1
|
Ribeuz HL, Willer ASM, Chevalier B, Sancho M, Masson B, Eyries M, Jung V, Guerrera IC, Dutheil M, Jekmek KE, Laubry L, Carpentier G, Perez-Vizcaino F, Tu L, Guignabert C, Chaumais MC, Péchoux C, Humbert M, Hinzpeter A, Mercier O, Capuano V, Montani D, Antigny F. Role of KCNK3 Dysfunction in Dasatinib-associated Pulmonary Arterial Hypertension and Endothelial Cell Dysfunction. Am J Respir Cell Mol Biol 2024; 71:95-109. [PMID: 38546978 DOI: 10.1165/rcmb.2023-0185oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/27/2024] [Indexed: 07/02/2024] Open
Abstract
Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Anaïs Saint-Martin Willer
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Benoit Chevalier
- Paris Cité University, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, France
| | - Maria Sancho
- Department of Physiology and
- Department of Pharmacology, University of Vermont, Burlington, Vermont
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bastien Masson
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Mélanie Eyries
- Genetics Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vincent Jung
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, Université Paris Cité-Federative Research Structure Necker, Paris, France
| | - Ida Chiara Guerrera
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, Université Paris Cité-Federative Research Structure Necker, Paris, France
| | - Mary Dutheil
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Kristelle El Jekmek
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Loann Laubry
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Gilles Carpentier
- Gly-CRRET Research Unit 4397, Paris-Est Créteil University, Créteil, France
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ly Tu
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Christophe Guignabert
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Marie-Camille Chaumais
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Paris-Saclay University, Faculty of Pharmacy, Orsay, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Christine Péchoux
- Paris-Saclay University, INRAE, AgroparisTech, GABI, Jouy-en-Josas, France
| | - Marc Humbert
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Alexandre Hinzpeter
- Paris Cité University, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, France
| | - Olaf Mercier
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Groupe Hospitalier Paris Saint-Joseph-Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Véronique Capuano
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - David Montani
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| |
Collapse
|
2
|
Wiedmann F, Jamros M, Herlt V, Paasche A, Kraft M, Beck M, Prüser M, Erkal A, Harder M, Zaradzki M, Soethoff J, Karck M, Frey N, Schmidt C. A porcine large animal model of radiofrequency ablation-induced left bundle branch block. Front Physiol 2024; 15:1385277. [PMID: 38706948 PMCID: PMC11066324 DOI: 10.3389/fphys.2024.1385277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Background Electrocardiographic (ECG) features of left bundle branch (LBB) block (LBBB) can be observed in up to 20%-30% of patients suffering from heart failure with reduced ejection fraction. However, predicting which LBBB patients will benefit from cardiac resynchronization therapy (CRT) or conduction system pacing remains challenging. This study aimed to establish a translational model of LBBB to enhance our understanding of its pathophysiology and improve therapeutic approaches. Methods Fourteen male pigs underwent radiofrequency catheter ablation of the proximal LBB under fluoroscopy and ECG guidance. Comprehensive clinical assessments (12-lead ECG, bloodsampling, echocardiography, electroanatomical mapping) were conducted before LBBB induction, after 7, and 21 days. Three pigs received CRT pacemakers 7 days after LBB ablation to assess resynchronization feasibility. Results Following proximal LBB ablation, ECGs displayed characteristic LBBB features, including QRS widening, slurring in left lateral leads, and QRS axis changes. QRS duration increased from 64.2 ± 4.2 ms to 86.6 ± 12.1 ms, and R wave peak time in V6 extended from 21.3 ± 3.6 ms to 45.7 ± 12.6 ms. Echocardiography confirmed cardiac electromechanical dyssynchrony, with septal flash appearance, prolonged septal-to-posterior-wall motion delay, and extended ventricular electromechanical delays. Electroanatomical mapping revealed a left ventricular breakthrough site shift and significantly prolonged left ventricular activation times. RF-induced LBBB persisted for 3 weeks. CRT reduced QRS duration to 75.9 ± 8.6 ms, demonstrating successful resynchronization. Conclusion This porcine model accurately replicates the electrical and electromechanical characteristics of LBBB observed in patients. It provides a practical, cost-effective, and reproducible platform to investigate molecular and translational aspects of cardiac electromechanical dyssynchrony in a controlled and clinically relevant setting.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Max Jamros
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Valerie Herlt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Amelie Paasche
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Moritz Beck
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Merten Prüser
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Atilla Erkal
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maren Harder
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jasmin Soethoff
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Gong Q, LE X, Yu P, Zhuang L. Therapeutic advances in atrial fibrillation based on animal models. J Zhejiang Univ Sci B 2024; 25:135-152. [PMID: 38303497 PMCID: PMC10835209 DOI: 10.1631/jzus.b2300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 02/03/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia among humans, with its incidence increasing significantly with age. Despite the high frequency of AF in clinical practice, its etiology and management remain elusive. To develop effective treatment strategies, it is imperative to comprehend the underlying mechanisms of AF; therefore, the establishment of animal models of AF is vital to explore its pathogenesis. While spontaneous AF is rare in most animal species, several large animal models, particularly those of pigs, dogs, and horses, have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options. This review aims to provide a comprehensive discussion of various animal models of AF, with an emphasis on the unique features of each model and its utility in AF research and treatment. The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.
