019 versions, with the aim of assisting physicians and patients in selecting the best management strategy. METHODS The guideline is based on scientific evidence completed with expert opinion on the matter. By summarising and evaluating the best available evidence, recommendations for the evaluation and treatment of patients have been formulated. The recommendations are graded according to a modified European Society of Cardiology grading system, where the strength (class) of each recommendation is graded from I to III and the letters A to C mark the level of evidence. RESULTS A total of 160 recommendations have been issued on the following topics: Service standards, including surgical volume and training; Epidemiology, diagnosis, and screening; Management of patients with small abdominal aortic aneurysm (AAA), including surveillance, cardiovascular risk reduction, and indication for repair; Elective AAA repair, including operative risk assessment, open and endovascular repair, and early complications; Ruptured and symptomatic AAA, including peri-operative management, such as permissive hypotension and use of aortic occlusion balloon, open and endovascular repair, and early complications, such as abdominal compartment syndrome and colonic ischaemia; Long term outcome and follow up after AAA repair, including graft infection, endoleaks and follow up routines; Management of complex AAA, including open and endovascular repair; Management of iliac artery aneurysm, including indication for repair and open and endovascular repair; and Miscellaneous aortic problems, including mycotic, inflammatory, and saccular aortic aneurysm. In addition, Shared decision making is being addressed, with supporting information for patients, and Unresolved issues are discussed. CONCLUSION The ESVS Clinical Practice Guidelines provide the most comprehensive, up to date, and unbiased advice to clinicians and patients on the management of abdominal aorto-iliac artery aneurysms.
Collapse
|
9
|
Akbari A, Islampanah M, Arhaminiya H, Alvandi Fard MM, Jamialahmadi T, Sahebkar A. Impact of Statin or Fibrate Therapy on Homocysteine Concentrations: A Systematic Review and Meta-analysis. Curr Med Chem 2024; 31:1920-1940. [PMID: 37069715 DOI: 10.2174/0929867330666230413090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Statins and fibrates are two lipid-lowering drugs used in patients with dyslipidemia. This systematic review and meta-analysis were conducted to determine the magnitude of the effect of statin and fibrate therapy on serum homocysteine levels. METHODS A search was undertaken of the PubMed, Scopus, Web of Science, Embase, and Google Scholar electronic databases up to 15 July 2022. Primary endpoints focused on plasma homocysteine levels. Data were quantitatively analyzed using fixed or random- effect models, as appropriate. Subgroup analyses were conducted based on the drugs and hydrophilic-lipophilic balance of statins. RESULTS After screening 1134 papers, 52 studies with a total of 20651 participants were included in the meta-analysis. The analysis showed a significant decrease in plasma homocysteine levels after statin therapy (WMD: -1.388 μmol/L, 95% CI: [-2.184, -0.592], p = 0.001; I2 = 95%). However, fibrate therapy significantly increased plasma homocysteine levels (WMD: 3.459 μmol/L, 95% CI: [2.849, 4.069], p < 0.001; I2 = 98%). The effect of atorvastatin and simvastatin depended on the dose and duration of treatment (atorvastatin [coefficient: 0.075 [0.0132, 0.137]; p = 0.017, coefficient: 0.103 [0.004, 0.202]; p = 0.040, respectively] and simvastatin [coefficient: -0.047 [-0.063, -0.031]; p < 0.001, coefficient: 0.046 [0.016, 0.078]; p = 0.004]), whereas the effect of fenofibrate persisted over time (coefficient: 0.007 [-0.011, 0.026]; p = 0.442) and was not altered by a change in dosage (coefficient: -0.004 [-0.031, 0.024]; p = 0.798). In addition, the greater homocysteine- lowering effect of statins was associated with higher baseline plasma homocysteine concentrations (coefficient: -0.224 [-0.340, -0.109]; p < 0.001). CONCLUSION Fibrates significantly increased homocysteine levels, whereas statins significantly decreased them.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadise Arhaminiya
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Yodsanit N, Shirasu T, Huang Y, Yin L, Islam ZH, Gregg AC, Riccio AM, Tang R, Kent EW, Wang Y, Xie R, Zhao Y, Ye M, Zhu J, Huang Y, Hoyt N, Zhang M, Hossack JA, Salmon M, Kent KC, Guo LW, Gong S, Wang B. Targeted PERK inhibition with biomimetic nanoclusters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms. Bioact Mater 2023; 26:52-63. [PMID: 36875050 PMCID: PMC9975632 DOI: 10.1016/j.bioactmat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Huang
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - John A. Hossack
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
11
|
Golledge J, Thanigaimani S, Powell JT, Tsao PS. Pathogenesis and management of abdominal aortic aneurysm. Eur Heart J 2023:ehad386. [PMID: 37387260 PMCID: PMC10393073 DOI: 10.1093/eurheartj/ehad386] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
| | - Janet T Powell
- Department of Surgery & Cancer, Imperial College London, Fulham Palace Road, London, UK
| | - Phil S Tsao
- Department of Cardiovascular Medicine, Stanford University, 450 Serra Mall, Stanford, CA, USA
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, 450 Serra Mall, Stanford, CA, USA
| |
Collapse
|
12
|
Cao G, Xuan X, Li Y, Hu J, Zhang R, Jin H, Dong H. Single-cell RNA sequencing reveals the vascular smooth muscle cell phenotypic landscape in aortic aneurysm. Cell Commun Signal 2023; 21:113. [PMID: 37189183 DOI: 10.1186/s12964-023-01120-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Phenotypic switching in vascular smooth muscle cells (VSMCs) has been linked to aortic aneurysm, but the phenotypic landscape in aortic aneurysm is poorly understood. The present study aimed to analyse the phenotypic landscape, phenotypic differentiation trajectory, and potential functions of various VSMCs phenotypes in aortic aneurysm. METHODS Single-cell sequencing data of 12 aortic aneurysm samples and 5 normal aorta samples (obtained from GSE166676 and GSE155468) were integrated by the R package Harmony. VSMCs were identified according to the expression levels of ACTA2 and MYH11. VSMCs clustering was determined by the R package 'Seurat'. Cell annotation was determined by the R package 'singleR' and background knowledge of VSMCs phenotypic switching. The secretion of collagen, proteinases, and chemokines by each VSMCs phenotype was assessed. Cell‒cell junctions and cell-matrix junctions were also scored by examining the expression of adhesion genes. Trajectory analysis was performed by the R package 'Monocle2'. qPCR was used to quantify VSMCs markers. RNA fluorescence in situ hybridization (RNA FISH) was performed to determine the spatial localization of vital VSMCs phenotypes in aortic aneurysms. RESULTS A total of 7150 VSMCs were categorize into 6 phenotypes: contractile VSMCs, fibroblast-like VSMCs, T-cell-like VSMCs, adipocyte-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs. The proportions of T-cell-like VSMCs, adipocyte-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs were significantly increased in aortic aneurysm. Fibroblast-like VSMCs secreted abundant amounts of collagens. T-cell-like VSMCs and macrophage-like VSMCs were characterized by high chemokine levels and proinflammatory effects. Adipocyte-like VSMCs and mesenchymal-like VSMCs were associated with high proteinase levels. RNA FISH validated the presence of T-cell-like VSMCs and macrophage-like VSMCs in the tunica media and the presence of mesenchymal-like VSMCs in the tunica media and tunica adventitia. CONCLUSION A variety of VSMCs phenotypes are involved in the formation of aortic aneurysm. T-cell-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs play pivotal roles in this process. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Yaling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China.
