1
|
Chu S, Wang W, Zhang N, Liu T, Li J, Chu X, Zuo S, Ma Z, Ma D, Chu L. Protective effects of 18β-Glycyrrhetinic acid against myocardial infarction: Involvement of PI3K/Akt pathway activation and inhibiting Ca 2+ influx via L-type Ca 2+ channels. Food Sci Nutr 2021; 9:6831-6843. [PMID: 34925811 PMCID: PMC8645779 DOI: 10.1002/fsn3.2639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
18β-Glycyrrhetinic acid (18β-GA) is a component extracted from licorice. This study aimed to evaluate the effects of 18β-GA on isoproterenol (ISO)-induced acute myocardial infarction in rats and mice. Two consecutive days of subcutaneous injection of ISO (85 mg/kg/day) resulted in acute myocardial infarction. We examined the pathological changes, oxidative stress, inflammatory response, and expression of apoptosis in mouse hearts. The expressions of phosphoinositol-3-kinase (PI3K), protein kinase B (Akt), and the phosphorylation levels of PI3K (p-PI3K) and Akt (p-Akt) were determined by western blotting. The whole-cell patch-clamp technique was applied to observe the L-type Ca2+ currents, and the Ion Optix detection system was used for cell contraction and Ca2+ transient in isolated rat cardiac ventricular myocytes. In ISO-induced myocardial infarction, the J-point, heart rate, creatine kinase, lactate dehydrogenase, superoxide dismutase, catalase, malondialdehyde, glutathion, and reactive oxygen species decreased in mice after 18β-GA treatment. 18β-GA improved ISO-induced morphologic pathology, inhibited the inflammatory pathway response and cardiomyocyte apoptosis, and inhibited PI3K/Akt signaling. 18β-GA could significantly inhibit ICa-L, myocardial contraction, and Ca2+ transient. This study demonstrates that 18β-GA has cardioprotective effects on acute myocardial infarction, which may be related to inhibiting oxidative stress, inflammation, apoptosis via the PI3K/Akt pathway, and reducing cell contractility and Ca2+ concentration via L-type Ca2+ channels.
Collapse
Affiliation(s)
- Sijie Chu
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Weijie Wang
- Department of SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ning Zhang
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Tong Liu
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Jing Li
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Xi Chu
- Department of PharmacyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Saijie Zuo
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Zhihong Ma
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
- Department of Immunology and PathobiologyHebei University of Chinese MedicineShijiazhuangChina
| | - Donglai Ma
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Li Chu
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Integrative Medicine on Liver‐Kidney PatternsHebei University of Chinese MedicineShijiazhuangChina
| |
Collapse
|
2
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu J, He J, Ge L, Xiao H, Huang Y, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy. Stem Cell Res Ther 2021; 12:413. [PMID: 34294127 PMCID: PMC8296710 DOI: 10.1186/s13287-021-02480-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH. MicroRNAs (miRNAs) are known to mediate cellular senescence. However, the precise mechanism by which miRNAs regulate the senescence of hypoxic MSCs remains to be further studied. In the present study, we evaluated whether hypoxic preconditioning enhances the survival and therapeutic effects of olfactory mucosa MSC (OM-MSC) survival and therapeutic effects in ICH and investigated the mechanisms by which miRNA ameliorates hypoxic OM-MSC senescence. METHODS In the in vivo model, ICH was induced in mice by administration of collagenase IV. At 24 h post-ICH, 5 × 105 normoxia or hypoxia OM-MSCs or saline was administered intracerebrally. The behavioral outcome, neuronal apoptosis, and OM-MSC survival were evaluated. In the in vitro model, OM-MSCs were exposed to hemin. Cellular senescence was examined by evaluating the expressions of P16INK4A, P21, P53, and by β-galactosidase staining. Microarray and bioinformatic analyses were performed to investigate the differences in the miRNA expression profiles between the normoxia and hypoxia OM-MSCs. Autophagy was confirmed using the protein expression levels of LC3, P62, and Beclin-1. RESULTS In the in vivo model, transplanted OM-MSCs with hypoxic preconditioning exhibited increased survival and tissue-protective capability. In the in vitro model, hypoxia preconditioning decreased the senescence of OM-MSCs exposed to hemin. Bioinformatic analysis identified that microRNA-326 (miR-326) expression was significantly increased in the hypoxia OM-MSCs compared with that of normoxia OM-MSCs. Upregulation of miR-326 alleviated normoxia OM-MSC senescence, whereas miR-326 downregulation increased hypoxia OM-MSC senescence. Furthermore, we showed that miR-326 alleviated cellular senescence by upregulating autophagy. Mechanistically, miR-326 promoted the autophagy of OM-MSCs via the PI3K signaling pathway by targeting polypyrimidine tract-binding protein 1 (PTBP1). CONCLUSIONS Our study shows that hypoxic preconditioning delays OM-MSC senescence and augments the therapeutic efficacy of OM-MSCs in ICH by upregulating the miR-326/PTBP1/PI3K-mediated autophagy.