Collapse
Affiliation(s)
- Qian Gong
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuan LE
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
4
|
Paasche A, Wiedmann F, Kraft M, Seibertz F, Herlt V, Blochberger PL, Jávorszky N, Beck M, Weirauch L, Seeger T, Blank A, Haefeli WE, Arif R, Meyer AL, Warnecke G, Karck M, Voigt N, Frey N, Schmidt C. Acute antiarrhythmic effects of SGLT2 inhibitors-dapagliflozin lowers the excitability of atrial cardiomyocytes. Basic Res Cardiol 2024; 119:93-112. [PMID: 38170280 PMCID: PMC10837223 DOI: 10.1007/s00395-023-01022-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
In recent years, SGLT2 inhibitors have become an integral part of heart failure therapy, and several mechanisms contributing to cardiorenal protection have been identified. In this study, we place special emphasis on the atria and investigate acute electrophysiological effects of dapagliflozin to assess the antiarrhythmic potential of SGLT2 inhibitors. Direct electrophysiological effects of dapagliflozin were investigated in patch clamp experiments on isolated atrial cardiomyocytes. Acute treatment with elevated-dose dapagliflozin caused a significant reduction of the action potential inducibility, the amplitude and maximum upstroke velocity. The inhibitory effects were reproduced in human induced pluripotent stem cell-derived cardiomyocytes, and were more pronounced in atrial compared to ventricular cells. Hypothesizing that dapagliflozin directly affects the depolarization phase of atrial action potentials, we examined fast inward sodium currents in human atrial cardiomyocytes and found a significant decrease of peak sodium current densities by dapagliflozin, accompanied by a moderate inhibition of the transient outward potassium current. Translating these findings into a porcine large animal model, acute elevated-dose dapagliflozin treatment caused an atrial-dominant reduction of myocardial conduction velocity in vivo. This could be utilized for both, acute cardioversion of paroxysmal atrial fibrillation episodes and rhythm control of persistent atrial fibrillation. In this study, we show that dapagliflozin alters the excitability of atrial cardiomyocytes by direct inhibition of peak sodium currents. In vivo, dapagliflozin exerts antiarrhythmic effects, revealing a potential new additional role of SGLT2 inhibitors in the treatment of atrial arrhythmias.
Collapse
Affiliation(s)
- Amelie Paasche
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Valerie Herlt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Pablo L Blochberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Natasa Jávorszky
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Moritz Beck
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Leo Weirauch
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Timon Seeger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Anna L Meyer
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Huang J, Wu B, Qin P, Cheng Y, Zhang Z, Chen Y. Research on atrial fibrillation mechanisms and prediction of therapeutic prospects: focus on the autonomic nervous system upstream pathways. Front Cardiovasc Med 2023; 10:1270452. [PMID: 38028487 PMCID: PMC10663310 DOI: 10.3389/fcvm.2023.1270452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common clinical arrhythmia disorder. It can easily lead to complications such as thromboembolism, palpitations, dizziness, angina, heart failure, and stroke. The disability and mortality rates associated with AF are extremely high, significantly affecting the quality of life and work of patients. With the deepening of research into the brain-heart connection, the link between AF and stroke has become increasingly evident. AF is now categorized as either Known Atrial Fibrillation (KAF) or Atrial Fibrillation Detected After Stroke (AFDAS), with stroke as the baseline. This article, through a literature review, briefly summarizes the current pathogenesis of KAF and AFDAS, as well as the status of their clinical pharmacological and non-pharmacological treatments. It has been found that the existing treatments for KAF and AFDAS have limited efficacy and are often associated with significant adverse reactions and a risk of recurrence. Moreover, most drugs and treatment methods tend to focus on a single mechanism pathway. For example, drugs targeting ion channels primarily modulate ion channels and have relatively limited impact on other pathways. This limitation underscores the need to break away from the "one disease, one target, one drug/measurement" dogma for the development of innovative treatments, promoting both drug and non-drug therapies and significantly improving the quality of clinical treatment. With the increasing refinement of the overall mechanisms of KAF and AFDAS, a deeper exploration of physiological pathology, and comprehensive research on the brain-heart relationship, it is imperative to shift from long-term symptom management to more precise and optimized treatment methods that are effective for almost all patients. We anticipate that drugs or non-drug therapies targeting the central nervous system and upstream pathways can guide the simultaneous treatment of multiple downstream pathways in AF, thereby becoming a new breakthrough in AF treatment research.
