1
|
Zheng S, Sheng R. The emerging understanding of Frizzled receptors. FEBS Lett 2024; 598:1939-1954. [PMID: 38744670 DOI: 10.1002/1873-3468.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The Wnt signaling pathway is a huge network governing development and homeostasis, dysregulation of which is associated with a myriad of human diseases. The Frizzled receptor (FZD) family comprises receptors for Wnt ligands, which indispensably mediate Wnt signaling jointly with a variety of co-receptors. Studies of FZDs have revealed that 10 FZD subtypes play diverse roles in physiological processes. At the same time, dysregulation of FZDs is also responsible for various diseases, in particular human cancers. Enormous attention has been paid to the molecular understanding and targeted therapy of FZDs in the past decade. In this review, we summarize the latest research on FZD structure, function, regulation and targeted therapy, providing a basis for guiding future research in this field.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| |
Collapse
|
2
|
Wang S, Deng X, Wu Y, Wu Y, Zhou S, Yang J, Huang Y. Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation. Hum Genet 2023; 142:1633-1649. [PMID: 37768356 DOI: 10.1007/s00439-023-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Brain arteriovenous malformation (BAVM) is a rare but serious cerebrovascular disease whose pathogenesis has not been fully elucidated. Studies have found that epigenetic regulation, genetic variation and their signaling pathways, immune inflammation, may be the cause of BAVM the main reason. This review comprehensively analyzes the key pathways and inflammatory factors related to BAVMs, and explores their interplay with epigenetic regulation and genetics. Studies have found that epigenetic regulation such as DNA methylation, non-coding RNAs and m6A RNA modification can regulate endothelial cell proliferation, apoptosis, migration and damage repair of vascular malformations through different target gene pathways. Gene defects such as KRAS, ACVRL1 and EPHB4 lead to a disordered vascular environment, which may promote abnormal proliferation of blood vessels through ERK, NOTCH, mTOR, Wnt and other pathways. PDGF-B and PDGFR-β were responsible for the recruitment of vascular adventitial cells and smooth muscle cells in the extracellular matrix environment of blood vessels, and played an important role in the pathological process of BAVM. Recent single-cell sequencing data revealed the diversity of various cell types within BAVM, as well as the heterogeneous expression of vascular-associated antigens, while neutrophils, macrophages and cytokines such as IL-6, IL-1, TNF-α, and IL-17A in BAVM tissue were significantly increased. Currently, there are no specific drugs targeting BAVMs, and biomarkers for BAVM formation, bleeding, and recurrence are lacking clinically. Therefore, further studies on molecular biological mechanisms will help to gain insight into the pathogenesis of BAVM and develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
3
|
Nakisli S, Lagares A, Nielsen CM, Cuervo H. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations. Front Physiol 2023; 14:1210563. [PMID: 37601628 PMCID: PMC10437819 DOI: 10.3389/fphys.2023.1210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Previously considered passive support cells, mural cells-pericytes and vascular smooth muscle cells-have started to garner more attention in disease research, as more subclassifications, based on morphology, gene expression, and function, have been discovered. Central nervous system (CNS) arteriovenous malformations (AVMs) represent a neurovascular disorder in which mural cells have been shown to be affected, both in animal models and in human patients. To study consequences to mural cells in the context of AVMs, various animal models have been developed to mimic and predict human AVM pathologies. A key takeaway from recently published work is that AVMs and mural cells are heterogeneous in their molecular, cellular, and functional characteristics. In this review, we summarize the observed perturbations to mural cells in human CNS AVM samples and CNS AVM animal models, and we discuss various potential mechanisms relating mural cell pathologies to AVMs.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Alfonso Lagares
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Imas12, Madrid, Spain
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid, Spain
| |
Collapse
|
4
|