| |
Collapse
|
13
|
Li R, Liu Y, Jiang J. Research advances in drug therapy for abdominal aortic aneurysms over the past five years: An updated narrative review. Int J Cardiol 2023; 372:93-100. [PMID: 36462700 DOI: 10.1016/j.ijcard.2022.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) rupture can lead to patient death. Surgical treatment is currently the optimal treatment for AAA with large diameter (≥50 mm). For AAA with small diameter (30-50 mm), how to administer effective pharmacological treatment to reduce aneurysm expansion rate and rupture risk is the current focus in the field of vascular surgery. There is still no effective drug for the treatment of asymptomatic AAA. METHODS This article searches the PubMed, Web of Science, Embase, and Cochrane databases for clinical studies on the drug treatment of abdominal aortic aneurysms in the past 5 years. The latest progress in the drug treatment of AAA was reviewed, including antibiotics, antihypertensive drugs, antiplatelet drugs, hypoglycemic drugs, hypolipidemic drugs, mast cell inhibitors and corticosteroids. RESULTS 25 studies were included in this narrative review. Among them, metformin revealed therapeutic effect in 2 prospective cohort study and 3 retrospective cohort study. The therapeutic effect of statins was controversial in 3 retrospective cohort study. However, the definite therapeutic effects of antihypertensive agents, antibiotics, mast cell inhibitors, antiplatelet agents and corticosteroids on abdominal aortic aneurysms have not been verified in prospective studies. CONCLUSION Metformin provided a positive effect in reducing expansion rate, rupture risk, and perioperative mortality. The therapeutic effect of statins was controversial, which warrant further validation in prospective cohorts. However, there is still a lack of effective agents for the treatment of AAA based on recent studies.
Collapse
Affiliation(s)
- Ruihua Li
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, No.107, Road Wen Hua Xi, Jinan, Shandong 250012, China.
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, No.107, Road Wen Hua Xi, Jinan, Shandong 250012, China.
| | - Jianjun Jiang
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, No.107, Road Wen Hua Xi, Jinan, Shandong 250012, China.
| |
Collapse
|
14
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
15
|
Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022; 153:113340. [PMID: 35780618 PMCID: PMC9514980 DOI: 10.1016/j.biopha.2022.113340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The cardiovascular field is still searching for a treatment for abdominal aortic aneurysms (AAA). This inflammatory disease often goes undiagnosed until a late stage and associated rupture has a high mortality rate. No pharmacological treatment options are available. Three hallmark factors of AAA pathology include inflammation, extracellular matrix remodeling, and vascular smooth muscle dysfunction. Here we discuss drugs for AAA treatment that have been studied in clinical trials by examining the drug targets and data present for each drug's ability to regulate the aforementioned three hallmark pathways in AAA progression. Historically, drugs that were examined in interventional clinical trials for treatment of AAA were repurposed therapeutics. Novel treatments (biologics, small-molecule compounds etc.) have not been able to reach the clinic, stalling out in pre-clinical studies. Here we discuss the backgrounds of previous investigational drugs in hopes of better informing future development of potential therapeutics. Overall, the highlighted themes discussed here stress the importance of both centralized anti-inflammatory drug targets and rigor of translatability. Exceedingly few murine studies have examined an intervention-based drug treatment in halting further growth of an established AAA despite interventional treatment being the therapeutic approach taken to treat AAA in a clinical setting. Additionally, data suggest that a potentially successful drug target may be a central inflammatory biomarker. Specifically, one that can effectively modulate all three hallmark factors of AAA formation, not just inflammation. It is suggested that inhibiting PGE2 formation with an mPGES-1 inhibitor is a leading drug target for AAA treatment to this end.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
16
|
Cao G, Lu Z, Gu R, Xuan X, Zhang R, Hu J, Dong H. Deciphering the Intercellular Communication Between Immune Cells and Altered Vascular Smooth Muscle Cell Phenotypes in Aortic Aneurysm From Single-Cell Transcriptome Data. Front Cardiovasc Med 2022; 9:936287. [PMID: 35837612 PMCID: PMC9273830 DOI: 10.3389/fcvm.2022.936287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Vascular smooth muscle cell (VSMC) phenotype switching has been preliminarily found in aortic aneurysms. However, two major questions were raised: (1) What factors drive phenotypic switching of VSMCs in aortic aneurysms? (2) What role does VSMC phenotype transformation play in aortic aneurysms? We speculated that the interaction between infiltrated immune cells and VSMCs played a pivotal role in aortic aneurysm expansion. Materials and Methods We obtained single-cell transcriptome data GSE155468 that incorporate eight aortic aneurysm samples and three normal aorta samples. A standard single-cell analysis procedure was performed by Seurat (v3.1.2) for identifying the general cell components. Subsequently, VSMCs were extracted separately and re-clustered for identifying switched VSMC phenotypes. VSMC phenotype annotation was relied on the definitions of specific VSMC phenotypes in published articles. Vital VSMC phenotypes were validated by immunofluorescence. Next, identified immune cells and annotated vital VSMC phenotypes were extracted for analyzing the intercellular communication. R package CellChat (v1.1.3) was used for investigating the communication strength, signaling pathways, and communication patterns between various VSMC phenotypes and immune cells. Result A total of 42,611 cells were identified as CD4 + T cells, CD8 + T cells, VSMC, monocytes, macrophages, fibroblasts, endothelial cells, and B cells. VSMCs were further classified into contractile VSMCs, secreting VSMCs, macrophage-like VSMCs, mesenchymal-like VSMCs, adipocyte-like VSMCs, and T-cell-like VSMCs. Intercellular communication analysis was performed between immune cells (macrophages, B cells, CD4 + T cells, CD8 + T cells) and immune related VSMCs (macrophage-like VSMCs, mesenchymal-like VSMCs, T-cell-like VSMCs, contractile VSMCs). Among selected cell populations, 27 significant signaling pathways with 61 ligand–receptor pairs were identified. Macrophages and macrophage-like VSMCs both assume the roles of a signaling sender and receiver, showing the highest communication capability. T cells acted more as senders, while B cells acted as receivers in the communication network. T-cell-like VSMCs and contractile VSMCs were used as senders, while mesenchymal-like VSMCs played a poor role in the communication network. Signaling macrophage migration inhibitory factor (MIF), galectin, and C-X-C motif chemokine ligand (CXCL) showed high information flow of intercellular communication, while signaling complement and chemerin were completely turned on in aortic aneurysms. MIF and galectin promoted VSMC switch into macrophage-like phenotypes, CXCL, and galectin promoted VSMCs transform into T-cell-like phenotypes. MIF, galectin, CXCL, complement, and chemerin all mediated the migration and recruitment of immune cells into aortic aneurysms. Conclusion The sophisticated intercellular communication network existed between immune cells and immune-related VSMCs and changed as the aortic aneurysm progressed. Signaling MIF, galectin, CXCL, chemerin, and complement made a significant contribution to aortic aneurysm progression through activating immune cells and promoting immune cell migration, which could serve as the potential target for the treatment of aortic aneurysms.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhengchao Lu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiyuan Gu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Honglin Dong,