Collapse
Affiliation(s)
- Jingjie Huang
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Qin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziyi Zhang
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yameng Chen
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Wiedmann F, Paasche A, Nietfeld J, Kraft M, Meyer AL, Warnecke G, Karck M, Frey N, Schmidt C. Activation of neurokinin-III receptors modulates human atrial TASK-1 currents. J Mol Cell Cardiol 2023; 184:26-36. [PMID: 37793594 DOI: 10.1016/j.yjmcc.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
RATIONALE The neurokinin-III receptor was recently shown to regulate atrial cardiomyocyte excitability by inhibiting atrial background potassium currents. TASK-1 (hK2P3.1) two-pore-domain potassium channels, which are expressed atrial-specifically in the human heart, contribute significantly to atrial background potassium currents. As TASK-1 channels are regulated by a variety of intracellular signalling cascades, they represent a promising candidate for mediating the electrophysiological effects of the Gq-coupled neurokinin-III receptor. OBJECTIVE To investigate whether TASK-1 channels mediate the neurokinin-III receptor activation induced effects on atrial electrophysiology. METHODS AND RESULTS In Xenopus laevis oocytes, heterologously expressing neurokinin-III receptor and TASK-1, administration of the endogenous neurokinin-III receptor ligands substance P or neurokinin B resulted in a strong TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Mutagenesis studies employing TASK-1 channel constructs which lack either protein kinase C (PKC) phosphorylation sites or the domain which is regulating the diacyl glycerol (DAG) sensitivity domain of TASK-1 revealed a protein kinase C independent mechanism of TASK-1 current inhibition: upon neurokinin-III receptor activation TASK-1 channels are blocked in a DAG-dependent fashion. Finally, effects of senktide on atrial TASK-1 currents could be reproduced in patch-clamp measurements, performed on isolated human atrial cardiomyocytes. CONCLUSIONS Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a DAG dependent fashion. Patch-clamp measurements, performed on human atrial cardiomyocytes suggest that the atrial-specific effects of neurokinin-III receptor activation on cardiac excitability are predominantly mediated via TASK-1 currents.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Amelie Paasche
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Jendrik Nietfeld
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna L Meyer
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Saint-Martin Willer A, Santos-Gomes J, Adão R, Brás-Silva C, Eyries M, Pérez-Vizcaino F, Capuano V, Montani D, Antigny F. Physiological and pathophysiological roles of the KCNK3 potassium channel in the pulmonary circulation and the heart. J Physiol 2023; 601:3717-3737. [PMID: 37477289 DOI: 10.1113/jp284936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Joana Santos-Gomes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mélanie Eyries
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
8
|
Narasimhan B, Gandhi K, Moras E, Wu L, Da Wariboko A, Aronow W. Experimental drugs for supraventricular tachycardia: an analysis of early phase clinical trials. Expert Opin Investig Drugs 2023; 32:825-838. [PMID: 37728554 DOI: 10.1080/13543784.2023.2259309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Supraventricular tachycardias (SVT) are a diverse group of commonly encountered arrhythmias arising at or above the atrioventricular (AV) node. Conventional anti-arrhythmic medications are restricted by extensive side-effect profiles and limited efficacy. Catheter ablation has emerged as a first-line therapy for many arrhythmias but is not a suitable option for all patients. This has prompted the exploration of novel pharmacological approaches targeting specific molecular mechanisms of SVT. AREAS COVERED This review article aims to summarize recent advancements in pharmacological therapeutics for SVT and their clinical implications. The understanding of molecular mechanisms underlying these arrhythmias, particularly atrial fibrillation, has opened up new possibilities for targeted interventions. Beyond the manipulation of ion channels and membrane potentials, pharmacotherapy now focuses on upstream targets such as inflammation, oxidative stress, and structural remodeling. This review strives to provide a comprehensive overview of recent advancements in pharmacological therapeutics directed at the management of SVT. We begin by providing a brief summary of the mechanisms and management of commonly encountered SVT before delving into individual agents, which in turn are stratified based on their molecular treatment targets. EXPERT OPINION The evolving landscape of pharmacologic therapy offers hope for more personalized and tailored interventions in the management of SVT.