Huo R, Wang J, Sun YF, Weng JC, Li H, Jiao YM, Xu HY, Zhang JZ, Zhao SZ, He QH, Wang S, Zhao JZ, Cao Y. Simplex cerebral cavernous malformations with MAP3K3 mutation have distinct clinical characteristics. Front Neurol 2022; 13:946324. [PMID: 36090889 PMCID: PMC9458974 DOI: 10.3389/fneur.2022.946324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the clinical characteristics of cerebral cavernous malformations (CCMs) with MAP3K3 somatic mutation. Methods We performed a retrospective review of our CCMs database between May 2017 and December 2019. The patients with simplex CCMs identified to harbor a MAP3K3 or CCM gene somatic mutation were included. Clinical characteristics were recorded. Univariate and multivariate logistic analyses were used to assess the risk factors associated with hemorrhage events of CCMs. To explore the underlying mechanism, we transfected MEKK3-I441M-overexpressing and CCM2-knockdown lentiviruses into human umbilical vein endothelial cells (HUVECs) and investigated thrombomodulin (TM) and tight junctions (TJs) protein expression by western blotting and immunofluorescence. Finally, immunohistochemistry was used to validate TM and TJs protein expression in surgical samples. Results Fifty simplex CCMs patients were included, comprising 38 MAP3K3 mutations and 12 CCM gene mutations. Nine (23.7%) patients with MAP3K3 mutations and 11(91.7%) patients with CCM gene mutations exhibited overt hemorrhage, respectively. Multivariate logistic analyses revealed that MAP3K3 mutation was associated with a lower risk of hemorrhage events. In the vitro experiments, ZO-1 expression was not reduced in MEKK3-I441M-overexpressing HUVECs compared with wild type, whereas it was significantly decreased in CCM2-knockdown HUVECs compared with control. In the MEKK3-I441M-overexpressing HUVECs, TM expression was increased, and the NF-κB pathway was significantly activated. After treatment with an NF-κB signaling inhibitor, TM expression was further upregulated. Meanwhile, TM expression was increased, but the NF-κB pathway was not activated in CCM2-knockdown HUVECs. Accordingly, immunohistochemistry showed that ZO-1 expression in the MAP3K3-mutant samples was significantly higher than that in the CCM-mutant samples. TM expression in the MAP3K3-mutant lesions was significantly lower than that in the CCM-mutant samples. Conclusion Simplex CCMs with MAP3K3 mutation occasionally present with overt hemorrhage, which is associated with the biological function of MAP3K3 mutation.
Collapse
Affiliation(s)
- Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ying-Fan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jian-Cong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu-Ming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hong-Yuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun-Ze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shao-Zhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qi-Heng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ji-Zong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- *Correspondence: Yong Cao
| |
Collapse
|
5
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
6
|
Li H, Yan Z, Huo R, Ya X, Xu H, Liu Z, Jiao Y, Weng J, Wang J, Wang S, Cao Y. RNA sequencing analysis between ruptured and un-ruptured brain AVM. Chin Neurosurg J 2022; 8:13. [PMID: 35655323 PMCID: PMC9161579 DOI: 10.1186/s41016-022-00282-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A brain arteriovenous malformation (BAVM) is a tangle of abnormal blood vessels connecting the arteries and veins in the brain and is associated with a higher risk for intracerebral hemorrhage (ICH). RNA sequencing technology has been recently used to investigate the mechanism of diseases owing to its ability to identify the gene changes on a transcriptome-wide level. This study aims to gain insights into the potential mechanism involved in BAVM rupture. METHODS Sixty-five BAVM nidus samples were collected, among which 28 were ruptured and 37 were un-ruptured. Then, next-generation RNA sequencing was performed on all of them to obtain differential expressed genes (DEGs) between the two groups. In addition, bioinformatics analysis was performed to evaluate the involved biological processes and pathways by GO and KEGG analysis. Finally, we performed a univariate Cox regression analysis to obtain the early rupture-prone DEGs. RESULTS A total of 951 genes were differentially expressed between the ruptured and un-ruptured BAVM groups, of which 740 genes were upregulated and 211 genes were downregulated in ruptured BAVMs. Then, bioinformatics analysis showed the biological processes and pathways related to the inflammatory processes and extracellular matrix organization were significantly enriched. Meanwhile, some downregulated genes are involved in cell adhesion and genes participating in response to muscle activity and the terms of nervous system development. Finally, one hundred twenty-five genes, many were involved in inflammation, were correlated with the early rupture of BAVMs. CONCLUSIONS The upregulated genes in the ruptured BAVM group were involved in inflammatory processes and extracellular matrix organization. Some of the downregulated genes participated in cell adhesion and myofibril assembly, indicating the role of enhanced inflammation and reduced inflammation vessel strength in BAVMs rupture.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zechen Liu
