1
|
Choe JY, Jones HP. Methods for Modeling Early Life Stress in Rodents. Methods Mol Biol 2025; 2868:205-219. [PMID: 39546232 DOI: 10.1007/978-1-0716-4200-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Animal models of early life stress/adversity (ELS) have provided a foundation from which our understanding of the psychoneuroimmunology of childhood trauma has expanded over recent decades. Rodent models are a cornerstone of the ELS literature with many studies utilizing paradigms based on early life separation/deprivation protocols and manipulating the cage environment. However, no animal model is perfect. In particular, the lack of standardization across ELS models has led to inconsistent results and raised questions regarding the translational value of common preclinical models. In this chapter, we present an overview of the history of ELS rodent models and discuss considerations relevant to the ongoing efforts to both improve existing models and generate novel paradigms to meet the evolving needs of molecular- and mechanism-based ELS research.
Collapse
Affiliation(s)
- Jamie Y Choe
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Institute for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
2
|
Turner MB, Dalmasso C, Loria AS. The adipose tissue keeps the score: priming of the adrenal-adipose tissue axis by early life stress predisposes women to obesity and cardiometabolic risk. Front Endocrinol (Lausanne) 2024; 15:1481923. [PMID: 39493777 PMCID: PMC11527639 DOI: 10.3389/fendo.2024.1481923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Adverse Childhood Experiences (ACEs) refer to early life stress events, including abuse, neglect, and other psychosocial childhood traumas that can have long-lasting effects on a wide range of physiological functions. ACEs provoke sex-specific effects, whereas women have been shown to display a strong positive correlation with obesity and cardiometabolic disease. Notably, rodent models of chronic behavioral stress during postnatal life recapitulate several effects of ACEs in a sex-specific fashion. In this review, we will discuss the potential mechanisms uncovered by models of early life stress that may explain the greater susceptibility of females to obesity and metabolic risk compared with their male counterparts. We highlight the early life stress-induced neuroendocrine shaping of the adrenal-adipose tissue axis as a primary event conferring sex-dependent heightened sensitivity to obesity.
Collapse
Affiliation(s)
| | | | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Dalmasso C, Ahmed NS, Ghuneim S, Cincinelli C, Leachman JR, Giani JF, Cassis L, Loria AS. Obese Male Mice Exposed to Early Life Stress Display Sympathetic Activation and Hypertension Independent of Circulating Angiotensin II. J Am Heart Assoc 2024; 13:e029511. [PMID: 38156515 PMCID: PMC10863837 DOI: 10.1161/jaha.123.029511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/03/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND We have previously reported that male mice exposed to maternal separation and early weaning (MSEW), a model of early life stress, show sympathetic activation and increased blood pressure in response to a chronic high-fat diet. The goal of this study was to investigate the contribution of the renin-angiotensin-aldosterone system to the mechanism by which MSEW increases blood pressure and vasomotor sympathetic tone in obese male mice. METHODS AND RESULTS Mice were exposed to MSEW during postnatal life. Undisturbed litters served as controls. At weaning, both control and MSEW offspring were placed on a low-fat diet or a high-fat diet for 20 weeks. Angiotensin peptides in serum were similar in control and MSEW mice regardless of the diet. However, a high-fat diet induced a similar increase in angiotensinogen levels in serum, renal cortex, liver, and fat in both control and MSEW mice. No evidence of renin-angiotensin system activation was found in adipose tissue and renal cortex. After chronic treatment with enalapril (2.5 mg/kg per day, drinking water, 7 days), an angiotensin-converting enzyme inhibitor that does not cross the blood-brain barrier, induced a similar reduction in blood pressure in both groups, while the vasomotor sympathetic tone remained increased in obese MSEW mice. In addition, acute boluses of angiotensin II (1, 10, 50 μg/kg s.c.) exerted a similar pressor response in MSEW and control mice before and after enalapril treatment. CONCLUSIONS Overall, elevated blood pressure and vasomotor sympathetic tone remained exacerbated in MSEW mice compared with controls after the peripheral inhibition of angiotensin-converting enzyme, suggesting a mechanism independent of angiotensin II.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Nermin S. Ahmed
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Sundus Ghuneim
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Cole Cincinelli
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Jaqueline R. Leachman
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Jorge F. Giani
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Lisa Cassis
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Analia S. Loria
