1
|
Nassikas NJ, Rifas-Shiman SL, Luttmann-Gibson H, Chen K, Blossom JC, Oken E, Gold DR, Rice MB. Precipitation and Adolescent Respiratory Health in the Northeast United States. Ann Am Thorac Soc 2023; 20:698-704. [PMID: 36749585 PMCID: PMC10174124 DOI: 10.1513/annalsats.202209-805oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023] Open
Abstract
Rationale: With more frequent and intense precipitation events across the globe due to a changing climate, there is a need to understand the relationship between precipitation and respiratory health. Precipitation may trigger asthma exacerbations, but little is known about how precipitation affects lung function and airway inflammation in early adolescents. Objectives: To determine if short-term precipitation exposure is associated with lung function and airway inflammation in early adolescents and if ever having a diagnosis of asthma modifies associations of precipitation with lung function and airway inflammation. Methods: In a prospective prebirth cohort, Project Viva, that included 1,019 early adolescents born in the northeastern United States, we evaluated associations of 1-, 2-, 3-, and 7-day moving averages of precipitation in the preceding week and forced expiratory volume in 1 second, forced vital capacity, and fractional exhaled nitric oxide (FeNO) using linear regression. We used log-transformed FeNO with effect estimates presented as percentage change. We adjusted for maternal education and household income at enrollment; any smoking in the home in early adolescence; child sex, race/ethnicity, and ever asthma diagnosis; and age, height, weight, date, and season (as sine and cosine functions of visit date) at the early adolescent visit and moving averages for mean daily temperature (same time window as exposure). Results: In fully adjusted linear models, 3- and 7-day moving averages for precipitation were positively associated with FeNO but not lung function. Every 2-mm increase in the 7-day moving average for precipitation was associated with a 4.0% (95% confidence interval, 1.1, 6.9) higher FeNO. There was evidence of effect modification by asthma status: Precipitation was associated with lower forced vital capacity and higher FeNO among adolescents with asthma. We also found that outdoor aeroallergen sensitization (immunoglobulin E against common ragweed, oak, ryegrass, or silver birch) modified associations of precipitation with FeNO, with higher FeNO in sensitized adolescents compared with nonsensitized adolescents. The associations of precipitation with FeNO were not explained by relative humidity or air pollution exposure. Conclusions: We found that greater short-term precipitation may trigger airway inflammation in adolescents, particularly among those with asthma.
Collapse
Affiliation(s)
- Nicholas J. Nassikas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kelly Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jeffrey C. Blossom
- Center for Geographic Analysis, Harvard University, Cambridge, Massachusetts; and
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
2
|
Liu Y, Li Y, Xu H, Zhao X, Zhu Y, Zhao B, Yao Q, Duan H, Guo C, Li Y. Pre- and postnatal particulate matter exposure and blood pressure in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 223:115373. [PMID: 36731599 DOI: 10.1016/j.envres.2023.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early life is a susceptible period of air pollution-related adverse health effects. Hypertension in children might be life-threatening without prevention or treatment. Nevertheless, the causative association between environmental factors and childhood hypertension was limited. In the light of particulate matter (PM) as an environmental risk factor for cardiovascular diseases, this study investigated the association of pre- and postnatal PM exposure with blood pressure (BP) and hypertension among children and adolescents. METHOD Four electronic databases were searched for related epidemiological studies published up to September 13, 2022. Stata 14.0 was applied to examine the heterogeneity among the studies and evaluate the combined effect sizes per 10 μg/m3 increase of PM by selecting the corresponding models. Besides, subgroup analysis, sensitivity analysis, and publication bias test were also conducted. RESULTS Prenatal PM2.5 exposure was correlated with increased diastolic blood pressure (DBP) in offspring [1.14 mmHg (95% CI: 0.12, 2.17)]. For short-term postnatal exposure effects, PM2.5 (7-day average) was significantly associated with systolic blood pressure (SBP) [0.20 mmHg (95% CI: 0.16, 0.23)] and DBP [0.49 mmHg (95% CI: 0.45, 0.53)]; and also, PM10 (7-day average) was significantly associated with SBP [0.14 mmHg (95% CI: 0.12, 0.16)]. For long-term postnatal exposure effects, positive associations were manifested in SBP with PM2.5 [β = 0.44, 95% CI: 0.40, 0.48] and PM10 [β = 0.35, 95% CI: 0.19, 0.51]; DBP with PM1 [β = 0.45, 95% CI: 0.42, 0.49], PM2.5 [β = 0.31, 95% CI: 0.27, 0.35] and PM10 [β = 0.32, 95% CI: 0.19, 0.45]; and hypertension with PM1 [OR = 1.43, 95% CI: 1.40, 1.46], PM2.5 [OR = 1.65, 95% CI: 1.29, 2.11] and PM10 [OR = 1.26, 95% CI: 1.09, 1.45]. CONCLUSION Both prenatal and postnatal exposure to PM can increase BP, contributing to a higher prevalence of hypertension in children and adolescents.