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China. .,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Nagano H, Suematsu Y, Takuma M, Aoki S, Satoh A, Takayama E, Kinoshita M, Morimoto Y, Takeoka S, Fujie T, Kiyosawa T. Enhanced cellular engraftment of adipose-derived mesenchymal stem cell spheroids by using nanosheets as scaffolds. Sci Rep 2021; 11:14500. [PMID: 34262089 PMCID: PMC8280158 DOI: 10.1038/s41598-021-93642-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The short survival time of transplanted adipose-derived mesenchymal stem cells (ASCs) is a problem for skin wound healing. Transplantation after the formation of cellular spheroids has been investigated as a promising method for prolonging cellular survival. However, there have been technical restrictions for transplantation of spheroids in clinical practice. Here, we show an effective method for transplantation of ASC spheroids onto skin wounds in order to efficiently cure refractory ulcers. To assist anchoring of spheroids onto skin wounds, we used a 120-nm-thick free-standing film (nanosheet) that has a highly adhesive property. Bioluminescence imaging showed that ASC spheroids carried by the nanosheet survived for 14 days, which is about two-times longer than that previously reported. Wounds treated with a nanosheet carrying ASC spheroids were 4-times smaller than untreated wounds on day 14. This method for transplantation of spheroids could be applied to cell therapy for various refractory skin wounds.
Collapse
Affiliation(s)
- Hisato Nagano
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoshitaka Suematsu
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Megumi Takuma
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Shimpo Aoki
- Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-0082, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, 501-0296, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan
| | - Shinji Takeoka
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Tomoharu Kiyosawa
- Department of Plastic and Reconstructive Surgery, National Defense Medical College, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
5
|
Laundos TL, Vasques-Nóvoa F, Gomes RN, Sampaio-Pinto V, Cruz P, Cruz H, Santos JM, Barcia RN, Pinto-do-Ó P, Nascimento DS. Consistent Long-Term Therapeutic Efficacy of Human Umbilical Cord Matrix-Derived Mesenchymal Stromal Cells After Myocardial Infarction Despite Individual Differences and Transient Engraftment. Front Cell Dev Biol 2021; 9:624601. [PMID: 33614654 PMCID: PMC7890004 DOI: 10.3389/fcell.2021.624601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Human mesenchymal stem cells gather special interest as a universal and feasible add-on therapy for myocardial infarction (MI). In particular, human umbilical cord matrix-derived mesenchymal stromal cells (UCM-MSC) are advantageous since can be easily obtained and display high expansion potential. Using isolation protocols compliant with cell therapy, we previously showed UCM-MSC preserved cardiac function and attenuated remodeling 2 weeks after MI. In this study, UCM-MSC from two umbilical cords, UC-A and UC-B, were transplanted in a murine MI model to investigate consistency and durability of the therapeutic benefits. Both cellular products improved cardiac function and limited adverse cardiac remodeling 12 weeks post-ischemic injury, supporting sustained and long-term beneficial therapeutic effect. Donor associated variability was found in the modulation of cardiac remodeling and activation of the Akt-mTOR-GSK3β survival pathway. In vitro, the two cell products displayed similar ability to induce the formation of vessel-like structures and comparable transcriptome in normoxia and hypoxia, apart from UCM-MSCs proliferation and expression differences in a small subset of genes associated with MHC Class I. These findings support that UCM-MSC are strong candidates to assist the treatment of MI whilst calling for the discussion on methodologies to characterize and select best performing UCM-MSC before clinical application.
Collapse
Affiliation(s)
- Tiago L. Laundos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Cardiovascular RandD Center, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Internal Medicine, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Rita N. Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Vasco Sampaio-Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | | | | | | | | | - Perpétua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Diana S. Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Preconditioned and Genetically Modified Stem Cells for Myocardial Infarction Treatment. Int J Mol Sci 2020; 21:ijms21197301. [PMID: 33023264 PMCID: PMC7582407 DOI: 10.3390/ijms21197301] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease and myocardial infarction remain leading causes of mortality worldwide. Existing myocardial infarction treatments are incapable of fully repairing and regenerating the infarcted myocardium. Stem cell transplantation therapy has demonstrated promising results in improving heart function following myocardial infarction. However, poor cell survival and low engraftment at the harsh and hostile environment at the site of infarction limit the regeneration potential of stem cells. Preconditioning with various physical and chemical factors, as well as genetic modification and cellular reprogramming, are strategies that could potentially optimize stem cell transplantation therapy for clinical application. In this review, we discuss the most up-to-date findings related to utilizing preconditioned stem cells for myocardial infarction treatment, focusing mainly on preconditioning with hypoxia, growth factors, drugs, and biological agents. Furthermore, genetic manipulations on stem cells, such as the overexpression of specific proteins, regulation of microRNAs, and cellular reprogramming to improve their efficiency in myocardial infarction treatment, are discussed as well.