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
4
|
Leachman JR, Cincinelli C, Ahmed N, Dalmasso C, Xu M, Gatineau E, Nikolajczyk BS, Yiannikouris F, Hinds TD, Loria AS. Early life stress exacerbates obesity in adult female mice via mineralocorticoid receptor-dependent increases in adipocyte triglyceride and glycerol content. Life Sci 2022; 304:120718. [PMID: 35714704 PMCID: PMC10987253 DOI: 10.1016/j.lfs.2022.120718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 01/06/2023]
Abstract
Previously, we have shown that Maternal Separation and Early Weaning (MSEW) exacerbates high fat diet (HF)-induced visceral obesity in female offspring compared to normally reared female mice. Stress hormones such as glucocorticoids and mineralocorticoids are critical mediators in the process of fat expansion, and both can activate the mineralocorticoid receptor (MR) in the adipocyte. Therefore, this study aimed to, comprehend the specific effects of MSEW on adipose tissue basic homeostatic function, and investigate whether female MSEW mice show an exacerbated obesogenic response mediated by MR. Gonadal white adipose tissue (gWAT), a type of visceral fat, was collected to assess lipidomics, transcriptomics, and in vitro lipolysis assay. Obese female MSEW mice showed increased adiposity, elevated 44:2/FA 18:2 + NH4 lipid class and reduced mitochondrial DNA density compared to obese control counterparts. In addition, single-cell RNA sequencing in isolated pre- and mature adipocytes showed a ~9-fold downregulation of aquaglycerolporin 3 (Aqp3), a channel responsible for glycerol efflux in adipocytes. Obese MSEW mice showed high levels of circulating aldosterone and gWAT-derived corticosterone compared to controls. Further, the MR blocker spironolactone (Spiro, 100 mg/kg/day, 2 weeks) normalized the elevated intracellular glycerol levels, the greater in vitro lipolysis response, and the number of large size adipocytes in MSEW mice compared to the controls. Our data suggests that MR plays a role promoting adipocyte hypertrophy in female MSEW mice by preventing lipolysis via glycerol release in favor of triglyceride formation and storage.
Collapse
Affiliation(s)
- Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Cole Cincinelli
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Eva Gatineau
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Frederique Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; SAHA Cardiovascular Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
6
|
Dalmasso C, Leachman JR, Ghuneim S, Ahmed N, Schneider ER, Thibault O, Osborn JL, Loria AS. Epididymal Fat-Derived Sympathoexcitatory Signals Exacerbate Neurogenic Hypertension in Obese Male Mice Exposed to Early Life Stress. Hypertension 2021; 78:1434-1449. [PMID: 34601958 PMCID: PMC8516729 DOI: 10.1161/hypertensionaha.121.17298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jacqueline R. Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Sundus Ghuneim
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Eve R. Schneider
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jeffrey L. Osborn
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| |
Collapse
|
7
|
Moreno JM, Martinez CM, de Jodar C, Reverte V, Bernabé A, Salazar FJ, Llinás MT. Gender differences in the renal changes induced by a prolonged high-fat diet in rats with altered renal development. J Physiol Biochem 2021; 77:431-441. [PMID: 33851366 DOI: 10.1007/s13105-021-00815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms involved in renal dysfunction induced by high-fat diet (HFD) in subjects with altered renal development (ARDev) are understudied. The objective of this study is to examine whether there are sex-dependent differences in the mechanisms involved in the hypertension and deterioration of renal function in SD rats with prolonged HFD and ARDev. The role of angiotensin II (Ang II) in the arterial pressure (AP) increments, the renal hemodynamic sensitivity to Ang II, glomerular damage and changes in fat abdominal volume, plasma adipokine levels, renal NADPHp67phox expression, and renal infiltration of immune cells were examined. Hypertension and deterioration of renal function were enhanced (P < 0.05) in both sexes of rats with HFD and ARDev. The decrease (P < 0.05) of AP elicited by candesartan in hypertensive rats was similar to that induced by the simultaneous administration of candesartan and apocynin. The greater (P < 0.05) renal vasoconstriction induced by Ang II in both sexes of rats with HFD and ARDev was accompanied by an enhanced (P < 0.05) infiltration of CD-3 cells and macrophages in the renal cortex and renal medulla. The increments (P < 0.05) in the renal expression of NADPHp67phox and glomeruloesclerosis were greater (P < 0.05) in males than in females with HFD and ARDev. Our results suggest that the hypertension and deterioration of renal function induced by HFD in rats with ARDev are Ang II-dependent and mediated by increments in oxidative stress and immune system activation. Sex-dependent increments in oxidative stress and glomerular damage may contribute to the deterioration of renal function in these rats.