Collapse
Affiliation(s)
- Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Zheng S, Nie Z, Lv Z, Wang T, Wei W, Fang D, Zou X, Fu Y, Cao T, Liang Z, Lu Q, Huang H, Wen Y, Huang S. Associations between plasma metal mixture exposure and risk of hypertension: A cross-sectional study among adults in Shenzhen, China. Front Public Health 2022; 10:1039514. [PMID: 36582368 PMCID: PMC9794142 DOI: 10.3389/fpubh.2022.1039514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Metal exposure affects human health. Current studies mainly focus on the individual health effect of metal exposure on hypertension (HTN), and the results remain controversial. Moreover, the studies assessing overall effect of metal mixtures on hypertension risk are limited. Methods A cross-sectional study was conducted by recruiting 1,546 Chinese adults who attended routine medical check-ups at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen. The plasma levels of 13 metals were measured using inductively coupled plasma mass spectrometry. Multivariate logistic regression model, restricted cubic spline (RCS) model and the Bayesian Kernel Machine Regression (BKMR) model were applied to explore the single and combined effect of metals on the risk of HTN. Results A total of 642 (41.5%) participants were diagnosed with HTN. In the logistic regression model, the adjusted odds ratios (ORs) were 0.71 (0.52, 0.97) for cobalt, 1.40 (1.04, 1.89) for calcium, 0.66 (0.48, 0.90), and 0.60 (0.43, 0.83) for aluminum in the second and third quartile, respectively. The RCS analysis showed a V-shaped or an inverse V-shaped dose-response relationship between metals (aluminum or calcium, respectively) and the risk of HTN (P for non-linearity was 0.017 or 0.009, respectively). However, no combined effect was found between metal mixture and the risk of hypertension. Conclusions Plasma levels of cobalt, aluminum and calcium were found to be associated with the risk of HTN. Further studies are needed to confirm our findings and their potential mechanisms with prospective studies and experimental study designs.
Collapse
Affiliation(s)
- Sijia Zheng
- School of Public Health, Shanxi Medical University, Taiyuan, China,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhiqiang Nie
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Tian Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Weizhou Wei
- Shenzhen Yutian Community Health Service Centre, Shenzhen, China
| | - Daokui Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yulin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhaoyi Liang
- School of Public Health, Shanxi Medical University, Taiyuan, China,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qi Lu
- School of Public Health, Shanxi Medical University, Taiyuan, China,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China,Ying Wen
| | - Suli Huang
- School of Public Health, Shanxi Medical University, Taiyuan, China,Shenzhen Center for Disease Control and Prevention, Shenzhen, China,*Correspondence: Suli Huang
| |
Collapse
|
5
|
Predisposed obesity and long-term metabolic diseases from maternal exposure to fine particulate matter (PM2.5) — A review of its effect and potential mechanisms. Life Sci 2022; 310:121054. [DOI: 10.1016/j.lfs.2022.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
6
|
Bigambo FM, Zhang M, Zhang J, Yang X, Yu Q, Wu D, Wang X, Xia Y. Exposure to a mixture of personal care product and plasticizing chemicals in relation to reproductive hormones and menarche timing among 12–19 years old girls in NHANES 2013–2016. Food Chem Toxicol 2022; 170:113463. [PMID: 36220617 DOI: 10.1016/j.fct.2022.113463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
7
|
