1
|
Grushko OG, Cho S, Tate AM, Rosenson RS, Pinsky DJ, Haus JM, Hummel SL, Goonewardena SN. Glycocalyx Disruption Triggers Human Monocyte Activation in Acute Heart Failure Syndromes. Cardiovasc Drugs Ther 2024; 38:305-313. [PMID: 36260206 DOI: 10.1007/s10557-022-07390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Acute heart failure (AHF) syndromes manifest increased inflammation and vascular dysfunction; however, mechanisms that integrate the two in AHF remain largely unknown. The glycocalyx (GAC) is a sugar-based shell that envelops all mammalian cells. Much GAC research has focused on its role in vascular responses, with comparatively little known about how the GAC regulates immune cell function. METHODS In this study, we sought to determine if GAC degradation products are elevated in AHF patients, how these degradation products relate to circulating inflammatory mediators, and whether the monocyte GAC (mGAC) itself modulates monocyte activation. Inflammatory markers and GAC degradation products were profiled using ELISAs. Flow cytometry was used to assess the mGAC and RNA-seq was employed to understand the role of the mGAC in regulating inflammatory activation programs. RESULTS In a cohort of hospitalized AHF patients (n = 17), we found that (1) the GAC degradation product heparan sulfate (HS) was elevated compared with age-matched controls (4396 and 2903 ng/mL; p = 0.01) and that (2) HS and soluble CD14 (a marker of monocyte activation) levels were closely related (Pearson's r = 0.65; p = 0.002). Mechanistically, Toll-like receptor (TLR) activation of human monocytes results in GAC remodeling and a decrease in the mGAC (71% compared with no treatment; p = 0.0007). Additionally, we found that ex vivo enzymatic removal of HS and disruption of the mGAC triggers human monocyte activation and amplifies monocyte inflammatory responses. Specifically, using RNA-seq, we found that enzymatic degradation of the mGAC increases transcription of inflammatory (IL6, CCL3) and vascular (tissue factor/F3) mediators. CONCLUSION These studies indicate that the mGAC is dynamically remodeled during monocyte activation and that mGAC remodeling itself may contribute to the heightened inflammation associated with AHF.
Collapse
Affiliation(s)
- Olga G Grushko
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Steven Cho
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Ashley M Tate
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Icahn School of Medicine at Mount Sinai, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai, NY, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott L Hummel
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
- VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA.
- VA Ann Arbor Health System, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Xiang YZ, Wu G, Yang LY, Yang XJ, Zhang YM, Lin LB, Deng XY, Zhang QL. Antibacterial effect of bacteriocin XJS01 and its application as antibiofilm agents to treat multidrug-resistant Staphylococcus aureus infection. Int J Biol Macromol 2022; 196:13-22. [PMID: 34838856 DOI: 10.1016/j.ijbiomac.2021.11.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/09/2021] [Accepted: 11/20/2021] [Indexed: 12/31/2022]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus biofilms have emerged as a serious threat to human health. Recently, the development of antibiotic replacement therapy has gained much attention due to the potential application of bacteriocin. The present study sought to evaluate the antibacterial effect of bacteriocin XJS01 against MDR S. aureus, a previously reported bacteriocin against S. aureus strain 2612:1606BL1486 (S. aureus_26, an MDR strain demonstrated here), and its potential application as an antibiofilm agent. The minimum bactericide concentration of XJS01 against MDR S. aureus_26 was 33.18 μg/mL. XJS01 exhibited excellent storage stability and resistance against acid and reduced the density of established MDR S. aureus_26 biofilm. The hemolytic and HEK293T cytotoxicity activities of XJS01 and the histological analyses in mice confirmed its safety. Moreover, XJS01 effectively disrupted the MDR S. aureus_26 biofilm established on the skin wound surface and reduced the biofilm-isolated bacteria, thereby decreasing the release of pro-inflammatory cytokines and the proliferation of alternatively activated macrophages. Compared to mupirocin, XJS01 exhibited an excellent therapeutic effect on mice skin wounds, confirming it to be a potential alternative to antibiotics.
Collapse
Affiliation(s)
- Yi-Zhou Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Gang Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Department of Neurology, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| | - Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Song J, Frieler RA, Vigil TM, Ma J, Brombacher F, Goonewardena SN, Goldstein DR, Mortensen RM. Inactivation of Interleukin-4 Receptor α Signaling in Myeloid Cells Protects Mice From Angiotensin II/High Salt-Induced Cardiovascular Dysfunction Through Suppression of Fibrotic Remodeling. J Am Heart Assoc 2021; 10:e017329. [PMID: 34132103 PMCID: PMC8403318 DOI: 10.1161/jaha.120.017329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Hypertension‐induced cardiovascular remodeling is characterized by chronic low‐grade inflammation. Interleukin‐4 receptor α (IL‐4Rα) signaling is importantly involved in cardiovascular remodeling, however, the target cell type(s) is unclear. Here, we investigated the role of myeloid‐specific IL‐4Rα signaling in cardiovascular remodeling induced by angiotensin II and high salt. Methods and Results Myeloid IL‐4Rα deficiency suppressed both the in vitro and in vivo expression of alternatively activated macrophage markers including Arg1 (arginase 1), Ym1 (chitinase 3‐like 3), and Relmα/Fizz1 (resistin‐like molecule α). After angiotensin II and high salt treatment, myeloid‐specific IL‐4Rα deficiency did not change hypertrophic remodeling within the heart and aorta. However, myeloid IL‐4Rα deficiency resulted in a substantial reduction in fibrosis through the suppression of profibrotic pathways and the enhancement of antifibrotic signaling. Decreased fibrosis was associated with significant preservation of myocardial function in MyIL4RαKO mice and was mediated by attenuated alternative macrophage activation. Conclusions Myeloid IL‐4Rα signaling is substantially involved in fibrotic cardiovascular remodeling by controlling alternative macrophage activation and regulating fibrosis‐related signaling. Inhibiting myeloid IL‐4Rα signaling may be a potential strategy to prevent hypertensive cardiovascular diseases.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Cell and Developmental Biology University of Michigan Medical School Ann Arbor MI.,Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Ryan A Frieler
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Thomas M Vigil
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Jun Ma
- Department of Thoracic Surgery Shanxi Province People's Hospital Taiyuan P.R. China
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology University of Cape TownDivision of Immunology and South African Medical Research Council (SAMRC) Cape Town South Africa
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine Department of Internal Medicine University of Michigan Ann Arbor MI
| | - Daniel R Goldstein
- Division of Cardiovascular Medicine Department of Internal Medicine University of Michigan Ann Arbor MI.,Institute of Gerontology University of Michigan Ann Arbor MI.,Department of Microbiology and Immunology University of Michigan Ann Arbor MI
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI.,Division of Metabolism, Endocrinology, and Diabetes Department of Internal Medicine University of Michigan Ann Arbor MI.,Department of Pharmacology University of Michigan Ann Arbor MI
| |
Collapse
|