| |
Collapse
|
17
|
Pratesi C, Esposito D, Apostolou D, Attisani L, Bellosta R, Benedetto F, Blangetti I, Bonardelli S, Casini A, Fargion AT, Favaretto E, Freyrie A, Frola E, Miele V, Niola R, Novali C, Panzera C, Pegorer M, Perini P, Piffaretti G, Pini R, Robaldo A, Sartori M, Stigliano A, Taurino M, Veroux P, Verzini F, Zaninelli E, Orso M. Guidelines on the management of abdominal aortic aneurysms: updates from the Italian Society of Vascular and Endovascular Surgery (SICVE). THE JOURNAL OF CARDIOVASCULAR SURGERY 2022; 63:328-352. [PMID: 35658387 DOI: 10.23736/s0021-9509.22.12330-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The objective of these Guidelines was to revise and update the previous 2016 Italian Guidelines on Abdominal Aortic Aneurysm Disease, in accordance with the National Guidelines System (SNLG), to guide every practitioner toward the most correct management pathway for this pathology. The methodology applied in this update was the GRADE-SIGN version methodology, following the instructions of the AGREE quality of reporting checklist as well. The first methodological step was the formulation of clinical questions structured according to the PICO (Population, Intervention, Comparison, Outcome) model according to which the Recommendations were issued. Then, systematic reviews of the Literature were carried out for each PICO question or for homogeneous groups of questions, followed by the selection of the articles and the assessment of the methodological quality for each of them using qualitative checklists. Finally, a Considered Judgment form was filled in for each clinical question, in which the features of the evidence as a whole are assessed to establish the transition from the level of evidence to the direction and strength of the recommendations. These guidelines outline the correct management of patients with abdominal aortic aneurysm in terms of screening and surveillance. Medical management and indication for surgery are discussed, as well as preoperative assessment regarding patients' background and surgical risk evaluation. Once the indication for surgery has been established, the options for traditional open and endovascular surgery are described and compared, focusing specifically on patients with ruptured abdominal aortic aneurysms as well. Finally, indications for early and late postoperative follow-up are explained. The most recent evidence in the Literature has been able to confirm and possibly modify the previous recommendations updating them, likewise to propose new recommendations on prospectively relevant topics.
Collapse
Affiliation(s)
- Carlo Pratesi
- Department of Vascular Surgery, Careggi University Hospital, Florence, Italy
| | - Davide Esposito
- Department of Vascular Surgery, Careggi University Hospital, Florence, Italy -
| | | | - Luca Attisani
- Department of Vascular Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Raffaello Bellosta
- Department of Vascular Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Filippo Benedetto
- Department of Vascular Surgery, AOU Policlinico Martino, Messina, Italy
| | | | | | - Andrea Casini
- Department of Intensive Care, Careggi University Hospital, Florence, Italy
| | - Aaron T Fargion
- Department of Vascular Surgery, Careggi University Hospital, Florence, Italy
| | - Elisabetta Favaretto
- Department of Angiology and Blood Coagulation, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Antonio Freyrie
- Department of Vascular Surgery, Parma University Hospital, Parma, Italy
| | - Edoardo Frola
- Department of Vascular Surgery, AO S. Croce e Carle, Cuneo, Italy
| | - Vittorio Miele
- Department of Diagnostic Imaging, Careggi University Hospital, Florence, Italy
| | - Raffaella Niola
- Department of Vascular and Interventional Radiology, AORN Cardarelli, Naples, Italy
| | - Claudio Novali
- Department of Vascular Surgery, GVM Maria Pia Hospital, Turin, Italy
| | - Chiara Panzera
- Department of Vascular Surgery, AOU Sant'Andrea, Rome, Italy
| | - Matteo Pegorer
- Department of Vascular Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Paolo Perini
- Department of Vascular Surgery, Parma University Hospital, Parma, Italy
| | | | - Rodolfo Pini
- Department of Vascular Surgery, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Alessandro Robaldo
- Department of Vascular Surgery, Ticino Vascular Center - Lugano Regional Hospital, Lugano, Switzerland
| | - Michelangelo Sartori
- Department of Angiology and Blood Coagulation, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | | | | | - Fabio Verzini
- Department of Vascular Surgery, AOU Città della Salute e della Scienza, Turin, Italy
| | - Erica Zaninelli
- Department of General Medical Practice, ATS Bergamo - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Massimiliano Orso
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| |
Collapse
|
18
|
Pena RCF, Hofmann Bowman MA, Ahmad M, Pham J, Kline-Rogers E, Case MJ, Lee J, Eagle K. An assessment of the current medical management of thoracic aortic disease: A patient-centered scoping literature review. Semin Vasc Surg 2022; 35:16-34. [PMID: 35501038 DOI: 10.1053/j.semvascsurg.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/11/2022]
Abstract
Thoracic aortic aneurysm and dissection are complex diagnoses that require management by multidisciplinary providers using a variety of medical therapies, surgical interventions, and lifestyle modifications. Pharmacological agents, such as β-blockers (atenolol) and angiotensin II type 1 receptor blockers (losartan), have been mainstay treatments for several years, and research from the past decade has continued to evaluate these and other medication classes to further improve patient morbidity and mortality. Combination β- and renin-aldosterone-angiotensin blockade, statins, metformin, antioxidants, and vitamins have been evaluated as therapeutics in both thoracic and abdominal aortic aneurysms, as well as the effects of various antibiotics (ie, fluoroquinolones and tetracyclines) and benefits of lifestyle modifications (eg, diet and exercise) and enhanced patient-centered care and treatment adherence. In addition, as our understanding of the genetic, biochemical, and pathophysiological mechanisms behind these diseases expands, so do potential targets for future therapeutic research (eg, interleukins, matrix metalloproteases, and mast cells). This review incorporates the major meta-analyses, systematic and generalized reviews, and clinical trials published from 2010 through 2021 that focus on these topics in thoracic aortic aneurysms (and abdominal aneurysms when thoracic literature is scarce). Several key ongoing clinical trials, case studies, and in vivo/in vitro studies are also mentioned. Furthermore, we discuss current gaps in the literature and the abundance of clinical evidence for some interventions in abdominal aneurysms with few thoracic correlates, thus indicating a need for investigation of these subjects in the latter.