Collapse
Affiliation(s)
- Bharat Narasimhan
- DeBakey Cardiovascular Institute, Houston Methodist, Houston, TX, USA
| | - Kruti Gandhi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Errol Moras
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Lingling Wu
- Department of Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Akanibo Da Wariboko
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Wilbert Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
9
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
10
|
Bai J, Lu Y, Wang H, Zhao J. How synergy between mechanistic and statistical models is impacting research in atrial fibrillation. Front Physiol 2022; 13:957604. [PMID: 36111152 PMCID: PMC9468674 DOI: 10.3389/fphys.2022.957604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) with multiple complications, high morbidity and mortality, and low cure rates, has become a global public health problem. Although significant progress has been made in the treatment methods represented by anti-AF drugs and radiofrequency ablation, the therapeutic effect is not as good as expected. The reason is mainly because of our lack of understanding of AF mechanisms. This field has benefited from mechanistic and (or) statistical methodologies. Recent renewed interest in digital twin techniques by synergizing between mechanistic and statistical models has opened new frontiers in AF analysis. In the review, we briefly present findings that gave rise to the AF pathophysiology and current therapeutic modalities. We then summarize the achievements of digital twin technologies in three aspects: understanding AF mechanisms, screening anti-AF drugs and optimizing ablation strategies. Finally, we discuss the challenges that hinder the clinical application of the digital twin heart. With the rapid progress in data reuse and sharing, we expect their application to realize the transition from AF description to response prediction.
Collapse
Affiliation(s)
- Jieyun Bai
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, China
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Yaosheng Lu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, China
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Simultaneous Quantification and Pharmacokinetic Characterization of Doxapram and 2-Ketodoxapram in Porcine Plasma and Brain Tissue. Pharmaceutics 2022; 14:pharmaceutics14040762. [PMID: 35456597 PMCID: PMC9031635 DOI: 10.3390/pharmaceutics14040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia associated with an increased stroke risk and mortality rate. Current treatment options leave unmet needs in AF therapy. Recently, doxapram has been introduced as a possible new option for AF treatment in a porcine animal model. To better understand its pharmacokinetics, three German Landrace pigs were treated with intravenous doxapram (1 mg/kg). Plasma and brain tissue samples were collected. For the analysis of these samples, an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the simultaneous measurement of doxapram and its active metabolite 2-ketodoxapram was developed and validated. The assay had a lower limit of quantification (LLOQ) of 10 pg/mL for plasma and 1 pg/sample for brain tissue. In pigs, doxapram pharmacokinetics were biphasic with a terminal elimination half-life (t1/2) of 1.38 ± 0.22 h and a maximal plasma concentration (cmax) of 1780 ± 275 ng/mL. Its active metabolite 2-ketodoxapram had a t1/2 of 2.42 ± 0.04 h and cmax of 32.3 ± 5.5 h after administration of doxapram. Protein binding was 95.5 ± 0.9% for doxapram and 98.4 ± 0.3% for 2-ketodoxapram with a brain-to-plasma ratio of 0.58 ± 0.24 for doxapram and 0.12 ± 0.02 for 2-ketodoxapram. In conclusion, the developed assay was successfully applied to the creation of pharmacokinetic data for doxapram, possibly improving the safety of its usage.
Collapse
|
12
|
Lagoutte-Renosi J, Allemand F, Ramseyer C, Yesylevskyy S, Davani S. Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discov Today 2021; 27:985-1007. [PMID: 34863931 DOI: 10.1016/j.drudis.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and increasing impact of computational approaches, their development is not progressing at the same speed in different fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era in cardiovascular medicine, but their use somewhat lags behind that in other fields.
Collapse
Affiliation(s)
- Jennifer Lagoutte-Renosi
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France
| | - Florentin Allemand
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine, Nauky Sve. 46, Kyiv, Ukraine; Receptor.ai inc, 16192 Coastal Highway, Lewes, DE, USA
| | - Siamak Davani
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France.
| |
Collapse
|
13
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
14
|
Papathanasiou KA, Giotaki SG, Vrachatis DA, Siasos G, Lambadiari V, Iliodromitis KE, Kossyvakis C, Kaoukis A, Raisakis K, Deftereos G, Papaioannou TG, Giannopoulos G, Avramides D, Deftereos SG. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11091584. [PMID: 34573926 PMCID: PMC8470040 DOI: 10.3390/diagnostics11091584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of atrial fibrillation (AF) is bound to increase globally in the following years, affecting the quality of life of millions of people, increasing mortality and morbidity, and beleaguering health care systems. Increasingly effective therapeutic options against AF are the constantly evolving electroanatomic substrate mapping systems of the left atrium (LA) and ablation catheter technologies. Yet, a prerequisite for better long-term success rates is the understanding of AF pathogenesis and maintenance. LA electrical and anatomical remodeling remains in the epicenter of current research for novel diagnostic and treatment modalities. On a molecular level, electrical remodeling lies on impaired calcium handling, enhanced inwardly rectifying potassium currents, and gap junction perturbations. In addition, a wide array of profibrotic stimuli activates fibroblast to an increased extracellular matrix turnover via various intermediaries. Concomitant dysregulation of the autonomic nervous system and the humoral function of increased epicardial adipose tissue (EAT) are established mediators in the pathophysiology of AF. Local atrial lymphomononuclear cells infiltrate and increased inflammasome activity accelerate and perpetuate arrhythmia substrate. Finally, impaired intracellular protein metabolism, excessive oxidative stress, and mitochondrial dysfunction deplete atrial cardiomyocyte ATP and promote arrhythmogenesis. These overlapping cellular and molecular alterations hinder us from distinguishing the cause from the effect in AF pathogenesis. Yet, a plethora of therapeutic modalities target these molecular perturbations and hold promise in combating the AF burden. Namely, atrial selective ion channel inhibitors, AF gene therapy, anti-fibrotic agents, AF drug repurposing, immunomodulators, and indirect cardiac neuromodulation are discussed here.
