1
|
Gadekar V, Munk AW, Miladi M, Junge A, Backofen R, Seemann S, Gorodkin J. Clusters of mammalian conserved RNA structures in UTRs associate with RBP binding sites. NAR Genom Bioinform 2024; 6:lqae089. [PMID: 39131818 PMCID: PMC11310781 DOI: 10.1093/nargab/lqae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
RNA secondary structures play essential roles in the formation of the tertiary structure and function of a transcript. Recent genome-wide studies highlight significant potential for RNA structures in the mammalian genome. However, a major challenge is assigning functional roles to these structured RNAs. In this study, we conduct a guilt-by-association analysis of clusters of computationally predicted conserved RNA structure (CRSs) in human untranslated regions (UTRs) to associate them with gene functions. We filtered a broad pool of ∼500 000 human CRSs for UTR overlap, resulting in 4734 and 24 754 CRSs from the 5' and 3' UTR of protein-coding genes, respectively. We separately clustered these CRSs for both sets using RNAscClust, obtaining 793 and 2403 clusters, each containing an average of five CRSs per cluster. We identified overrepresented binding sites for 60 and 43 RNA-binding proteins co-localizing with the clustered CRSs. Furthermore, 104 and 441 clusters from the 5' and 3' UTRs, respectively, showed enrichment for various Gene Ontologies, including biological processes such as 'signal transduction', 'nervous system development', molecular functions like 'transferase activity' and the cellular components such as 'synapse' among others. Our study shows that significant functional insights can be gained by clustering RNA structures based on their structural characteristics.
Collapse
Affiliation(s)
- Veerendra P Gadekar
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870 Frederiksberg, Denmark
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Alexander Welford Munk
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870 Frederiksberg, Denmark
| | - Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Junge
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870 Frederiksberg, Denmark
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870 Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870 Frederiksberg, Denmark
| |
Collapse
|
2
|
Lu AL, Yin L, Huang Y, Islam ZH, Kanchetty R, Johnston C, Zhang K, Xie X, Park KH, Chalfant CE, Wang B. The role of 6-phosphogluconate dehydrogenase in vascular smooth muscle cell phenotypic switching and angioplasty-induced intimal hyperplasia. JVS Vasc Sci 2024; 5:100214. [PMID: 39318609 PMCID: PMC11420449 DOI: 10.1016/j.jvssci.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/21/2024] [Indexed: 09/26/2024] Open
Abstract
Background Restenosis poses a significant challenge for individuals afflicted with peripheral artery diseases, often leading to considerable morbidity and necessitating repeated interventions. The primary culprit behind the pathogenesis of restenosis is intimal hyperplasia (IH), in which the hyperproliferative and migratory vascular smooth muscle cell (VSMC) accumulate excessively in the tunica intima. 6-Phosphogluconate dehydrogenase (6PGD), sometimes referred to as PGD, is one of the critical enzymes in pentose phosphate pathway (PPP). In this study, we sought to probe whether 6PGD is aberrantly regulated in IH and contributes to VSMC phenotypic switching. Methods We used clinical specimens of diseased human coronary arteries with IH lesions and observed robust upregulation of 6PGD at protein level in both the medial and intimal layers in comparison with healthy arterial segments. Results 6PGD activity and protein expression were profoundly stimulated upon platelet-derived growth factor-induced VSMC phenotypic switching. Using gain-of-function (dCas9-mediated transcriptional activation) and loss-of-function (small interfering RNA-mediated) silencing, we were able to demonstrate the pathogenic role of 6PGD in driving VSMC hyperproliferation, migration, dedifferentiation, and inflammation. Finally, we conducted a rat model of balloon angioplasty in the common carotid artery, with Pluronic hydrogel-assisted perivascular delivery of Physcion, a selective 6PGD inhibitor with poor systemic bioavailability, and observed effective mitigation of IH. Conclusions We contend that aberrant 6PGD expression and activity-indicative of a metabolic shift toward pentose phosphate pathway-could serve as a new disease-driving mechanism and, hence, an actionable target for the development of effective new therapies for IH and restenosis after endovascular interventions.