- Department of Biostatistics, Harvard School of Public Health, Boston, USA
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Road West, Fengtai District, Beijing, 100071, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China. .,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Vieira JR, Shah B, Ruiz de Almodovar C. Cellular and Molecular Mechanisms of Spinal Cord Vascularization. Front Physiol 2020; 11:599897. [PMID: 33424624 PMCID: PMC7793711 DOI: 10.3389/fphys.2020.599897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
During embryonic central nervous system (CNS) development, the neural and the vascular systems communicate with each other in order to give rise to a fully functional and mature CNS. The initial avascular CNS becomes vascularized by blood vessel sprouting from different vascular plexus in a highly stereotypical and controlled manner. This process is similar across different regions of the CNS. In particular for the developing spinal cord (SC), blood vessel ingression occurs from a perineural vascular plexus during embryonic development. In this review, we provide an updated and comprehensive description of the cellular and molecular mechanisms behind this stereotypical and controlled patterning of blood vessels in the developing embryonic SC, identified using different animal models. We discuss how signals derived from neural progenitors and differentiated neurons guide the SC growing vasculature. Lastly, we provide a perspective of how the molecular mechanisms identified during development could be used to better understand pathological situations.
Collapse
Affiliation(s)
- Jose Ricardo Vieira
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Narsinh KH, Mueller K, Nelson J, Massachi J, Murph DC, Copelan AZ, Hetts SW, Halbach VV, Higashida RT, Abla AA, Amans MR, Dowd CF, Kim H, Cooke DL. Interrater Reliability in the Measurement of Flow Characteristics on Color-Coded Quantitative DSA of Brain AVMs. AJNR Am J Neuroradiol 2020; 41:2303-2310. [PMID: 33122213 DOI: 10.3174/ajnr.a6846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Hemodynamic features of brain AVMs may portend increased hemorrhage risk. Previous studies have suggested that MTT is shorter in ruptured AVMs as assessed on quantitative color-coded parametric DSA. This study assesses the interrater reliability of MTT measurements obtained using quantitative color-coded DSA. MATERIALS AND METHODS Thirty-five color-coded parametric DSA images of 34 brain AVMs were analyzed by 4 neuroradiologists with experience in interventional neuroradiology. Hemodynamic features assessed included MTT of the AVM and TTP of the dominant feeding artery and draining vein. Agreement among the 4 raters was assessed using the intraclass correlation coefficient. RESULTS The interrater reliability among the 4 raters was poor (intraclass correlation coefficient = 0.218; 95% CI, 0.062-0.414; P value = .002) as it related to MTT assessment. When the analysis was limited to cases in which the raters selected the same image to analyze and selected the same primary feeding artery and the same primary draining vein, interrater reliability improved to fair (intraclass correlation coefficient = 0.564; 95% CI, 0.367-0.717; P < .001). CONCLUSIONS Interrater reliability in deriving color-coded parametric DSA measurements such as MTT is poor so minor differences among raters may result in a large variance in MTT and TTP results, partly due to the sensitivity and 2D nature of the technique. Reliability can be improved by defining a standard projection, feeding artery, and draining vein for analysis.
Collapse
Affiliation(s)
- K H Narsinh
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - K Mueller
- Siemens Medical Solutions (K.M.), Malvern, Pennsylvania
| | - J Nelson
- Center for Cerebrovascular Research (J.N., H.K.), Department of Anesthesiology
| | - J Massachi
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - D C Murph
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - A Z Copelan
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - S W Hetts
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - V V Halbach
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - R T Higashida
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - A A Abla
- Department of Neurological Surgery (A.A.A.), University of California San Francisco, San Francisco, California
| | - M R Amans
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - C F Dowd
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| | - H Kim
- Center for Cerebrovascular Research (J.N., H.K.), Department of Anesthesiology
| | - D L Cooke
- From the Department of Radiology and Biomedical Imaging (K.H.N., J.M., D.C.M., A.Z.C., S.W.H., V.V.H., R.T.H., M.R.A., C.F.D., D.L.C.)