Collapse
|
7
|
Zheng S, Chen H, Zhang T, Yao Y, Chen Y, Zhang S, Bai B. Gene-modified BMSCs encapsulated with carboxymethyl cellulose facilitate osteogenesis in vitro and in vivo. J Biomater Appl 2020; 35:814-822. [PMID: 32777971 DOI: 10.1177/0885328220948030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Critical size bone defects are one of the most serious complications in orthopedics due to the lack of effective osteogenesis treatment. We fabricated carboxymethyl cellulose with phenol moieties (CMC-ph) microcapsules loaded with gene-modified rat bone mesenchymal stem cells (rBMSCs) that secrete hBMP2 following doxycycline (DOX) induction. The results showed that the morphology of microcapsules was spherical, and their diameters have equally distributed in the range of 100-150 μm; the viability of rBMSCs was unchanged over time. Through real-time PCR and Western blot analyses, the rBMSCs in microcapsules were found to secrete hBMP2 and to have upregulated mRNA and protein expression of osteogenesis-related genes in vitro and in vivo. Furthermore, the in vivo results suggested that the group with the middle concentration of cells expressed the highest amount of osteogenic protein over time. In this study, we showed that gene-modified rBMSCs in CMC-ph microcapsules had good morphology and viability. The BMP2-BMSCs/CMC-Ph microcapsule system could upregulate osteogenic mRNA and protein in vitro and in vivo. Further analysis demonstrated that the medium concentration of cells had a suitable density for transplantation in nude mice. Therefore, BMP2-BMSCs/CMC-Ph microcapsule constructs have potential for bone regeneration in vivo.
Collapse
Affiliation(s)
- Shicong Zheng
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Hanzheng Chen
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Tingshuai Zhang
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Yongchang Yao
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Yi Chen
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Shujiang Zhang
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| | - Bo Bai
- Department of Orthopedics, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, The First Affiliated Hospital of 26468Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Deng J, Guo M, Li G, Xiao J. Gene therapy for cardiovascular diseases in China: basic research. Gene Ther 2020; 27:360-369. [PMID: 32341485 DOI: 10.1038/s41434-020-0148-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease has become a major disease affecting health in the whole world. Gene therapy, delivering foreign normal genes into target cells to repair damages caused by defects and abnormal genes, shows broad prospects in treating different kinds of cardiovascular diseases. China has achieved great progress of basic gene therapy researches and pathogenesis of cardiovascular diseases in recent years. This review will summarize the latest research about gene therapy of proteins, epigenetics, including noncoding RNAs and genome-editing technology in myocardial infarction, cardiac ischemia-reperfusion injury, atherosclerosis, muscle atrophy, and so on in China. We wish to highlight some important findings about the essential roles of basic gene therapy in this field, which might be helpful for searching potential therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Jiali Deng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Mengying Guo
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts, General Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
9
|
Sun Z, Xie Y, Lee RJ, Chen Y, Jin Q, Lv Q, Wang J, Yang Y, Li Y, Cai Y, Wang R, Han Z, Zhang L, Xie M. Myocardium-targeted transplantation of PHD2 shRNA-modified bone mesenchymal stem cells through ultrasound-targeted microbubble destruction protects the heart from acute myocardial infarction. Theranostics 2020; 10:4967-4982. [PMID: 32308762 PMCID: PMC7163444 DOI: 10.7150/thno.43233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/22/2020] [Indexed: 01/09/2023] Open
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a promising approach to facilitate the precise delivery of bone marrow stem cells (BMSCs) to the ischemic myocardium. However, stem cell therapy for ischemic myocardium is challenging due to the poor survival of transplanted stem cells under severe ischemic conditions. In this study, we investigated whether myocardium-targeted transplantation of prolyl hydroxylase domain protein 2 (PHD2) shRNA-modified BMSCs by UTMD increases the viability of grafted cells, and enhances their cardioprotective effects in acute myocardial infarction. Methods: BMSCs were transduced with lentiviral PHD2 shRNA, and a novel microbubble formulation was prepared by a thin-film hydration method. In rats, BMSCs with or without PHD2 shRNA modification were transplanted by UTMD after inducing acute myocardium infarction. Effects of PHD2 shRNA on BMSC survival, myocardial apoptosis, angiogenesis, and cardiac function were evaluated. In vitro, anti-apoptotic effects and its mechanisms of PHD2 silencing on BMSC and BMSC-conditioned medium on H9C2 cell were detected. Results: PHD2 shRNA-modified BMSC transplantation by UTMD resulted in increased BMSC survival, reduced myocardial apoptosis, reduced infarct size, increased vascular density, and improved cardiac function compared to the control vector-modified BMSC transplantation by UTMD. PHD2 silencing increased BMSC survival through a HIF-1α-dependent mechanism. The decrease in cardiomyocyte apoptosis by conditioned medium from PHD2 shRNA-treated BMSCs was due to an increase in the expression of insulin-like growth factor (IGF)-1. Conclusions: The delivery of PHD2 shRNA-modified BMSCs by UTMD promoted grafted cell homing and activity, and increased myocardial angiogenesis in the infarcted heart, leading to improved cardiac function. This combination may provide a promising strategy for enhancing the effectiveness of stem cell therapy after acute myocardial infarction.