Collapse
Affiliation(s)
- Amy L. Lu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Kaijie Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Ki Ho Park
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
3
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
4
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
5
|
Luo Z, Li X, Wang L, Shu C. Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1252-1259. [PMID: 37875366 PMCID: PMC10930841 DOI: 10.11817/j.issn.1672-7347.2023.230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 10/26/2023]
Abstract
As a crucial regulatory molecule in the context of vascular stenosis, transforming growth factor-β (TGF-β), plays a pivotal role in its initiation and progression. TGF-β, a member of the TGF-β superfamily, can bind to the TGF-β receptor and transduce extracellular to intracellular signals through canonical Smad dependent or noncanonical signaling pathways to regulate cell growth, proliferation, differentiation, and apoptosis. Restenosis remains one of the most challenging problems in cardiac, cerebral, and peripheral vascular disease worldwide. The mechanisms for occurrence and development of restenosis are diverse and complex. The TGF-β pathway exhibits diversity across various cell types. Hence, clarifying the specific roles of TGF-β within different cell types and its precise impact on vascular stenosis provides strategies for future research in the field of stenosis.
Collapse
Affiliation(s)
- Zhongchen Luo
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xin Li
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Lunchang Wang
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Chang Shu
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China.
| |
Collapse
|
6
|
Zhang M, Urabe G, Ozer HG, Xie X, Webb A, Shirasu T, Li J, Han R, Kent KC, Wang B, Guo LW. Angioplasty induces epigenomic remodeling in injured arteries. Life Sci Alliance 2022; 5:e202101114. [PMID: 35169042 PMCID: PMC8860099 DOI: 10.26508/lsa.202101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Neointimal hyperplasia/proliferation (IH) is the primary etiology of vascular stenosis. Epigenomic studies concerning IH have been largely confined to in vitro models, and IH-underlying epigenetic mechanisms remain poorly understood. This study integrates information from in vivo epigenomic mapping, conditional knockout, gene transfer and pharmacology in rodent models of IH. The data from injured (IH-prone) rat arteries revealed a surge of genome-wide occupancy by histone-3 lysine-27 trimethylation (H3K27me3), a gene-repression mark. This was unexpected in the traditional view of prevailing post-injury gene activation rather than repression. Further analysis illustrated a shift of H3K27me3 enrichment to anti-proliferative genes, from pro-proliferative genes where gene-activation mark H3K27ac(acetylation) accumulated instead. H3K27ac and its reader BRD4 (bromodomain protein) co-enriched at Ezh2; conditional BRD4 knockout in injured mouse arteries reduced H3K27me3 and its writer EZH2, which positively regulated another pro-IH chromatin modulator UHRF1. Thus, results uncover injury-induced loci-specific H3K27me3 redistribution in the epigenomic landscape entailing BRD4→EZH2→UHRF1 hierarchical regulations. Given that these players are pharmaceutical targets, further research may help improve treatments of IH.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Renzhi Han
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Xie X, Guo LW, Craig Kent K. miR548ai antagonism attenuates exosome-induced endothelial cell dysfunction. Cell Death Discov 2021; 7:318. [PMID: 34711811 PMCID: PMC8553949 DOI: 10.1038/s41420-021-00720-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cell (EC) and smooth muscle cell (SMC) are major cell types adjacent in the vascular wall. Recent progress indicates that their communication is crucial for vascular homeostasis and pathogenesis. In particular, dysfunctional (proliferative) SMCs through exosomes can induce EC dysfunction (impaired growth). The current study suggests that miR548ai, a rarely known microRNA, may provide a molecular target for protection against SMC/exosome-induced EC dysfunction. We performed microarray profiling of microRNAs of dysfunctional human primary aortic SMCs induced by different cytokines (PDGF-BB, TGFβ1, TNFα, IL1β). Among the microRNAs commonly upregulated by these cytokines, miR548ai showed the most robust changes, as also validated through quantitative PCR. This cytokine-induced miR548ai upregulation was recapitulated in the qPCR determination of SMC-derived exosomal microRNAs. Consistent with SMC-to-EC communication, the exosomes extracted from cytokine-stimulated SMCs impaired human EC proliferation and migration. Of particular interest, this SMC exosomal impingement on ECs was countered by transfection of miR548ai inhibitor microRNA into ECs. Furthermore, the miR548ai inhibitor transfected into SMCs attenuated SMC dysfunction/proliferation. Thus, these results identify miR548ai as a novel target; namely, miR548ai inhibitor mitigates EC dysfunction induced by exosomes derived from dysfunctional SMCs. This new knowledge may aid the future development of microRNA-based treatment of vascular disorders.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA. .,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
