1
|
Monahan K, Kerrigan D, Shibao C, Fissell W, Perri R, Planz V. Cerebral, Splanchnic, and Renal Transit Time Measurement and Blood Volume Estimation Using Contrast-Enhanced Ultrasonography. Ultrasound Q 2024; 40:e00687. [PMID: 39282951 PMCID: PMC11410340 DOI: 10.1097/ruq.0000000000000687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
ABSTRACT We aimed to measure cerebral, splanchnic, and renal transit times and the associated blood volumes using contrast ultrasound. In healthy individuals, regional transit times were calculated from time-intensity curves generated as ultrasound contrast passed through the associated inflow and outflow vessels. These included the internal carotid artery and internal jugular vein (brain), the superior mesenteric artery and portal vein (intestines), and the renal artery and renal vein (kidney). An organ's blood volume relative to the stroke volume delivered to that organ with each cardiac cycle was calculated from the product of heart rate and transit time of contrast passage through the associated vascular bed. The fraction of systemic stroke volume received by each organ was calculated from the respective velocity-time integral and inflow vessel cross-sectional area and used to estimate absolute organ blood volume. The cohort consisted of 16 participants (age: 42 ± 13 years; 5 female) without known cerebrovascular, gastrointestinal, or renal disease. Cerebral, splanchnic, and renal transit times were obtained for 15, 14, and 8 individuals, respectively. Anatomic variability of the renal vessels confounded the acquisition of renal transit times. For all organs, transit times were reproducible and the associated blood volumes were generally comparable to reference values. Cerebral, gastrointestinal, and renal transit times/blood volumes can be reasonably acquired from contrast ultrasound, although the latter is less reliably available. Assessment of the impact on regional blood volumes of pharmacologic or other interventions is a next step toward clinical application of this technique.
Collapse
Affiliation(s)
| | | | | | | | | | - Virginia Planz
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
4
|
Self-reported symptom burden in postural orthostatic tachycardia syndrome (POTS): A narrative review of observational and interventional studies. Auton Neurosci 2023; 244:103052. [PMID: 36525900 DOI: 10.1016/j.autneu.2022.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Postural Orthostatic Tachycardia Syndrome (POTS) is a chronic health condition affecting mostly women of childbearing age, and significantly impacting their health and quality of life. It is currently poorly understood with no approved licensed treatments. The aim of this systematic review was to contextualize the symptom burden of POTS, and review factors associated with this burden that may guide future treatments. The specific questions were (1) How does symptom burden in POTS compare to the burden in other long term conditions (LTCs), (2) Which factors are associated with POTS symptom burden, and (3) Which interventions show promise in reducing symptom burden in POTS. DATABASES AND DATA TREATMENT Electronic databases (CENTRAL, MEDLINE, EMBASE, CINAHL, PsycINFO, Web of Science, APA PsycArticles, OpenGrey) were searched from inception to January 2022 for observational studies reporting on the association between any biological, psychological or social factors and symptom burden, and randomized controlled trials reporting on interventions for symptom burden in adults with POTS. Two reviewers independently conducted eligibility screening, data extraction and quality assessment. A narrative synthesis was undertaken. RESULTS/CONCLUSION 5159 entries were screened for eligibility. Twenty-nine studies were included (1372 participants with POTS of a total sample size of 2314, 17 High-, 12 Medium-quality), seventeen were observational and twelve were randomized controlled experimental and intervention trials. Overall methodological quality of the evidence was medium-high but heterogeneity was high and sample sizes modest, allowing moderately robust conclusions. Orthostatic symptom burden was higher in POTS than other LTCs. Serum activity against adrenergic α1 receptors, physical functioning, depression, catastrophizing, prolonged cognitive stress testing and anxiety were significantly associated with symptom burden in medium-high quality studies. Preliminary medium-high quality evidence from predominantly proof-of-concept (n = 11) studies and one 3-month 2 × 2 factorial design trial suggest that compression garments, propranolol, pyridostigmine, desmopressin, and bisoprolol may hold promise in reducing symptom burden. Directions for future research include investigating associated factors over time, the development of complex interventions which address both biological and psychosocial factors associated with symptom burden, and effectiveness trials of these interventions. SIGNIFICANCE POTS symptom burden is high, particularly in relation to orthostatic intolerance when compared to other long-term conditions (LTCs). Despite this burden, there are no effectiveness randomized controlled trials of treatment to reduce symptoms in POTS. This review provides a starting point to understanding researched biological and psychosocial factors associated with this burden. There was however inconsistency in the measurement of symptom burden, lowering the confidence of cross-study inferences. A coherent definition of POTS symptom range, severity and impact along with a validated and reliable POTS-specific instrument is currently lacking. A standardized questionnaire to assess POTS symptom burden as a core outcome measure will help clarify future research and clinical practice.