| |
Collapse
|
9
|
Wang LJ, Xue Y, Huo R, Yan Z, Xu H, Li H, Wang J, Zhang Q, Cao Y, Zhao JZ. N6-methyladenosine methyltransferase METTL3 affects the phenotype of cerebral arteriovenous malformation via modulating Notch signaling pathway. J Biomed Sci 2020; 27:62. [PMID: 32384926 PMCID: PMC7210675 DOI: 10.1186/s12929-020-00655-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/23/2020] [Indexed: 02/10/2023] Open
Abstract
Background Cerebral arteriovenous malformation (AVM) is a serious life-threatening congenital cerebrovascular disease. Specific anatomical features, such as nidus size, location, and venous drainage, have been validated to affect treatment outcomes. Until recently, molecular biomarkers and corresponding molecular mechanism related to anatomical features and treatment outcomes remain unknown. Methods RNA N6-methyladenosine (m6A) Methyltransferase METTL3 was identified as a differentially expressed gene in groups with different lesion sizes by analyzing the transcriptome sequencing (RNA-seq) data. Tube formation and wound healing assays were performed to investigate the effect of METTL3 on angiogenesis. In addition, Methylated RNA Immunoprecipitation Sequencing technology (MeRIP-seq) was performed to screen downstream targets of METTL3 in endothelial cells and to fully clarify the specific underlying molecular mechanisms affecting the phenotype of cerebral AVM. Results In the current study, we found that the expression level of METTL3 was reduced in the larger pathological tissues of cerebral AVMs. Moreover, knockdown of METTL3 significantly affected angiogenesis of the human endothelial cells. Mechanistically, down-regulation of METTL3 reduced the level of heterodimeric Notch E3 ubiquitin ligase formed by DTX1 and DTX3L, thereby continuously activating the Notch signaling pathway. Ultimately, the up-regulated downstream genes of Notch signaling pathway dramatically affected the angiogenesis of endothelial cells. In addition, we demonstrated that blocking Notch pathway with DAPT could restore the phenotype of METTL3 deficient endothelial cells. Conclusions Our findings revealed the mechanism by which m6A modification regulated the angiogenesis and might provide potential biomarkers to predict the outcome of treatment, as well as provide suitable pharmacological targets for preventing the formation and progression of cerebral AVM.
Collapse
Affiliation(s)
- Lin-Jian Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China. .,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| | - Ji-Zong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| |
Collapse
|
10
|
Wang LJ, Xue Y, Li H, Huo R, Yan Z, Wang J, Xu H, Wang J, Cao Y, Zhao JZ. Wilms' tumour 1-associating protein inhibits endothelial cell angiogenesis by m6A-dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation. J Cell Mol Med 2020; 24:4981-4991. [PMID: 32281240 PMCID: PMC7205785 DOI: 10.1111/jcmm.15101] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Brain arteriovenous malformations (AVMs) are congenital vascular abnormality in which arteries and veins connect directly without an intervening capillary bed. So far, the pathogenesis of brain AVMs remains unclear. Here, we found that Wilms' tumour 1‐associating protein (WTAP), which has been identified as a key subunit of the m6A methyltransferase complex, was down‐regulated in brain AVM lesions. Furthermore, the lack of WTAP could inhibit endothelial cell angiogenesis in vitro. In order to screen for downstream targets of WTAP, we performed RNA transcriptome sequencing (RNA‐seq) and Methylated RNA Immunoprecipitation Sequencing technology (MeRIP‐seq) using WTAP‐deficient and control endothelial cells. Finally, we determined that WTAP regulated Desmoplakin (DSP) expression through m6A modification, thereby affecting angiogenesis of endothelial cells. In addition, an increase in Wilms' tumour 1 (WT1) activity caused by WTAP deficiency resulted in substantial degradation of β‐catenin, which might also inhibit angiogenesis of endothelial cells. Collectively, our findings revealed the critical function of WTAP in angiogenesis and laid a solid foundation for the elucidation of the pathogenesis of brain AVMs.