Collapse
Affiliation(s)
- Juan M Moreno
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| | | | - Carlos de Jodar
- Department of Pathology, School of Veterinary, University of Murcia, Murcia, Spain
| | - Virginia Reverte
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| | - Antonio Bernabé
- Department of Pathology, School of Veterinary, University of Murcia, Murcia, Spain
| | - F Javier Salazar
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain. .,Biomedical Research Institute in Murcia, Murcia, Spain.
| | - María T Llinás
- Department of Physiology, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Institute in Murcia, Murcia, Spain
| |
Collapse
|
8
|
Dalmasso C, Chade AR, Mendez M, Giani JF, Bix GJ, Chen KC, Loria AS. Intrarenal Renin Angiotensin System Imbalance During Postnatal Life Is Associated With Increased Microvascular Density in the Mature Kidney. Front Physiol 2020; 11:1046. [PMID: 32982785 PMCID: PMC7491414 DOI: 10.3389/fphys.2020.01046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Environmental stress during early life is an important factor that affects the postnatal renal development. We have previously shown that male rats exposed to maternal separation (MatSep), a model of early life stress, are normotensive but display a sex-specific reduced renal function and exacerbated angiotensin II (AngII)-mediated vascular responses as adults. Since optimal AngII levels during postnatal life are required for normal maturation of the kidney, this study was designed to investigate both short- and long-term effect of MatSep on (1) the renal vascular architecture and function, (2) the intrarenal renin-angiotensin system (RAS) components status, and (3) the genome-wide expression of genes in isolated renal vasculature. Renal tissue and plasma were collected from male rats at different postnatal days (P) for intrarenal RAS components mRNA and protein expression measurements at P2, 6, 10, 14, 21, and 90 and microCT analysis at P21 and 90. Although with similar body weight and renal mass trajectories from P2 to P90, MatSep rats displayed decreased renal filtration capacity at P90, while increased microvascular density at both P21 and P90 (p < 0.05). MatSep increased renal expression of renin, and angiotensin type 1 (AT1) and type 2 (AT2) receptors (p < 0.05), but reduced ACE2 mRNA expression and activity from P2-14 compared to controls. However, intrarenal levels of AngII peptide were reduced (p < 0.05) possible due to the increased degradation to AngIII by aminopeptidase A. In isolated renal vasculature from neonates, Enriched Biological Pathways functional clusters (EBPfc) from genes changed by MatSep reported to modulate extracellular structure organization, inflammation, and pro-angiogenic transcription factors. Our data suggest that male neonates exposed to MatSep could display permanent changes in the renal microvascular architecture in response to intrarenal RAS imbalance in the context of the atypical upregulation of angiogenic factors.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Alejandro R. Chade
- Department of Physiology and Biophysics, Medicine, and Radiology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Mariela Mendez
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, United States
| | - Jorge F. Giani
- Departments of Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University, New Orleans, LA, United States
| | - Kuey C. Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Mahanes TM, Murphy MO, Ouyang A, Yiannikouris FB, Fleenor BS, Loria AS. Maternal separation-induced increases in vascular stiffness are independent of circulating angiotensinogen levels. J Appl Physiol (1985) 2020; 129:58-65. [PMID: 32407243 DOI: 10.1152/japplphysiol.00703.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin system (RAS) precursor angiotensinogen (AGT) has been implicated in the functional and mechanical alterations of the vascular wall in response to high-fat diet (HFD). Previously, we showed that HFD exacerbates angiotensin II-induced constriction in isolated aortic rings from male rats exposed to maternal separation (MatSep), a model of early-life stress. Thus, the aim of this study was to investigate whether MatSep increases AGT secretion promoting vascular stiffness in rats fed a HFD. Male Wistar-Kyoto MatSep offspring were separated (3 h/day, postnatal days 2-14), and undisturbed littermates were used as controls. At weaning, rats were fed for 17 wk a normal diet (ND) or a HFD, 18% or 60% kcal from fat, respectively. In plasma, there was a main