Collapse
Affiliation(s)
- Konstantinos A. Papathanasiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Sotiria G. Giotaki
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Dimitrios A. Vrachatis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Vaia Lambadiari
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Charalampos Kossyvakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Andreas Kaoukis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Konstantinos Raisakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Gerasimos Deftereos
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Theodore G. Papaioannou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Dimitrios Avramides
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Spyridon G. Deftereos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
- Correspondence: ; Tel.: +30-21-0583-2355
| |
Collapse
|
15
|
Abstract
The physiological heart function is controlled by a well-orchestrated interplay of different ion channels conducting Na+, Ca2+ and K+. Cardiac K+ channels are key players of cardiac repolarization counteracting depolarizating Na+ and Ca2+ currents. In contrast to Na+ and Ca2+, K+ is conducted by many different channels that differ in activation/deactivation kinetics as well as in their contribution to different phases of the action potential. Together with modulatory subunits these K+ channel α-subunits provide a wide range of repolarizing currents with specific characteristics. Moreover, due to expression differences, K+ channels strongly influence the time course of the action potentials in different heart regions. On the other hand, the variety of different K+ channels increase the number of possible disease-causing mutations. Up to now, a plethora of gain- as well as loss-of-function mutations in K+ channel forming or modulating proteins are known that cause severe congenital cardiac diseases like the long-QT-syndrome, the short-QT-syndrome, the Brugada syndrome and/or different types of atrial tachyarrhythmias. In this chapter we provide a comprehensive overview of different K+ channels in cardiac physiology and pathophysiology.
Collapse
|
16
|
Ramírez D, Mejia-Gutierrez M, Insuasty B, Rinné S, Kiper AK, Platzk M, Müller T, Decher N, Quiroga J, De-la-Torre P, González W. 5-(Indol-2-yl)pyrazolo[3,4- b]pyridines as a New Family of TASK-3 Channel Blockers: A Pharmacophore-Based Regioselective Synthesis. Molecules 2021; 26:molecules26133897. [PMID: 34202296 PMCID: PMC8271858 DOI: 10.3390/molecules26133897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
TASK channels belong to the two-pore-domain potassium (K2P) channels subfamily. These channels modulate cellular excitability, input resistance, and response to synaptic stimulation. TASK-channel inhibition led to membrane depolarization. TASK-3 is expressed in different cancer cell types and neurons. Thus, the discovery of novel TASK-3 inhibitors makes these bioactive compounds very appealing to explore new cancer and neurological therapies. TASK-3 channel blockers are very limited to date, and only a few heterofused compounds have been reported in the literature. In this article, we combined a pharmacophore hypothesis with molecular docking to address for the first time the rational design, synthesis, and evaluation of 5-(indol-2-yl)pyrazolo[3,4-b]pyridines as a novel family of human TASK-3 channel blockers. Representative compounds of the synthesized library were assessed against TASK-3 using Fluorometric imaging plate reader-Membrane Potential assay (FMP). Inhibitory properties were validated using two-electrode voltage-clamp (TEVC) methods. We identified one active hit compound (MM-3b) with our systematic pipeline, exhibiting an IC50 ≈ 30 μM. Molecular docking models suggest that compound MM-3b binds to TASK-3 at the bottom of the selectivity filter in the central cavity, similar to other described TASK-3 blockers such as A1899 and PK-THPP. Our in silico and experimental studies provide a new tool to predict and design novel TASK-3 channel blockers.