Collapse
|
6
|
Vernino S, Bourne KM, Stiles LE, Grubb BP, Fedorowski A, Stewart JM, Arnold AC, Pace LA, Axelsson J, Boris JR, Moak JP, Goodman BP, Chémali KR, Chung TH, Goldstein DS, Diedrich A, Miglis MG, Cortez MM, Miller AJ, Freeman R, Biaggioni I, Rowe PC, Sheldon RS, Shibao CA, Systrom DM, Cook GA, Doherty TA, Abdallah HI, Darbari A, Raj SR. Postural orthostatic tachycardia syndrome (POTS): State of the science and clinical care from a 2019 National Institutes of Health Expert Consensus Meeting - Part 1. Auton Neurosci 2021; 235:102828. [PMID: 34144933 DOI: 10.1016/j.autneu.2021.102828] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a chronic and often disabling disorder characterized by orthostatic intolerance with excessive heart rate increase without hypotension during upright posture. Patients often experience a constellation of other typical symptoms including fatigue, exercise intolerance and gastrointestinal distress. A typical patient with POTS is a female of child-bearing age, who often first displays symptoms in adolescence. The onset of POTS may be precipitated by immunological stressors such as a viral infection. A variety of pathophysiologies are involved in the abnormal postural tachycardia response; however, the pathophysiology of the syndrome is incompletely understood and undoubtedly multifaceted. Clinicians and researchers focused on POTS convened at the National Institutes of Health in July 2019 to discuss the current state of understanding of the pathophysiology of POTS and to identify priorities for POTS research. This article, the first of two articles summarizing the information discussed at this meeting, summarizes the current understanding of this disorder and best practices for clinical care. The evaluation of a patient with suspected POTS should seek to establish the diagnosis, identify co-morbid conditions, and exclude conditions that could cause or mimic the syndrome. Once diagnosed, management typically begins with patient education and non-pharmacologic treatment options. Various medications are often used to address specific symptoms, but there are currently no FDA-approved medications for the treatment of POTS, and evidence for many of the medications used to treat POTS is not robust.