Collapse
Affiliation(s)
- Robert C F Pena
- Department of Emergency Medicine, George Washington University Hospital, 2000 N Street NW, Apartment P3, Washington, DC 20036.
| | - Marion A Hofmann Bowman
- Department of Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI
| | - Myra Ahmad
- School of Medicine, University of Washington, Seattle, WA
| | - Julie Pham
- School of Medicine, University of Washington, Seattle, WA
| | | | | | - Jenney Lee
- School of Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
19
|
Hadjivasilis A, Kouis P, Kousios A, Panayiotou A. The Effect of Fibrates on Kidney Function and Chronic Kidney Disease Progression: A Systematic Review and Meta-Analysis of Randomised Studies. J Clin Med 2022; 11:768. [PMID: 35160220 PMCID: PMC8836930 DOI: 10.3390/jcm11030768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
AIM Fibrates have proven efficacy in cardiovascular risk reduction and are commonly used, in addition to statins, to control hypertriglyceridaemia. Their use is often limited due to reduction in glomerular filtration rate at treatment initiation. However, recent studies suggest benign changes in kidney function and improvement of proteinuria, an established early marker of microvascular disease and kidney disease progression. We summarize the evidence from existing trials and provide a summary of effects of fibrates, alone or in combination, on kidney disease progression and proteinuria. METHODS AND RESULTS Systematic review and meta-analysis of randomized, controlled trials (PROSPERO CRD42020187764). Out of 12,243 potentially eligible studies, 29 were included in qualitative and quantitative analysis, with a total of 20,176 patients. Mean creatinine increased by 1.05 (95% CI (0.63 to 1.46)) units in patients receiving fibrates vs. comparator, and this was similar in all other subgroups. eGFR showed a bigger decrease in the fibrates arm (SMD -1.99; 95% CI (-3.49 to -0.48)) when all studies were pooled together. Notably, short-term serum creatinine and eGFR changes remained constant in the long-term. Pooled estimates show that fibrates improve albuminuria progression, RR 0.86; 95% CI (0.76 to 0.98); albuminuria regression, RR 1.19; 95% CI (1.08 to 1.310). CONCLUSIONS Fibrates improve albuminuria in patients with and without diabetes when used to treat hyperlipidaemia. The modest creatinine increase should not be a limiting factor for fibrate initiation in people with preserved renal function or mild CKD. The long-term effects on kidney disease progression warrant further study.
Collapse
Affiliation(s)
- Alexandros Hadjivasilis
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
| | - Panayiotis Kouis
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia 1678, Cyprus
| | - Andreas Kousios
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
- West London Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London W12 0HS, UK
- Centre for Inflammatory Disease, Imperial College London, London W12 0HS, UK
| | - Andrie Panayiotou
- Cardiovascular Epidemiology and Genetics Research Lab, Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus; (A.H.); (P.K.); (A.P.)
| |
Collapse
|
20
|
Si K, Lu D, Tian J. Integrated analysis and the identification of a circRNA-miRNA-mRNA network in the progression of abdominal aortic aneurysm. PeerJ 2022; 9:e12682. [PMID: 35036156 PMCID: PMC8711282 DOI: 10.7717/peerj.12682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a disease commonly seen in the elderly. The aneurysm diameter increases yearly, and the larger the AAA the higher the risk of rupture, increasing the risk of death. However, there are no current effective interventions in the early stages of AAA. Methods Four gene expression profiling datasets, including 23 normal artery (NOR) tissue samples and 97 AAA tissue samples, were integrated in order to explore potential molecular biological targets for early intervention. After preprocessing, differentially expressed genes (DEGs) between AAA and NOR were identified using LIMMA package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were conducted using the DAVID database. The protein-protein interaction network was constructed and hub genes were identified using the STRING database and plugins in Cytoscape. A circular RNA (circRNA) profile of four NOR tissues versus four AAA tissues was then reanalyzed. A circRNA-miRNA-mRNA interaction network was constructed after predictions were made using the Targetscan and Circinteractome databases. Results A total of 440 DEGs (263 up-regulated and 177 down-regulated) were identified in the AAA group, compared with the NOR group. The majority were associated with the extracellular matrix, tumor necrosis factor-α, and transforming growth factor-β. Ten hub gene-encoded proteins (namely IL6, RPS27A, JUN, UBC, UBA52, FOS, IL1B, MMP9, SPP1 and CCL2) coupled with a higher degree of connectivity hub were identified after protein‐protein interaction network analysis. Our results, in combination with the results of previous studies revealed that miR-635, miR-527, miR-520h, miR-938 and miR-518a-5p may be affected by circ_0005073 and impact the expression of hub genes such as CCL2, SPP1 and UBA52. The miR-1206 may also be affected by circ_0090069 and impact RPS27A expression. Conclusions This circRNA-miRNA-mRNA network may perform critical roles in AAA and may be a novel target for early intervention.
Collapse
Affiliation(s)
- Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Da Lu
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Jianbo Tian
- Institute of Information Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
21
|
Fibrates: A Possible Treatment Option for Patients with Abdominal Aortic Aneurysm? Biomolecules 2022; 12:biom12010074. [PMID: 35053222 PMCID: PMC8773940 DOI: 10.3390/biom12010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease; however, there is no established treatment for patients with AAA. Fibrates are agonists of peroxisome proliferator-activated receptor alpha (PPARα) that are widely used as therapeutic agents to treat patients with hypertriglyceridemia. They can regulate the pathogenesis of AAA in multiple ways, for example, by exerting anti-inflammatory and anti-oxidative effects and suppressing the expression of matrix metalloproteinases. Previously, basic and clinical studies have evaluated the effects of fenofibrate on AAA. In this paper, we summarize the results of these studies and discuss the problems associated with using fenofibrate as a therapeutic agent for patients with AAA. In addition, we discuss a new perspective on the regulation of AAA by PPARα agonists.
Collapse
|
22
|
Golledge J, Arnott C, Moxon J, Monaghan H, Norman R, Morris D, Li Q, Jones G, Roake J, Bown M, Neal B. Protocol for the Metformin Aneurysm Trial (MAT): a placebo-controlled randomised trial testing whether metformin reduces the risk of serious complications of abdominal aortic aneurysm. Trials 2021; 22:962. [PMID: 34961561 PMCID: PMC8710921 DOI: 10.1186/s13063-021-05915-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Multiple observational studies have associated metformin prescription with reduced progression of abdominal aortic aneurysm (AAA). The Metformin Aneurysm Trial (MAT) will test whether metformin reduces the risk of AAA rupture-related mortality or requirement for AAA surgery (AAA events) in people with asymptomatic aneurysms. Methods MAT is an international, multi-centre, prospective, parallel-group, randomised, placebo-controlled trial. Participants must have an asymptomatic AAA measuring at least 35 mm in maximum diameter, no diabetes, no contraindication to metformin and no current plans for surgical repair. The double-blind period is preceded by a 6-week, single-blind, active run-in phase in which all potential participants receive metformin. Only patients tolerating metformin by taking at least 80% of allocated medication will enter the trial and be randomised to 1500 mg of metformin XR or an identical placebo. The primary outcome is the proportion of AAA events defined as rupture-related mortality or need for surgical repair. Secondary outcomes include AAA growth, major adverse cardiovascular events and health-related quality of life. In order to test if metformin reduced the risk of AAA events by at least 25%, 616 primary outcome events will be required (power 90%, alpha 0.05). Discussion Currently, there is no drug therapy for AAA. Past trials have found no convincing evidence of the benefit of multiple blood pressure lowering, antibiotics, a mast cell inhibitor, an anti-platelet drug and a lipid-lowering medication on AAA growth. MAT is one of a number of trials now ongoing testing metformin for AAA. MAT, unlike these other trials, is designed to test the effect of metformin on AAA events. The international collaboration needed for MAT will be challenging to achieve given the current COVID-19 pandemic. If this challenge can be overcome, MAT will represent a trial unique within the AAA field in its large size and design. Trial registration Australian Clinical Trials ACTRN12618001707257. Registered on 16 October 2018
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia. .,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia. .,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia. .,George Institute Australia, Sydney, New South Wales, Australia.