Collapse
Affiliation(s)
- David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-Piso 5, Santiago 8900000, Chile
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| | - Melissa Mejia-Gutierrez
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Magdalena Platzk
- Joint Pulmonary Drug Discovery Lab Bayer-MGH, Boston, MA 02114, USA;
| | - Thomas Müller
- Bayer AG, Research & Development, Pharmaceuticals, D-42096 Wuppertal, Germany;
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Pedro De-la-Torre
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114, USA
- Caribe Therapeutics, Vía 40 No. 69-111, Oficina 804 A, Barranquilla 080002, Colombia
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Poniente No. 1141, Talca 3460000, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| |
Collapse
|
17
|
Wiedmann F, Beyersdorf C, Zhou XB, Kraft M, Paasche A, Jávorszky N, Rinné S, Sutanto H, Büscher A, Foerster KI, Blank A, El-Battrawy I, Li X, Lang S, Tochtermann U, Kremer J, Arif R, Karck M, Decher N, van Loon G, Akin I, Borggrefe M, Kallenberger S, Heijman J, Haefeli WE, Katus HA, Schmidt C. Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy. Cardiovasc Res 2021; 118:1728-1741. [PMID: 34028533 DOI: 10.1093/cvr/cvab177] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS TASK-1 (K2P3.1) two-pore domain potassium channels are atrial-specific and significantly upregulated in atrial fibrillation (AF) patients, contributing to AF-related electrical remodelling. Inhibition of TASK-1 in cardiomyocytes of AF patients was shown to counteract AF-related action potential duration shortening. Doxapram was identified as a potent inhibitor of the TASK-1 channel. In the present study, we investigated the antiarrhythmic efficacy of doxapram in a porcine model of AF. METHODS AND RESULTS Doxapram successfully cardioverted pigs with artificially induced episodes of AF. We established a porcine model of persistent AF in domestic pigs via intermittent atrial burst stimulation using implanted pacemakers. All pigs underwent catheter-based electrophysiological investigations prior to and after 14 d of doxapram treatment. Pigs in the treatment group received intravenous administration of doxapram once per day. In doxapram-treated AF pigs, the AF burden was significantly reduced. After 14 d of treatment with doxapram, TASK-1 currents were still similar to values of sinus rhythm animals. Doxapram significantly suppressed AF episodes and normalized cellular electrophysiology by inhibition of the TASK-1 channel. Patch-clamp experiments on human atrial cardiomyocytes, isolated from patients with and without AF could reproduce the TASK-1 inhibitory effect of doxapram. CONCLUSIONS Repurposing doxapram might yield a promising new antiarrhythmic drug to treat AF in patients. TRANSLATIONAL PERSPECTIVE Pharmacological suppression of atrial TASK 1 potassium currents prolongs atrial refractoriness with no effects on ventricular repolarization, resulting in atrial-specific class III antiarrhythmic effects. In our preclinical pilot study the respiratory stimulant doxapram was successfully administered for cardioversion of acute AF as well as rhythm control of persistent AF in a clinically relevant porcine animal model.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Christoph Beyersdorf
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Xiao-Bo Zhou
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Amelie Paasche
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Natasa Jávorszky
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBB, University of Marburg, Marburg, Germany
| | - Henry Sutanto
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antonius Büscher
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ibrahim El-Battrawy
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Xin Li
- First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Siegfried Lang
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Ursula Tochtermann
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jamila Kremer
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBB, University of Marburg, Marburg, Germany
| | - Gunther van Loon
- Department of Large Animal Internal Medicine, Equine Cardioteam, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ibrahim Akin
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Martin Borggrefe
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Stefan Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany and Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Jordi Heijman
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Le Ribeuz H, Montani D, Antigny F. The Experimental TASK-1 Potassium Channel Inhibitor A293 Can Be Employed for Rhythm Control of Persistent Atrial Fibrillation in a Translational Large Animal Model. Front Physiol 2021; 12:668267. [PMID: 33912077 PMCID: PMC8072364 DOI: 10.3389/fphys.2021.668267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 ≪ Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique ≫, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 ≪ Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique ≫, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 ≪ Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique ≫, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Kraft M, Büscher A, Wiedmann F, L’hoste Y, Haefeli WE, Frey N, Katus HA, Schmidt C. Current Drug Treatment Strategies for Atrial Fibrillation and TASK-1 Inhibition as an Emerging Novel Therapy Option. Front Pharmacol 2021; 12:638445. [PMID: 33897427 PMCID: PMC8058608 DOI: 10.3389/fphar.2021.638445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia with a prevalence of up to 4% and an upwards trend due to demographic changes. It is associated with an increase in mortality and stroke incidences. While stroke risk can be significantly reduced through anticoagulant therapy, adequate treatment of other AF related symptoms remains an unmet medical need in many cases. Two main treatment strategies are available: rate control that modulates ventricular heart rate and prevents tachymyopathy as well as rhythm control that aims to restore and sustain sinus rhythm. Rate control can be achieved through drugs or ablation of the atrioventricular node, rendering the patient pacemaker-dependent. For rhythm control electrical cardioversion and pharmacological cardioversion can be used. While electrical cardioversion requires fasting and sedation of the patient, antiarrhythmic drugs have other limitations. Most antiarrhythmic drugs carry a risk for pro-arrhythmic effects and are contraindicated in patients with structural heart diseases. Furthermore, catheter ablation of pulmonary veins can be performed with its risk of intraprocedural complications and varying success. In recent years TASK-1 has been introduced as a new target for AF therapy. Upregulation of TASK-1 in AF patients contributes to prolongation of the action potential duration. In a porcine model of AF, TASK-1 inhibition by gene therapy or pharmacological compounds induced cardioversion to sinus rhythm. The DOxapram Conversion TO Sinus rhythm (DOCTOS)-Trial will reveal whether doxapram, a potent TASK-1 inhibitor, can be used for acute cardioversion of persistent and paroxysmal AF in patients, potentially leading to a new treatment option for AF.