effect of MatSep reducing AGT concentration (P < 0.05) but no effect due to diet. In urine, ND-fed MatSep rats displayed higher AGT concentrations that were further increased by HFD (P < 0.05 vs. control). AGT mRNA abundance and protein expression were increased in adipose tissue from HFD-fed MatSep rats compared with control rats (P < 0.05). No significant differences in liver and kidney AGT levels were found between groups. In addition, MatSep augmented vascular stiffness assessed on freshly isolated aortic rings from ND-fed rats (P < 0.05), yet HFD did not worsen vascular stiffness in either MatSep or control rats. There was no correlation between plasma AGT and vascular stiffness in ND-fed rats; however, this relationship was negative in HFD-fed MatSep rats only (P < 0.05). Therefore, this study shows that MatSep-induced increases in vascular stiffness are independent of diet or plasma AGT.NEW & NOTEWORTHY This study demonstrates that there was no correlation between circulating levels of angiotensinogen (AGT) and the development of vascular stiffness in rats exposed to early-life stress and fed a normal diet. This study also shows that early-life stress-induced hypersensitive vascular contractility to angiotensin II in rats fed a high-fat diet is independent of circulating levels of AGT and occurs without further progression of vascular stiffness. Our data show that early-life stress primes the adipose tissue to secrete AGT in a sex- and species-independent fashion.
Collapse
Affiliation(s)
- Timothy M Mahanes
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - An Ouyang
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Dalmasso C, Leachman JR, Ensor CM, Yiannikouris FB, Giani JF, Cassis LA, Loria AS. Female Mice Exposed to Postnatal Neglect Display Angiotensin II-Dependent Obesity-Induced Hypertension. J Am Heart Assoc 2019; 8:e012309. [PMID: 31752639 PMCID: PMC6912962 DOI: 10.1161/jaha.119.012309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Background We have previously reported that female mice exposed to maternal separation and early weaning (MSEW), a model of early life stress, show exacerbated diet-induced obesity associated with hypertension. The goal of this study was to test whether MSEW promotes angiotensin II-dependent hypertension via activation of the renin-angiotensin system in adipose tissue. Methods and Results MSEW was achieved by daily separations from the dam and weaning at postnatal day 17, while normally reared controls were weaned at postnatal day 21. Female controls and MSEW weanlings were placed on a low-fat diet (LF, 10% kcal from fat) or high-fat diet (HF, 60% kcal from fat) for 20 weeks. MSEW did not change mean arterial pressure in LF-fed mice but increased it in HF-fed mice compared with controls (P<0.05). In MSEW mice fed a HF, angiotensin II concentration in plasma and adipose tissue was elevated compared with controls (P<0.05). In addition, angiotensinogen concentration was increased solely in adipose tissue from MSEW mice (P<0.05), while angiotensin-converting enzyme protein expression and activity were similar between groups. Chronic enalapril treatment (2.5 mg/kg per day, drinking water, 7 days) reduced mean arterial pressure in both groups of mice fed a HF (P<0.05) and abolished the differences due to MSEW. Acute angiotensin II-induced increases in mean arterial pressure (10 μg/kg SC) were attenuated in untreated MSEW HF-fed mice compared to controls (P<0.05); however, this response was similar between groups in enalapril-treated mice. Conclusions The upregulation of angiotensinogen and angiotensin II in adipose tissue could be an important mechanism by which female MSEW mice fed a HF develop hypertension.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Jacqueline R. Leachman
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Charles M. Ensor
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Frederique B. Yiannikouris
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Jorge F. Giani
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Analia S. Loria
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| |
Collapse
|
11
|
Barton M, Prossnitz ER. Early life stress determines insulin signalling in adulthood. J Physiol 2019; 598:427-428. [PMID: 31785103 DOI: 10.1113/jp279300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich.,Andreas Grüntzig Foundation, Zürich, Switzerland
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine.,University of New Mexico Comprehensive Cancer Center.,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|