| | - Clare Arnott
- George Institute Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Helen Monaghan
- George Institute Australia, Sydney, New South Wales, Australia
| | - Richard Norman
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Dylan Morris
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Qiang Li
- George Institute Australia, Sydney, New South Wales, Australia
| | - Greg Jones
- Department of Surgical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Justin Roake
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Matt Bown
- Department of Cardiovascular Services, University of Leicester, Leicester, UK
| | - Bruce Neal
- George Institute Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Golledge J, Thanigaimani S, Phie J. A Systematic Review and Meta-Analysis of the Effect of Pentagalloyl Glucose Administration on Aortic Expansion in Animal Models. Biomedicines 2021; 9:biomedicines9101442. [PMID: 34680560 PMCID: PMC8533208 DOI: 10.3390/biomedicines9101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022] Open
Abstract
Background: The aim of this systematic review was to pool evidence from studies testing if pentagalloyl glucose (PGG) limited aortic expansion in animal models of abdominal aortic aneurysm (AAA). Methods: The review was conducted according to the PRISMA guidelines and registered with PROSPERO. The primary outcome was aortic expansion assessed by direct measurement. Secondary outcomes included aortic expansion measured by ultrasound and aortic diameter at study completion. Sub analyses examined the effect of PGG delivery in specific forms (nanoparticles, periadventitial or intraluminal), and at different times (from the start of AAA induction or when AAA was established), and tested in different animals (pigs, rats and mice) and AAA models (calcium chloride, periadventitial, intraluminal elastase or angiotensin II). Meta-analyses were performed using Mantel-Haenszel’s methods with random effect models and reported as mean difference (MD) and 95% confidence intervals (CIs). Risk of bias was assessed with a customized tool. Results: Eleven studies reported in eight publications involving 214 animals were included. PGG significantly reduced aortic expansion measured by direct observation (MD: −66.35%; 95% CI: −108.44, −24.27; p = 0.002) but not ultrasound (MD: −32.91%; 95% CI: −75.16, 9.33; p = 0.127). PGG delivered intravenously within nanoparticles significantly reduced aortic expansion, measured by both direct observation (MD: −116.41%; 95% CI: −132.20, −100.62; p < 0.001) and ultrasound (MD: −98.40%; 95% CI: −113.99, −82.81; p < 0.001). In studies measuring aortic expansion by direct observation, PGG administered topically to the adventitia of the aorta (MD: −28.41%; 95% CI −46.57, −10.25; p = 0.002), studied in rats (MD: −56.61%; 95% CI: −101.76, −11.46; p = 0.014), within the calcium chloride model (MD: −56.61%; 95% CI: −101.76, −11.46; p = 0.014) and tested in established AAAs (MD: −90.36; 95% CI: −135.82, −44.89; p < 0.001), significantly reduced aortic expansion. The findings of other analyses were not significant. The risk of bias of all studies was high. Conclusion: There is inconsistent low-quality evidence that PGG inhibits aortic expansion in animal models.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia; (S.T.); (J.P.)
- The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD 4810, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia
- Correspondence: ; Tel.: +61-7-4796-1417; Fax: +61-7-4796-1401
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia; (S.T.); (J.P.)
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia
| | - James Phie
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia; (S.T.); (J.P.)
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia
| |
Collapse
|
24
|
Unno N, Tanaka H, Yata T, Kayama T, Yamanaka Y, Tsuyuki H, Sano M, Inuzuka K, Naruse E, Takeuchi H. K-134, a phosphodiesterase 3 inhibitor, reduces vascular inflammation and hypoxia, and prevents rupture of experimental abdominal aortic aneurysms. JVS Vasc Sci 2021; 1:219-232. [PMID: 34617050 PMCID: PMC8489215 DOI: 10.1016/j.jvssci.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022] Open
Abstract
Objective Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease, which frequently results in fatal rupture; however, no pharmacologic treatment exists to inhibit AAA growth and prevent rupture. In this study, we investigated whether K-134, a novel phosphodiesterase 3 inhibitor, could limit the progression and rupture of AAA using multiple experimental models. Methods A hypoperfusion-induced AAA rat model was developed by inserting of a small catheter and via tight ligation of the infrarenal aorta. Rats were fed with a 0.15% K-134-containing diet (K-134(+) group) or a normal diet (K-134(-) group) from 7 days before the experiment to 28 days after model creation (pretreatment protocol). After the administration period, elastin fragmentation, macrophage infiltration, reactive oxygen species expression, matrix metalloproteinase levels, aneurysmal tissue hypoxia, and adventitial vasa vasorum (VV) stenosis were assessed. In the delayed treatment protocol, rats with AAA >3 mm were randomly divided to K-134(+) or K-134(-) group 7 days after model creation, and the effect of K-134 on suppressing preexisting AAA was examined. Further, elastase-induced rat model and angiotensin II-infused ApoE-/- mouse model were also used to examine the ability of K-134 to prevent rupture. Results K-134 prevented AAA rupture and significantly improved survival in the pretreatment protocol (P < .01). In the K-134(+) group, elastin degeneration was prevented; macrophage infiltration and reactive oxygen species production were significantly decreased. At 14 days, the enzymatic activity of matrix metalloproteinase-9 was significantly decreased. Further, K-134 inhibited intimal hyperplasia and VV stenosis. Expressions of hypoxic markers, hypoxia-inducible factor-1α, and pimonidazole, in the aneurysmal wall were also attenuated. In the delayed treatment protocol, K-134 also improved survival of rats with preexisting AAA. Similarly, in the elastase-induced rat model and angiotensin II-infused ApoE-/- mouse model, K-134 inhibited rupture and significantly improved survival (P < .01). Conclusions K-134 prevented the rupture of AAA and improved survival through suppressing inflammatory reaction. The inhibition of intimal hyperplasia in the adventitial VV may be associated with reduced hypoxia in the aneurysmal tissue. (JVS–Vascular Science 2020;1:219-32.) Clinical Relevance This study shows that K-134, a novel phosphodiesterase 3 inhibitor, suppressed abdominal aortic aneurysm (AAA) rupture. Considering that K-134 had already undergone a phase Ⅱ study in the United States for claudication in peripheral artery occlusive disease patients with good tolerance, K-134 may become a promising new therapeutic option for AAAs and could undergo clinical trials for patients with small AAA.