Collapse
|
10
|
Tu Y, Qiu Y, Liu L, Huang T, Tang H, Liu Y, Guo W, Jiang H, Fan Y, Yu B. mi R -15a/15b Cluster Modulates Survival of Mesenchymal Stem Cells to Improve Its Therapeutic Efficacy of Myocardial Infarction. J Am Heart Assoc 2020; 8:e010157. [PMID: 30616426 PMCID: PMC6405735 DOI: 10.1161/jaha.118.010157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The poor viability of transplanted mesenchymal stem cells (MSCs) hampers their therapeutic efficacy for ischemic heart disease. MicroRNAs are involved in regulation of MSC survival and function. The present study was designed to investigate the molecular effects of miR‐15a/15b on MSC survival, focusing on the role of vascular endothelial growth factor receptor 2. Methods and Results We first harvested donor luc(Luciferase)‐MSCs (5×105) isolated from the luciferase transgenic mice with FVB background. Luc‐MSCs were transfected with miR‐15a/15b mimics or inhibitors and cultured under oxygen glucose deprivation condition for 12 hours to mimics the harsh microenvironment in infarcted heart; they were subjected to MTT (3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide?Thiazolyl Blue Tetrazolium Bromide) assay, bioluminescence imaging, quantitative reverse transcription–polymerase chain reaction, transferase‐mediated deoxyuridine triphosphate–digoxigenin nick‐end labeling assay, and flow cytometry. Furthermore, the levels of vascular endothelial growth factor receptor 2, protein kinase B, p(Phosphorylate)‐protein kinase B, Bcl‐2, Bax, and caspase‐3 proteins were available by Western blotting assay. In vivo, acute myocardial infarction was induced in 24 mice by coronary ligation, with subsequent receipt of Luc‐MSCs, Luc‐MSCs+miR‐15a/15b inhibitors, or PBS treatment. The therapeutic procedure and treatment effects were tracked and assessed using bioluminescence imaging and echocardiographic measurement. Next, ex vivo imaging and immunohistochemistry were conducted to verify the distribution of MSCs. We demonstrated that miR‐15a/15b targeted vascular endothelial growth factor receptor 2 to modulate MSC survival, possibly via phosphatidylinositol 3‐kinase/protein kinase B signaling pathway, which was proved by bioluminescence imaging, immunohistochemistry analysis, and echocardiographic measurement. Conclusions Luc‐MSCs could be followed dynamically in vitro and in vivo by bioluminescence imaging, and the role of miR‐15a/b could be inferred from the loss of signals from luc‐MSCs. This finding may have practical clinical implications in miR‐15a/15b–modified MSC transplantation in treating myocardial infarction.
Collapse
Affiliation(s)
- Yingfeng Tu
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China.,2 The Key Laboratory of Myocardial Ischemia Chinese Ministry of Education Harbin Heilongjiang China
| | - Yan Qiu
- 3 Department of Geriatrics Huadong sanatorium Wuxi City Jiangsu Province China
| | - Li Liu
- 4 Department of Anesthesiology The Third Hospital of Harbin Medical University Harbin Heilongjiang China
| | - Tao Huang
- 5 Department of Radiology The Fourth Hospital of Harbin Medical University Harbin China
| | - Hao Tang
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China
| | - Youbin Liu
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China.,2 The Key Laboratory of Myocardial Ischemia Chinese Ministry of Education Harbin Heilongjiang China
| | - Wenguang Guo
- 7 College of Basic Medical Science Harbin Medical University-Daqing Daqing China
| | - Hongchi Jiang
- 8 Key Laboratory of Hepatosplenic Surgery Department of General Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Yuhua Fan
- 6 College of Pharmacy Harbin Medical University-Daqing Daqing China
| | - Bo Yu
- 1 Department of Cardiology The 2nd Hospital of Harbin Medical University Nangang District Harbin China.,2 The Key Laboratory of Myocardial Ischemia Chinese Ministry of Education Harbin Heilongjiang China
| |
Collapse
|