Collapse
Affiliation(s)
- Steven Vernino
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kate M Bourne
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lauren E Stiles
- Department of Neurology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA; Dysautonomia International, East Moriches, NY, USA
| | - Blair P Grubb
- Division of Cardiology, Department of Medicine, The University of Toledo Medical Center, USA
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Julian M Stewart
- Center for Hypotension, Departments of Pediatrics and Physiology, New York Medical College, Valhalla, NY, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA; Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura A Pace
- Center for Genomic Medicine and Department of Pediatrics, Division of Medical Genetics and Genomics, University of Utah, Salt Lake City, UT, USA
| | - Jonas Axelsson
- Department of Clinical Immunology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jeffrey P Moak
- Department of Pediatrics, George Washington Univeristy School of Medicine and Health Sciences, Washington, DC, USA
| | - Brent P Goodman
- Neuromuscular Division, Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Kamal R Chémali
- Department of Neurology, Eastern Virginia Medical School, Division of Neurology, Neuromuscular and Autonomic Center, Sentara Healthcare, Norfolk, VA, USA
| | - Tae H Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andre Diedrich
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mitchell G Miglis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Melissa M Cortez
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Amanda J Miller
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Roy Freeman
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Center for Autonomic and Peripheral Nerve Disorders, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Italo Biaggioni
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert S Sheldon
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cyndya A Shibao
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Systrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Glen A Cook
- Department of Neurology, Uniformed Services University, Bethesda, MD, USA
| | - Taylor A Doherty
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Anil Darbari
- Pediatric Gastroenterology, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Satish R Raj
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Smith EC, Diedrich A, Raj SR, Gamboa A, Shibao CA, Black BK, Peltier A, Paranjape SY, Biaggioni I, Okamoto LE. Splanchnic Venous Compression Enhances the Effects of ß-Blockade in the Treatment of Postural Tachycardia Syndrome. J Am Heart Assoc 2020; 9:e016196. [PMID: 32673517 PMCID: PMC7660715 DOI: 10.1161/jaha.120.016196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Splanchnic venous pooling induced by upright posture triggers a compensatory increase in heart rate (HR), a response that is exaggerated in patients with postural tachycardia syndrome. To assess whether abdominal compression attenuates orthostatic tachycardia and improves symptoms, 18 postural tachycardia syndrome patients (32±2 years) were randomized to receive either abdominal compression (40 mm Hg applied with an inflatable binder ≈2 minutes before standing) or propranolol (20 mg) in a placebo‐controlled, crossover study. Methods and Results Systolic blood pressure, HR, and symptoms were assessed while seated and standing, before and 2 hours postdrug. As expected, propranolol decreased standing HR compared with placebo (81±2 versus 98±4 beats per minute; P<0.001) and was associated with lower standing systolic blood pressure (93±2 versus 100±2 mm Hg for placebo; P=0.002). Compression had no effect on standing HR (96±4 beats per minute) but increased standing systolic blood pressure compared with placebo and propranolol (106±2 mm Hg; P<0.01). Neither propranolol nor compression improved symptoms compared with placebo. In 16 patients we compared the combination of abdominal compression and propranolol with propranolol alone. The combination had no additional effect on standing HR (81±2 beats per minute for both interventions) but prevented the decrease in standing systolic blood pressure produced by propranolol (98±2 versus 93±2 mm Hg for propranolol; P=0.029), and significantly improved total symptom burden (−6±2 versus −1±2 for propranolol; P=0.041). Conclusions Splanchnic venous compression alone did not improve HR or symptoms but prevented the blood pressure decrease produced by propranolol. The combination was more effective in improving symptoms than either alone. Splanchnic venous compression can be a useful adjuvant therapy to propranolol in postural tachycardia syndrome. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00262470.
Collapse
Affiliation(s)
- Emily C Smith
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN
| | - André Diedrich
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN.,Department of Biomedical Engineering Vanderbilt University School of Medicine Nashville TN
| | - Satish R Raj
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN.,Department of Cardiac Sciences Libin Cardiovascular Institute of Alberta University of Calgary Canada
| | - Alfredo Gamboa
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN
| | - Cyndya A Shibao
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN
| | - Bonnie K Black
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN
| | - Amanda Peltier
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Vanderbilt Heart and Vascular Institute Vanderbilt University School of Medicine Nashville TN.,Department of Neurology Vanderbilt University School of Medicine Nashville TN
| | - Sachin Y Paranjape
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN
| | - Italo Biaggioni
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN.,Department of Pharmacology Vanderbilt University School of Medicine Nashville TN
| | - Luis E Okamoto
- Vanderbilt Autonomic Dysfunction Center Vanderbilt University School of Medicine Nashville TN.,Division of Clinical Pharmacology Vanderbilt University School of Medicine Nashville TN.,Department of Medicine Vanderbilt University School of Medicine Nashville TN
| |
Collapse
|