Collapse
Affiliation(s)
- Naoki Unno
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Division of Vascular Surgery, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Hiroki Tanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuro Yata
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Kayama
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuta Yamanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hajime Tsuyuki
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaki Sano
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazunori Inuzuka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ena Naruse
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
25
|
Krishna SM, Li J, Wang Y, Moran CS, Trollope A, Huynh P, Jose R, Biros E, Ma J, Golledge J. Kallistatin limits abdominal aortic aneurysm by attenuating generation of reactive oxygen species and apoptosis. Sci Rep 2021; 11:17451. [PMID: 34465809 PMCID: PMC8408144 DOI: 10.1038/s41598-021-97042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Inflammation, vascular smooth muscle cell apoptosis and oxidative stress are believed to play important roles in abdominal aortic aneurysm (AAA) pathogenesis. Human kallistatin (KAL; gene SERPINA4) is a serine proteinase inhibitor previously shown to inhibit inflammation, apoptosis and oxidative stress. The aim of this study was to investigate the role of KAL in AAA through studies in experimental mouse models and patients. Serum KAL concentration was negatively associated with the diagnosis and growth of human AAA. Transgenic overexpression of the human KAL gene (KS-Tg) or administration of recombinant human KAL (rhKAL) inhibited AAA in the calcium phosphate (CaPO4) and subcutaneous angiotensin II (AngII) infusion mouse models. Upregulation of KAL in both models resulted in reduction in the severity of aortic elastin degradation, reduced markers of oxidative stress and less vascular smooth muscle apoptosis within the aorta. Administration of rhKAL to vascular smooth muscle cells incubated in the presence of AngII or in human AAA thrombus-conditioned media reduced apoptosis and downregulated markers of oxidative stress. These effects of KAL were associated with upregulation of Sirtuin 1 activity within the aortas of both KS-Tg mice and rodents receiving rhKAL. These results suggest KAL-Sirtuin 1 signalling limits aortic wall remodelling and aneurysm development through reductions in oxidative stress and vascular smooth muscle cell apoptosis. Upregulating KAL may be a novel therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Smriti Murali Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jiaze Li
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Yutang Wang
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.,School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Horsham, VIC, Australia
| | - Corey S Moran
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Alexandra Trollope
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.,Division of Anatomy, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Pacific Huynh
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Roby Jose
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Erik Biros
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jianxing Ma
- Department of Physiology, Health Sciences Centre, University of Oklahoma, Oklahoma City, OK, 73104, USA
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia. .,Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia.
| |
Collapse
|
26
|
Matthews EO, Pinchbeck J, Elmore K, Jones RE, Moxon JV, Golledge J. The reproducibility of measuring maximum abdominal aortic aneurysm diameter from ultrasound images. Ultrasound J 2021; 13:13. [PMID: 33646456 PMCID: PMC7921236 DOI: 10.1186/s13089-021-00211-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/08/2021] [Indexed: 01/09/2023] Open
Abstract
Background Accurate repeat assessment of the diameter of an abdominal aortic aneurysm (AAA) is important. This study investigated the reproducibility of different methods of measuring AAA diameter from ultrasound images. Methods Fifty AAA patients were assessed by ultrasound. Maximum AAA diameter was measured independently by three trained observers on two separate occasions using a standardised protocol. Five diameters were measured from each scan, three in the anterior–posterior (AP) and two in the transverse (TV) plane, including inner-to-inner (ITI), outer-to-outer (OTO) and leading edge-to-leading edge (LETLE). Intra- and inter-observer reproducibility were reported as reproducibility coefficients. Statistical comparison of methods was performed using linear mixed effects models. Results Intra-observer reproducibility coefficients (AP LETLE 2.2 mm; AP ITI 2.4 mm; AP OTO 2.6 mm) were smaller than inter-observer reproducibility coefficients (AP LETLE 4.6 mm: AP ITI 4.5; and AP OTO 4.8 mm). There was no statistically significant difference in intra-observer reproducibility of three types of measurements performed in the AP plane. Measurements obtained in the TV plane had statistically significant worse intra-observer reproducibility than those performed in the AP plane. Conclusions This study suggests that the comparison of maximum AAA diameter between repeat images is most reproducibly performed by a single trained observer measuring diameters in the AP plane.
Collapse
Affiliation(s)
- Evan O Matthews
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jenna Pinchbeck
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Kylie Elmore
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, 4812, Australia
| | - Rhondda E Jones
- Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.,Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia. .,Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, 4812, Australia. .,Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
27
|
Golledge J, Krishna SM, Wang Y. Mouse models for abdominal aortic aneurysm. Br J Pharmacol 2020; 179:792-810. [PMID: 32914434 DOI: 10.1111/bph.15260] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non-coding RNAs and thrombosis in aneurysm pathology. Further well-designed research in clinically relevant models is expected to be translated into effective AAA drugs.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Yutang Wang
- Discipline of Life Sciences, School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria, Australia
| |
Collapse
|
28
|
Golledge J, Pinchbeck J, Rowbotham SE, Yip L, Jenkins JS, Quigley F, Moxon JV. Health-related quality of life amongst people diagnosed with abdominal aortic aneurysm and peripheral artery disease and the effect of fenofibrate. Sci Rep 2020; 10:14583. [PMID: 32884020 PMCID: PMC7471934 DOI: 10.1038/s41598-020-71454-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were, firstly, to assess the effect of concurrent peripheral artery disease (PAD) on the health-related quality of life (QOL) of people diagnosed with a small abdominal aortic aneurysm (AAA); and secondly, to test whether the peroxisome proliferator-activated receptor α agonist fenofibrate improved QOL of people diagnosed with a small AAA, including those diagnosed with concurrent PAD. The study included both a cross-sectional observational study and a randomized placebo-controlled clinical trial. 140 people diagnosed with a 35-49 mm diameter AAA, 56 (40%) of whom had concurrent PAD, and 25 healthy controls were prospectively recruited. QOL was assessed with the short form (SF) 36. Findings in participants that were diagnosed with both AAA and PAD were compared separately with those of participants that had a diagnosis of AAA alone or who had neither AAA nor PAD diagnosed (healthy controls). All participants diagnosed with an AAA were then randomly allocated to 145 mg of fenofibrate per day or identical placebo. Outcomes were assessed by changes in the domains of the SF-36 and ankle brachial pressure Index (ABPI) from randomization to 24 weeks. Data were analyzed using Mann-Whitney U tests. Participants diagnosed with both AAA and PAD had significantly worse QOL than participants diagnosed with AAA alone or healthy controls. Fenofibrate did not significantly alter SF-36 scores or ABPI over 24 weeks. Fenofibrate does not improve QOL of people diagnosed with small AAA, irrespective of whether they have concurrent PAD.Trial registration: ACTN12613001039774 Australian New Zealand Clinical Trials Registry.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia.
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia.
| | - Jenna Pinchbeck
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Sophie E Rowbotham
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Lisan Yip
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Jason S Jenkins
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, Australian Institute of Tropical Medicine, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
29
|
Golledge J, Moxon JV, Singh TP, Bown MJ, Mani K, Wanhainen A. Lack of an effective drug therapy for abdominal aortic aneurysm. J Intern Med 2020; 288:6-22. [PMID: 31278799 DOI: 10.1111/joim.12958] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abdominal aortic aneurysm (AAA) rupture is a common cause of death in adults. Current AAA treatment is by open surgical or endovascular aneurysm repair. Rodent model and human epidemiology, and genetic and observational studies over the last few decades have highlighted the potential of a number of drug therapies, including medications that lower blood pressure, correct dyslipidaemia, or inhibit thrombosis, inflammation or matrix remodelling, as approaches to managing small AAA. This review summarizes prior AAA pathogenesis data from animal and human studies aimed at identifying targets for the development of drug therapies. The review also systematically assesses past randomized placebo-controlled drug trials in patients with small AAAs. Eleven previously published randomized-controlled clinical trials testing different drug therapies aimed at slowing AAA progression were identified. Five of the trials tested antibiotics and three trials assessed medications that lower blood pressure. Meta-analyses of these trials suggested that neither of these approaches limit AAA growth. Allocation to blood pressure-lowering medication was associated with a small reduction in AAA rupture or repair, compared to placebo (relative risk 0.94, 95% confidence intervals 0.89, 1.00, P = 0.047). Three further trials assessed the effect of a mast cell inhibitor, fibrate or platelet aggregation inhibition and reported no effect on AAA growth or clinical events. Past trials were noted to have a number of design issues, particularly small sample sizes and limited follow-up. Much larger trials are needed to properly test potential therapeutic approaches if a convincingly effective medical therapy for AAA is to be identified.