Collapse
Affiliation(s)
- Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Antonius Büscher
- Clinic for Cardiology II: Electrophysiology, University Hospital Münster, Münster, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Yannick L’hoste
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Saljic A, Jespersen T, Buhl R. Anti-arrhythmic investigations in large animal models of atrial fibrillation. Br J Pharmacol 2021; 179:838-858. [PMID: 33624840 DOI: 10.1111/bph.15417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) constitutes an increasing health problem in the aging population. Animal models reflecting human phenotypes are needed to understand the mechanisms of AF, as well as to test new pharmacological interventions. In recent years, a number of large animal models, primarily pigs, goats, dog and horses have been used in AF research. These animals can to a certain extent recapitulate the human pathophysiological characteristics and serve as valuable tools in investigating new pharmacological interventions for treating AF. This review focuses on anti-arrhythmic investigations in large animals. Initially, spontaneous AF in small and large mammals is discussed. This is followed by a short presentation of frequently used methods for inducing short- and long-term AF. The major focus of the review is on anti-arrhythmic compounds either frequently used in the human clinic (ranolazine, flecainide, vernakalant and amiodarone) or being promising new AF medicine candidates (IK,Ach , ISK,Ca and IK2P blockers).
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
21
|
Wiedmann F, Beyersdorf C, Zhou XB, Kraft M, Foerster KI, El-Battrawy I, Lang S, Borggrefe M, Haefeli WE, Frey N, Schmidt C. The Experimental TASK-1 Potassium Channel Inhibitor A293 Can Be Employed for Rhythm Control of Persistent Atrial Fibrillation in a Translational Large Animal Model. Front Physiol 2021; 11:629421. [PMID: 33551849 PMCID: PMC7858671 DOI: 10.3389/fphys.2020.629421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Upregulation of the two-pore-domain potassium channel TASK-1 (hK2 P 3.1) was recently described in patients suffering from atrial fibrillation (AF) and resulted in shortening of the atrial action potential. In the human heart, TASK-1 channels facilitate repolarization and are specifically expressed in the atria. In the present study, we tested the antiarrhythmic effects of the experimental ion channel inhibitor A293 that is highly affine for TASK-1 in a porcine large animal model of persistent AF. METHODS Persistent AF was induced in German landrace pigs by right atrial burst stimulation via implanted pacemakers using a biofeedback algorithm over 14 days. Electrophysiological and echocardiographic investigations were performed before and after the pharmacological treatment period. A293 was intravenously administered once per day. After a treatment period of 14 days, atrial cardiomyocytes were isolated for patch clamp measurements of currents and atrial action potentials. Hemodynamic consequences of TASK-1 inhibition were measured upon acute A293 treatment. RESULTS In animals with persistent AF, the A293 treatment significantly reduced the AF burden (6.5% vs. 95%; P < 0.001). Intracardiac electrophysiological investigations showed that the atrial effective refractory period was prolonged in A293 treated study animals, whereas, the QRS width, QT interval, and ventricular effective refractory periods remained unchanged. A293 treatment reduced the upregulation of the TASK-1 current as well as the shortening of the action potential duration caused by AF. No central nervous side effects were observed. A mild but significant increase in pulmonary artery pressure was observed upon acute TASK-1 inhibition. CONCLUSION Pharmacological inhibition of atrial TASK-1 currents exerts in vivo antiarrhythmic effects that can be employed for rhythm control in a porcine model of persistent AF. Care has to be taken as TASK-1 inhibition may increase pulmonary artery pressure levels.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Christoph Beyersdorf
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Xiao-Bo Zhou
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Manuel Kraft
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Kathrin I. Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, Heidelberg, Germany
| | - Ibrahim El-Battrawy
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Siegfried Lang
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Martin Borggrefe
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- First Department of Medicine, University Medical Center, Mannheim University, Mannheim, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Geng M, Lin A, Nguyen TP. Revisiting Antiarrhythmic Drug Therapy for Atrial Fibrillation: Reviewing Lessons Learned and Redefining Therapeutic Paradigms. Front Pharmacol 2020; 11:581837. [PMID: 33240090 PMCID: PMC7680856 DOI: 10.3389/fphar.2020.581837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Since the clinical use of digitalis as the first pharmacological therapy for atrial fibrillation (AF) 235 years ago in 1785, antiarrhythmic drug therapy has advanced considerably and become a cornerstone of AF clinical management. Yet, a preventive or curative panacea for sustained AF does not exist despite the rise of AF global prevalence to epidemiological proportions. While multiple elevated risk factors for AF have been established, the natural history and etiology of AF remain incompletely understood. In the present article, the first section selectively highlights some disappointing shortcomings and current efforts in antiarrhythmic drug therapy to uncover reasons why AF is such a clinical challenge. The second section discusses some modern takes on the natural history of AF as a relentless, progressive fibro-inflammatory "atriomyopathy." The final section emphasizes the need to redefine therapeutic strategies on par with new insights of AF pathophysiology.