Collapse
Affiliation(s)
- Lin-Jian Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yimeng Xue
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ran Huo
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Zihan Yan
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jie Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hongyuan Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jia Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yong Cao
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ji-Zong Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
11
|
Ota T, Komiyama M. Pathogenesis of non-hereditary brain arteriovenous malformation and therapeutic implications. Interv Neuroradiol 2020; 26:244-253. [PMID: 32024399 DOI: 10.1177/1591019920901931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain arteriovenous malformations have a high risk of intracranial hemorrhage, which is a substantial cause of morbidity and mortality in patients with brain arteriovenous malformations. Although a variety of genetic factors leading to hereditary brain arteriovenous malformations have been extensively investigated, their pathogenesis is still not well elucidated, especially in sporadic brain arteriovenous malformations. The authors have reviewed the updated data of not only the genetic aspects of sporadic brain arteriovenous malformations, but also the architecture of microvasculature, the roles of the angiogenic factors, and the signaling pathways. This knowledge may allow us to infer the pathogenesis of sporadic brain arteriovenous malformations and develop pre-emptive treatments for them.
Collapse
Affiliation(s)
- Takahiro Ota
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Masaki Komiyama
- Department of Neurointervention, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
12
|
Huo R, Fu W, Li H, Jiao Y, Yan Z, Wang L, Wang J, Wang S, Cao Y, Zhao J. RNA Sequencing Reveals the Activation of Wnt Signaling in Low Flow Rate Brain Arteriovenous Malformations. J Am Heart Assoc 2019; 8:e012746. [PMID: 31170876 PMCID: PMC6645621 DOI: 10.1161/jaha.119.012746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background The blood flow rate of brain arteriovenous malformations (bAVMs) is an important clinical characteristic closely associated with the hemorrhage risk and radiosurgery obliteration rate of bAVMs. However, the underlying molecular properties remain unclear. To identify potential key molecules, signaling pathways, and vascular cell types involved, we compared gene expression profiles between bAVMs with high flow rates and low flow rates (LFR) and validated the functions of selected key molecules in vitro. Methods and Results We performed RNA‐sequencing analysis on 51 samples, including 14 high flow rate bAVMs and 37 LFR bAVMs. Functional pathway analysis was performed to identify potential signals influencing the flow rate phenotype of bAVMs. Candidate genes were investigated in bAVM specimens by immunohistochemical staining. Migration, tube formation, and proliferation assays were used to test the effects of candidate genes on the phenotypic properties of cultured human umbilical vein endothelial cells and human brain vascular smooth muscle cells. We identified 250 upregulated and 118 downregulated genes in LFR bAVMs compared with high flow rate bAVMs. Wnt signaling was activated in the LFR group via upregulation of FZD10 and MYOC. Immunohistochemical staining showed that vascular endothelial and smooth muscle cells of LFR bAVMs exhibited increased FZD10 and MYOC expression. Experimentally elevating these genes promoted human umbilical vein endothelial cells and migration and tube formation by activating canonical Wnt signaling in vitro. Conclusions Our results suggest that canonical Wnt signaling mediated by FZD10 and MYOC is activated in vascular endothelial and smooth muscle cells in LFR bAVMs.
Collapse
Affiliation(s)
- Ran Huo
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Weilun Fu
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Hao Li
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Yuming Jiao
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Zihan Yan
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Linjian Wang
- 5 Savaid Medical School University of the Chinese Academy of Sciences Beijing China
| | - Jie Wang
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Shuo Wang
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Yong Cao
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China
| | - Jizong Zhao
- 1 Department of Neurosurgery Beijing Tiantan Hospital Capital Medical University Beijing China.,2 China National Clinical Research Center for Neurological Diseases Beijing China.,3 Center of Stroke Beijing Institute for Brain Disorders Beijing China.,4 Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease Beijing China.,5 Savaid Medical School University of the Chinese Academy of Sciences Beijing China
| |
Collapse
|