Yim G, Reynaga L, Nunez V, Howe CG, Romano ME, Chen Y, Karagas MR, Toledo-Corral C, Farzan SF. Perinatal Metal and Metalloid Exposures and Offspring Cardiovascular Health Risk. Curr Environ Health Rep 2022; 9:714-734. [PMID: 35980568 PMCID: PMC11559654 DOI: 10.1007/s40572-022-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Toxic metal exposures have been associated with cardiovascular disease in adults and growing evidence suggests metal exposures also adversely affect cardiovascular phenotypes in childhood and adolescence. However, to our knowledge, the influence of perinatal metals exposure, particularly metal mixtures, in relation to cardiovascular-related outcomes have not been comprehensively reviewed. RECENT FINDINGS We summarized 17 contemporary studies (2017-2021) that investigated the impact of perinatal metal exposures on measures of cardiovascular health in children. Accumulating evidence supports a potential adverse impact of perinatal Pb exposure on BP in children. Fewer recent studies have focused on perinatal As, Hg, and Cd; thus, the cardiovascular impacts of these metals are less clear. Studies of metal mixtures demonstrate that interactions between metals may be complex and have identified numerous understudied elements and essential metals, including Mo, Co, Ni, Se, Zn, and Mn, which may influence cardiovascular risk. A key question that remains is whether perinatal metals exposure influences cardiovascular health into adulthood. Comparisons across studies remain challenging due to several factors, including differences in the timing of exposure/outcome assessments and exposure biomarkers, as well as variability in exposure levels and mixture compositions across populations. Future studies longitudinally investigating trajectories of cardiovascular outcomes could help determine the influence of perinatal metals exposure on long-term effects of clinical relevance in later life and whether interventions, which reduce metals exposures during this key developmental window, could alter disease development.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lorena Reynaga
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Velia Nunez
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA.
| |
Collapse
|
8
|
Ma J, Zhang H, Zheng T, Zhang W, Yang C, Yu L, Sun X, Xia W, Xu S, Li Y. Exposure to metal mixtures and hypertensive disorders of pregnancy: A nested case-control study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119439. [PMID: 35550130 DOI: 10.1016/j.envpol.2022.119439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Exposure to metals has been linked with the risk of hypertensive disorders of pregnancy (HDP), but little is known about the potential effects of exposure to metal mixtures. Thus, our study aimed to investigated the impact of a complex mixture of metals on HDP, especially the interactions among metal mixtures. We did a population-based nested case-control study from October 2013 to October 2016 in Wuhan, China, including 146 HDP cases and 292 controls. Plasma concentrations of Aluminum (Al), Barium (Ba), Cobalt (Co), Copper (Cu), Lead (Pb), Mercury (Hg), Molybdenum (Mo), Nickel (Ni), Selenium (Se), Strontium (Sr), Thallium (Tl), and Vanadium (V) were measured and collected between 10 and 16 gestational weeks. We employed quantile g-computation, conditional logistic regression models, and Bayesian Kernel Machine Regression (BKMR) to assess the association of individual metals and metal mixtures with HDP risk. In the quantile g-computation, the OR for a joint tertile increase in plasma concentrations was 3.67 (95% CI: 1.70, 7.91). Hg contributed the largest positive weights and followed by Al, Ni, and V. In conditional logistic regression models, concentrations of Hg, Al, Ni, and V were significantly associated with the risk of HDP (p-FDR < 0.05). Compared to the lowest tertiles, the ORs (95% CI) for the highest tertiles of these four metals were 2.67 (1.44, 4.95), 3.09 (1.70, 5.64), 5.31 (2.68, 10.53), and 4.52 (2.26, 9.01), respectively. In the BKMR analysis, we observed a linear positive association between Hg, Al, V, and HDP, and a nonlinear relationship between Ni and HDP. A potential interaction between Al and V was also identified. We found that exposure to metal mixtures in early pregnancy, both individually and as a mixture, was associated with the risk of HDP. Potential interaction effects of Al and V on the risk of HDP may exist.