Collapse
Affiliation(s)
- J Golledge
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - J V Moxon
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - T P Singh
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia
| | - M J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - K Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - A Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Baxter BT, Matsumura J, Curci JA, McBride R, Larson L, Blackwelder W, Lam D, Wijesinha M, Terrin M. Effect of Doxycycline on Aneurysm Growth Among Patients With Small Infrarenal Abdominal Aortic Aneurysms: A Randomized Clinical Trial. JAMA 2020; 323:2029-2038. [PMID: 32453369 PMCID: PMC7251450 DOI: 10.1001/jama.2020.5230] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE Abdominal aortic aneurysms affect more than 3% of US older adults. OBJECTIVE To test whether doxycycline reduces the growth of abdominal aortic aneurysm over 2 years as measured by maximum transverse diameter. DESIGN, SETTING, AND PARTICIPANTS Parallel, 2-group, randomized clinical trial that was conducted at 22 US clinical centers between May 2013 and January 2017, and enrolled patients 50 years or older with small (3.5-5.0 cm for men, 3.5-4.5 cm for women) infrarenal aneurysms. The final date of follow-up was July 31, 2018. INTERVENTIONS Patients were randomized to receive twice daily for 2 years doxycycline 100 mg orally (as capsules) (n = 133) or placebo (n = 128). MAIN OUTCOMES AND MEASURES The primary outcome was change in abdominal aortic aneurysm maximum transverse diameter measured from CT images at baseline and follow-up at 2 years. Patients were assigned ranks based on the maximum transverse diameter (measured or imputed) of the aorta and also if they underwent aneurysm repair or died. The ranks were converted to scores having a normal distribution to facilitate the primary analysis ("normal scores"). RESULTS Of 261 patients randomized, no follow-up CT scans were obtained on 7 (3%), leaving a final analysis set of 129 patients assigned to doxycycline and 125 to placebo (mean [SD] age, 71.0 years [7.4 years], 35 women [14%]). The outcome normal scores used in the primary analysis were based on maximum transverse diameter (measured or imputed) in 113 patients (88%) in the doxycycline group and 112 patients (90%) in the placebo group; aneurysm repair in 13 (10%) and 9 (7%), and death in 3 (2%) and 4 (3%), respectively. The primary outcome, normal scores reflecting change in aortic diameter, did not differ significantly between the 2 groups, mean change in normal scores, 0.0262 vs -0.0258 (1-sided P = .71). Mean (SD) baseline maximum transverse diameter was 4.3 cm (0.4 cm) for doxycycline and 4.3 cm (0.4 cm) for placebo. At the 2-year follow-up, the change in measured maximum transverse diameter was 0.36 cm (95% CI, 0.31 to 0.40 cm) for 96 patients in the doxycycline group vs 0.36 cm (95% CI, 0.30 to 0.41 cm) for 101 patients in the placebo group (difference, 0.0; 95% CI, -0.07 to 0.07 cm; 2-sided P = .93). No patients were withdrawn from the study because of adverse effects. Joint pain occurred in 84 of 129 patients (65%) with doxycycline and 79 of 125 (63%) with placebo. CONCLUSIONS AND RELEVANCE Among patients with small infrarenal abdominal aortic aneurysms, doxycycline compared with placebo did not significantly reduce aneurysm growth at 2 years. These findings do not support the use of doxycycline for reducing the growth of small abdominal aortic aneurysms. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01756833.
Collapse
Affiliation(s)
- B. Timothy Baxter
- Department of Surgery, University of Nebraska School of Medicine, Omaha
| | - Jon Matsumura
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison
| | - John A. Curci
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - LuAnn Larson
- Department of Surgery, University of Nebraska School of Medicine, Omaha
| | - William Blackwelder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | | | - Marniker Wijesinha
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael Terrin
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
31
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Abstract
Abdominal aortic aneurysms (AAA) pose a considerable health burden and at present are only managed surgically since there is no proven pharmacotherapy that will retard their expansion or reduce the incidence of fatal rupture. This pathology shares several pathophysiological mechanisms with atherosclerosis, such as macrophage infiltration, inflammation, and degradation of extracellular matrix. Therefore, therapeutic targets proven effective in the treatment of atherosclerosis could also be considered for treatment of AAA. Different members of the nuclear receptor (NR) superfamily have been extensively studied as potential targets in the treatment of cardiovascular disease (CVD) and therefore might also be suited for AAA treatment. In this context, this review summarizes the role of different NRs in CVD, mostly atherosclerosis, and discusses in detail the current knowledge of their implications in AAA. From this overview it becomes apparent that NRs that were attributed a beneficial or adverse role in CVD have similar roles in AAA. Together, this overview provides compelling evidence to consider several NRs as attractive targets for future treatment of AAA.