8
|
Harman JL, Sayers J, Chapman C, Pellet-Many C. Emerging Roles for Neuropilin-2 in Cardiovascular Disease. Int J Mol Sci 2020; 21:E5154. [PMID: 32708258 PMCID: PMC7404143 DOI: 10.3390/ijms21145154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, is predominantly associated with atherosclerosis. Atherosclerosis is a chronic inflammatory disease characterised by the narrowing of large to medium-sized arteries due to a build-up of plaque. Atherosclerotic plaque is comprised of lipids, extracellular matrix, and several cell types, including endothelial, immune, and vascular smooth muscle cells. Such narrowing of the blood vessels can itself restrict blood flow to vital organs but most severe clinical complications, including heart attacks and strokes, occur when lesions rupture, triggering the blood to clot and obstructing blood flow further down the vascular tree. To circumvent such obstructions, percutaneous coronary intervention or bypass grafts are often required; however, re-occlusion of the treated artery frequently occurs. Neuropilins (NRPs), a multifunctional family of cell surface co-receptors, are expressed by endothelial, immune, and vascular smooth muscle cells and are regulators of numerous signalling pathways within the vasculature. Here, we review recent studies implicating NRP2 in the development of occlusive vascular diseases and discuss how NRP2 could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer L Harman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Jacob Sayers
- University College London, Division of Medicine, Rayne Building, University Street, London WC1E 6JF, UK
| | - Chey Chapman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
9
|
Xie X, Urabe G, Marcho L, Williams C, Guo LW, Kent KC. Smad3 Regulates Neuropilin 2 Transcription by Binding to its 5' Untranslated Region. J Am Heart Assoc 2020; 9:e015487. [PMID: 32306814 PMCID: PMC7428547 DOI: 10.1161/jaha.119.015487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Vascular smooth muscle cell phenotypic change and consequential intimal hyperplasia (IH) cause arterial stenosis and posttreatment restenosis. Smad3 is a master transcription factor, yet its underlying functional mechanisms in this disease context are not well defined. Methods and Results In cultured smooth muscle cells, Smad3 silencing and overexpression respectively reduced and increased the mRNA and protein of NRP2 (neuropilin 2), a recently reported pro-IH signaling factor. Smad3 silencing attenuated pro-IH smooth muscle cell phenotypes including proliferation, migration, and dedifferentiation (reduced smooth muscle α-actin). While increased Smad3 enhanced these phenotypes, NRP2 silencing abolished this enhancement. Interestingly, the 5' untranslated region but not the promoter of NRP2 was indispensable for Smad3-enhanced transcriptional activity (luciferase assay); both chromatin immunoprecipitation and electrophoretic mobility shift assay showed predominant Smad3 binding in the +51 to +78 bp region of NRP2's 5' untranslated region. In vivo, Smad3 haploinsufficiency reduced NRP2 (immunostaining) and IH (by 47%) in wire-injured mouse femoral arteries. Conclusions Smad3 controls NRP2 expression by occupying its 5' untranslated region in promoting smooth muscle cell phenotypic change in vitro. This and in vivo results shed new light on the long-debated role of Smad3 in IH.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery College of Medicine The Ohio State University Columbus OH
| | - Go Urabe
- Department of Surgery College of Medicine The Ohio State University Columbus OH.,Department of Physiology & Cell Biology College of Medicine The Ohio State University Columbus OH.,Davis Heart and Lung Research Institute Wexner Medical Center The Ohio State University Columbus OH
| | - Lynn Marcho
- Department of Surgery College of Medicine The Ohio State University Columbus OH.,Department of Physiology & Cell Biology College of Medicine The Ohio State University Columbus OH.,Davis Heart and Lung Research Institute Wexner Medical Center The Ohio State University Columbus OH
| | - Corey Williams
- Department of Surgery College of Medicine The Ohio State University Columbus OH
| | - Lian-Wang Guo
- Department of Surgery College of Medicine The Ohio State University Columbus OH.,Department of Physiology & Cell Biology College of Medicine The Ohio State University Columbus OH.,Davis Heart and Lung Research Institute Wexner Medical Center The Ohio State University Columbus OH
| | - K Craig Kent
- Department of Surgery College of Medicine The Ohio State University Columbus OH
| |
Collapse
|