Collapse
Affiliation(s)
- Jiaolong Ma
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, PR China
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Wenxin Zhang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chenhui Yang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Ling Yu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
9
|
Air pollution and lung function in children. J Allergy Clin Immunol 2021; 148:1-14. [PMID: 34238501 DOI: 10.1016/j.jaci.2021.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
In this narrative review, we summarize the literature and provide updates on recent studies of air pollution exposures and child lung function and lung function growth. We include exposures to outdoor air pollutants that are monitored and regulated through air quality standards, and air pollutants that are not routinely monitored or directly regulated, including wildfires, indoor biomass and coal burning, gas and wood stove use, and volatile organic compounds. Included is a more systematic review of the recent literature on long-term air pollution and child lung function because this is an indicator of future adult respiratory health and exposure assessment tools have improved dramatically in recent years. We present "summary observations" and "knowledge gaps." We end by discussing what is known about what can be done at the individual/household, local/regional, and national levels to overcome structural impediments, reduce air pollution exposures, and improve child lung function. We found a large literature on adverse air pollution effects on children's lung function level and growth; however, many questions remain. Important areas needing further research include whether early-life effects are fixed or reversible; and what are windows of increased susceptibility, long-term effects of repeated wildfire events, and effects of air quality interventions.
Collapse
|
10
|
Zanobetti A, Coull BA, Luttmann-Gibson H, van Rossem L, Rifas-Shiman SL, Kloog I, Schwartz JD, Oken E, Bobb JF, Koutrakis P, Gold DR. Ambient Particle Components and Newborn Blood Pressure in Project Viva. J Am Heart Assoc 2020; 10:e016935. [PMID: 33372530 PMCID: PMC7955476 DOI: 10.1161/jaha.120.016935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Both elemental metals and particulate air pollution have been reported to influence adult blood pressure (BP). The aim of this study is to examine which elemental components of particle mass with diameter ≤2.5 μm (PM2.5) are responsible for previously reported associations between PM2.5 and neonatal BP. Methods and Results We studied 1131 mother‐infant pairs in Project Viva, a Boston‐area prebirth cohort. We measured systolic BP (SBP) and diastolic BP (DBP) at a mean age of 30 hours. We calculated average exposures during the 2 to 7 days before birth for the PM2.5 components—aluminum, arsenic, bromine, sulfur, copper, iron, zinc, nickel, vanadium, titanium, magnesium, potassium, silicon, sodium, chlorine, calcium, and lead—measured at the Harvard supersite. Adjusting for covariates and PM2.5, we applied regression models to examine associations between PM2.5 components and median SBP and DBP, and used variable selection methods to select which components were more strongly associated with each BP outcome. We found consistent results with higher nickel associated with significantly higher SBP and DBP, and higher zinc associated with lower SBP and DBP. For an interquartile range increase in the log Z score (1.4) of nickel, we found a 1.78 mm Hg (95% CI, 0.72–2.84) increase in SBP and a 1.30 (95% CI, 0.54–2.06) increase in DBP. Increased zinc (interquartile range log Z score 1.2) was associated with decreased SBP (−1.29 mm Hg; 95% CI, −2.09 to −0.50) and DBP (−0.85 mm Hg; 95% CI: −1.42 to −0.29). Conclusions Our findings suggest that prenatal exposures to particulate matter components, and particularly nickel, may increase newborn BP.
Collapse
Affiliation(s)
- Antonella Zanobetti
- Department of Environmental Health Harvard School of Public Health Boston MA
| | - Brent A Coull
- Department of Biostatistics Harvard School of Public Health Boston MA
| | | | - Lenie van Rossem
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht the Netherlands
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA
| | - Itai Kloog
- Department of Geography and Environmental Development Ben-Gurion University of the Negev Beer Sheva Israel
| | - Joel D Schwartz
- Department of Environmental Health Harvard School of Public Health Boston MA.,Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute Boston MA
| | - Jennifer F Bobb
- Biostatistics Unit Kaiser Permanente Washington Health Research Institute Seattle WA.,Department of Biostatistics University of Washington Seattle WA
| | - Petros Koutrakis
- Department of Environmental Health Harvard School of Public Health Boston MA
| | - Diane R Gold
- Department of Environmental Health Harvard School of Public Health Boston MA.,Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| |
Collapse
|