Collapse
|
33
|
Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 2020; 24:2717-2729. [PMID: 31967733 PMCID: PMC7077531 DOI: 10.1111/jcmm.14953] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Pre‐clinical studies have indicated that mitoprotective drugs may add cardioprotection beyond rapid revascularization, antiplatelet therapy and risk modification. We review the clinical efficacy of mitoprotective drugs that have progressed to clinical testing comprising cyclosporine A, KAI‐9803, MTP131 and TRO 40303. Whereas cyclosporine may reduce infarct size in patients undergoing primary angioplasty as evaluated by release of myocardial ischaemic biomarkers and infarct size imaging, the other drugs were not capable of demonstrating this effect in the clinical setting. The absent effect leaves the role of the mitochondrial permeability transition pore for reperfusion injury in humans unanswered and indicates that targeting one single mechanism to provide mitoprotection may not be efficient. Moreover, the lack of effect may relate to favourable outcome with current optimal therapy, but conditions such as age, sex, diabetes, dyslipidaemia and concurrent medications may also alter mitochondrial function. However, as long as the molecular structure of the pore remains unknown and specific inhibitors of its opening are lacking, the mitochondrial permeability transition pore remains a target for alleviation of reperfusion injury. Nevertheless, taking conditions such as ageing, sex, comorbidities and co‐medication into account may be of paramount importance during the design of pre‐clinical and clinical studies testing mitoprotective drugs.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Hector Alejandro Cabrera-Fuentes
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme and Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.,Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, Mexico.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Marisol Ruiz-Meana
- Vall d'Hebron Institut de Recerca, University Hospital Vall d'Hebron-Universitat Autònoma, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV, CIBER-CV, Spain
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen. Medical School, Essen, Germany
| | - Michel Ovize
- CarMeN Laboratory, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, INSERM U1060, Lyon, France
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To summarize recent data on the role of dyslipidaemia and the benefit from managing this in people with disease of the abdominal aorta and its peripheral branches (peripheral artery disease, PAD). RECENT FINDINGS Findings from the Further Cardiovascular Outcomes Research with Proprotein convertase subtilisin/kexin type 9 (PCSK9) Inhibition in Subjects with Elevated Risk (FOURIER) trial demonstrate the benefit of intensely lowering low-density lipoprotein-cholesterol (LDL-c) in people with PAD to substantially reduce the incidence of major cardiovascular events (MACE; myocardial infarction, stroke or cardiovascular death) and major adverse limb events (MALE). Despite the evidence of substantial benefits from lowering LDL-c, the uptake of drug therapies to lower LDL-c remains sub-optimal in people with PAD. SUMMARY Effective methods to educate physicians and patients on best medical management are needed. Further research is needed to examine the benefit of LDL-c lowering and other lipid therapies for PAD-specific problems like abdominal aortic aneurysm progression and walking impairment. Other novel lipid therapies, such as those that lower lipoprotein (a), maybe particularly beneficial to people with PAD given the evidence indicating high concentrations in this population and the high incidence of MACE in these individuals.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University
- The Department of Vascular and Endovascular Surgery, The Townsville Hospital
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia
- School of Public Health, Curtin University
| | - Gerald F Watts
- Medical School, University of Western Australia
- Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Western Australia
| |
Collapse
|
35
|
Pinchbeck JL, Moxon JV, Rowbotham SE, Bourke M, Lazzaroni S, Morton SK, Matthews EO, Hendy K, Jones RE, Bourke B, Jaeggi R, Favot D, Quigley F, Jenkins JS, Reid CM, Velu R, Golledge J. Randomized Placebo-Controlled Trial Assessing the Effect of 24-Week Fenofibrate Therapy on Circulating Markers of Abdominal Aortic Aneurysm: Outcomes From the FAME -2 Trial. J Am Heart Assoc 2019; 7:e009866. [PMID: 30371299 PMCID: PMC6404864 DOI: 10.1161/jaha.118.009866] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background There is no drug therapy for abdominal aortic aneurysm (AAA). FAME‐2 (Fenofibrate in the Management of Abdominal Aortic Aneurysm 2) was a placebo‐controlled randomized trial designed to assess whether administration of 145 mg of fenofibrate/d for 24 weeks favorably modified circulating markers of AAA. Methods and Results Patients with AAAs measuring 35 to 49 mm and no contraindication were randomized to fenofibrate or identical placebo. The primary outcome measures were the differences in serum osteopontin and kallistatin concentrations between groups. Secondary analyses compared changes in the circulating concentration of AAA‐associated proteins, and AAA growth, between groups using multivariable linear mixed‐effects modeling. A total of 140 patients were randomized to receive fenofibrate (n=70) or placebo (n=70). By the end of the study 3 (2.1%) patients were lost to follow‐up and 18 (12.9%) patients had ceased trial medication. A total of 85% of randomized patients took ≥80% of allocated tablets and were deemed to have complied with the medication regimen. Patients’ allocated fenofibrate had expected reductions in serum triglycerides and estimated glomerular filtration rate, and increases in serum homocysteine. No differences in serum osteopontin, kallistatin, or AAA growth were observed between groups. Conclusions Administering 145 mg/d of fenofibrate for 24 weeks did not significantly reduce serum concentrations of osteopontin and kallistatin concentrations, or rates of AAA growth in this trial. The findings do not support the likely benefit of fenofibrate as a treatment for patients with small AAAs. Clinical Trial Registration URL: http://www.anzctr.org.au. Unique identifier: ACTRN12613001039774.
Collapse
Affiliation(s)
- Jenna L Pinchbeck
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Joseph V Moxon
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,2 The Australian Institute of Tropical Health and Medicine James Cook University Townsville Queensland Australia
| | - Sophie E Rowbotham
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,3 Department of Vascular Surgery The Royal Brisbane and Women's Hospital Herston Queensland Australia.,4 School of Medicine The University of Queensland Herston Queensland Australia
| | - Michael Bourke
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,5 Gosford Vascular Services Gosford New South Wales Australia
| | - Sharon Lazzaroni
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Susan K Morton
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Evan O Matthews
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Kerolos Hendy
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Rhondda E Jones
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,2 The Australian Institute of Tropical Health and Medicine James Cook University Townsville Queensland Australia
| | - Bernie Bourke
- 5 Gosford Vascular Services Gosford New South Wales Australia
| | - Rene Jaeggi
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Danella Favot
- 3 Department of Vascular Surgery The Royal Brisbane and Women's Hospital Herston Queensland Australia
| | - Frank Quigley
- 6 Department of Vascular and Endovascular Surgery Mater Hospital Townsville Queensland Australia
| | - Jason S Jenkins
- 3 Department of Vascular Surgery The Royal Brisbane and Women's Hospital Herston Queensland Australia
| | - Christopher M Reid
- 7 School of Public Health and Preventative Medicine Monash University Melbourne Victoria Australia.,8 School of Public Health Curtin University Perth Western Australia Australia
| | - Ramesh Velu
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,9 Department of Vascular and Endovascular Surgery The Townsville Hospital Townsville Queensland Australia
| | - Jonathan Golledge
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,2 The Australian Institute of Tropical Health and Medicine James Cook University Townsville Queensland Australia.,6 Department of Vascular and Endovascular Surgery Mater Hospital Townsville Queensland Australia.,9 Department of Vascular and Endovascular Surgery The Townsville Hospital Townsville Queensland Australia
| |
Collapse
|
36
|
Abstract
Current management of aortic aneurysms relies exclusively on prophylactic operative repair of larger aneurysms. Great potential exists for successful medical therapy that halts or reduces aneurysm progression and hence alleviates or postpones the need for surgical repair. Preclinical studies in the context of abdominal aortic aneurysm identified hundreds of candidate strategies for stabilization, and data from preoperative clinical intervention studies show that interventions in the pathways of the activated inflammatory and proteolytic cascades in enlarging abdominal aortic aneurysm are feasible. Similarly, the concept of pharmaceutical aorta stabilization in Marfan syndrome is supported by a wealth of promising studies in the murine models of Marfan syndrome-related aortapathy. Although some clinical studies report successful medical stabilization of growing aortic aneurysms and aortic root stabilization in Marfan syndrome, these claims are not consistently confirmed in larger and controlled studies. Consequently, no medical therapy can be recommended for the stabilization of aortic aneurysms. The discrepancy between preclinical successes and clinical trial failures implies shortcomings in the available models of aneurysm disease and perhaps incomplete understanding of the pathological processes involved in later stages of aortic aneurysm progression. Preclinical models more reflective of human pathophysiology, identification of biomarkers to predict severity of disease progression, and improved design of clinical trials may more rapidly advance the opportunities in this important field.
Collapse
Affiliation(s)
- Jan H. Lindeman
- Dept. Vascular Surgery, Leiden University Medical Center, The Netherlands
| | - Jon S. Matsumura
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
37
|
|
38
|
Affiliation(s)
- Neal R Barshes
- 1 Division of Vascular Surgery and Endovascular Therapy Michael E. DeBakey Department of Surgery Baylor College of Medicine/Michael E. DeBakey Veterans Affairs Medical Center Houston TX
| |
Collapse
|