Collapse
Affiliation(s)
| | | | - Thao P. Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
23
|
Wiedmann F, Beyersdorf C, Zhou X, Büscher A, Kraft M, Nietfeld J, Walz TP, Unger LA, Loewe A, Schmack B, Ruhparwar A, Karck M, Thomas D, Borggrefe M, Seemann G, Katus HA, Schmidt C. Pharmacologic TWIK-Related Acid-Sensitive K+ Channel (TASK-1) Potassium Channel Inhibitor A293 Facilitates Acute Cardioversion of Paroxysmal Atrial Fibrillation in a Porcine Large Animal Model. J Am Heart Assoc 2020; 9:e015751. [PMID: 32390491 PMCID: PMC7660874 DOI: 10.1161/jaha.119.015751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-related acid-sensitive K+ channel (TASK-1; hK2P3.1) two-pore-domain potassium channel was recently shown to regulate the atrial action potential duration. In the human heart, TASK-1 channels are specifically expressed in the atria. Furthermore, upregulation of atrial TASK-1 currents was described in patients suffering from atrial fibrillation (AF). We therefore hypothesized that TASK-1 channels represent an ideal target for antiarrhythmic therapy of AF. In the present study, we tested the antiarrhythmic effects of the high-affinity TASK-1 inhibitor A293 on cardioversion in a porcine model of paroxysmal AF. Methods and Results Heterologously expressed human and porcine TASK-1 channels are blocked by A293 to a similar extent. Patch clamp measurements from isolated human and porcine atrial cardiomyocytes showed comparable TASK-1 currents. Computational modeling was used to investigate the conditions under which A293 would be antiarrhythmic. German landrace pigs underwent electrophysiological studies under general anesthesia. Paroxysmal AF was induced by right atrial burst stimulation. After induction of AF episodes, intravenous administration of A293 restored sinus rhythm within cardioversion times of 177±63 seconds. Intravenous administration of A293 resulted in significant prolongation of the atrial effective refractory period, measured at cycle lengths of 300, 400 and 500 ms, whereas the surface ECG parameters and the ventricular effective refractory period lengths remained unchanged. Conclusions Pharmacological inhibition of atrial TASK-1 currents exerts antiarrhythmic effects in vivo as well as in silico, resulting in acute cardioversion of paroxysmal AF. Taken together, these experiments indicate the therapeutic potential of A293 for AF treatment.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Christoph Beyersdorf
- Department of Cardiology University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Xiaobo Zhou
- DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,First Department of Medicine University Medical Center Mannheim Germany
| | - Antonius Büscher
- Department of Cardiology University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Manuel Kraft
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Jendrik Nietfeld
- Department of Cardiology University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Teo Puig Walz
- Institute for Experimental Cardiovascular Medicine University Heart Center Freiburg Bad Krozingen Germany.,Medical Center University of Freiburg, and Faculty of Medicine University of Freiburg Germany
| | - Laura A Unger
- Institute of Biomedical Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Axel Loewe
- Institute of Biomedical Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Bastian Schmack
- Department of Cardiac Surgery University Hospital Heidelberg Germany
| | | | - Matthias Karck
- Department of Cardiac Surgery University Hospital Heidelberg Germany
| | - Dierk Thomas
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Martin Borggrefe
- DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,First Department of Medicine University Medical Center Mannheim Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine University Heart Center Freiburg Bad Krozingen Germany.,Medical Center University of Freiburg, and Faculty of Medicine University of Freiburg Germany
| | - Hugo A Katus
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| | - Constanze Schmidt
- Department of Cardiology University of Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) partner site Heidelberg /Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders University of Heidelberg Germany
| |
Collapse
|