1
|
Petersen TB, Suthahar N, Asselbergs FW, de Bakker M, Akkerhuis KM, Constantinescu AA, van Ramshorst J, Katsikis PD, van der Spek PJ, Umans VA, de Boer RA, Boersma E, Rizopoulos D, Kardys I. Proteomic biomarkers related to obesity in heart failure with reduced ejection fraction and their associations with outcome. Obesity (Silver Spring) 2024; 32:1658-1669. [PMID: 39039788 DOI: 10.1002/oby.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Heart failure (HF) pathophysiology in patients with obesity may be distinct. To study these features, we identified obesity-related biomarkers from 4210 circulating proteins in patients with HF with reduced ejection fraction (HFrEF) and examined associations of these proteins with HF prognosis and biological mechanisms. METHODS In 373 patients with trimonthly blood sampling during a median follow-up of 2.1 (25th-75th percentile: 1.1-2.6) years, we applied an aptamer-based multiplex approach measuring 4210 proteins in baseline samples and the last two samples before study end. Associations between obesity (BMI > 30 kg/m2) and baseline protein levels were analyzed. Subsequently, associations of serially measured obesity-related proteins with biological mechanisms and the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, left ventricular assist device implantation, and heart transplantation) were examined. RESULTS Obesity was identified in 26% (96/373) of patients. A total of 30% (112/373) experienced a PEP (with obesity: 26% [25/96] vs. without obesity: 31% [87/277]). A total of 141/4210 proteins were linked to obesity, reflecting mechanisms of neuron projection development, cell adhesion, and muscle cell migration. A total of 50/141 proteins were associated with the PEP, of which 12 proteins related to atherosclerosis or hypertrophy provided prognostic information beyond clinical characteristics, N-terminal pro-B-type natriuretic peptide, and high-sensitivity troponin T. CONCLUSIONS Patients with HFrEF and obesity show distinct proteomic profiles compared to patients with HFrEF without obesity. Obesity-related proteins are independently associated with HF outcome. These proteins carry potential to improve management of obesity-related HF and could be leads for future research.
Collapse
Affiliation(s)
- Teun B Petersen
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Navin Suthahar
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marie de Bakker
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Alina A Constantinescu
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jan van Ramshorst
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Peter J van der Spek
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Victor A Umans
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Dubin RF, Deo R, Ren Y, Wang J, Pico AR, Mychaleckyj JC, Kozlitina J, Arthur V, Lee H, Shah A, Feldman H, Bansal N, Zelnick L, Rao P, Sukul N, Raj DS, Mehta R, Rosas SE, Bhat Z, Weir MR, He J, Chen J, Kansal M, Kimmel PL, Ramachandran VS, Waikar SS, Segal MR, Ganz P. Incident heart failure in chronic kidney disease: proteomics informs biology and risk stratification. Eur Heart J 2024; 45:2752-2767. [PMID: 38757788 PMCID: PMC11313584 DOI: 10.1093/eurheartj/ehae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND AND AIMS Incident heart failure (HF) among individuals with chronic kidney disease (CKD) incurs hospitalizations that burden patients and health care systems. There are few preventative therapies, and the Pooled Cohort equations to Prevent Heart Failure (PCP-HF) perform poorly in the setting of CKD. New drug targets and better risk stratification are urgently needed. METHODS In this analysis of incident HF, SomaScan V4.0 (4638 proteins) was analysed in 2906 participants of the Chronic Renal Insufficiency Cohort (CRIC) with validation in the Atherosclerosis Risk in Communities (ARIC) study. The primary outcome was 14-year incident HF (390 events); secondary outcomes included 4-year HF (183 events), HF with reduced ejection fraction (137 events), and HF with preserved ejection fraction (165 events). Mendelian randomization and Gene Ontology were applied to examine causality and pathways. The performance of novel multi-protein risk models was compared to the PCP-HF risk score. RESULTS Over 200 proteins were associated with incident HF after adjustment for estimated glomerular filtration rate at P < 1 × 10-5. After adjustment for covariates including N-terminal pro-B-type natriuretic peptide, 17 proteins remained associated at P < 1 × 10-5. Mendelian randomization associations were found for six proteins, of which four are druggable targets: FCG2B, IGFBP3, CAH6, and ASGR1. For the primary outcome, the C-statistic (95% confidence interval [CI]) for the 48-protein model in CRIC was 0.790 (0.735, 0.844) vs. 0.703 (0.644, 0.762) for the PCP-HF model (P = .001). C-statistic (95% CI) for the protein model in ARIC was 0.747 (0.707, 0.787). CONCLUSIONS Large-scale proteomics reveal novel circulating protein biomarkers and potential mediators of HF in CKD. Proteomic risk models improve upon the PCP-HF risk score in this population.
Collapse
Affiliation(s)
- Ruth F Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, H5.122E, Dallas, TX 75390, USA
| | - Rajat Deo
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianqiao Wang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Victoria Arthur
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongzhe Lee
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amil Shah
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Harold Feldman
- Patient-Centered Outcomes Research Institute, Washington, DC, USA
| | - Nisha Bansal
- Division of Nephrology, University of Washington Medical Center, Seattle, WA, USA
| | - Leila Zelnick
- Division of Nephrology, University of Washington Medical Center, Seattle, WA, USA
| | - Panduranga Rao
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Nidhi Sukul
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Dominic S Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, USA
| | - Rupal Mehta
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, USA
| | - Sylvia E Rosas
- Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zeenat Bhat
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Jing Chen
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Mayank Kansal
- Division of Cardiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vasan S Ramachandran
- University of Texas School of Public Health San Antonio and the University of Texas Health Sciences Center in San Antonio, Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Peter Ganz
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Horitani K, Chavkin NW, Arai Y, Wang Y, Ogawa H, Yura Y, Evans MA, Cochran JD, Thel MC, Polizio AH, Sano M, Miura-Yura E, Arai Y, Doviak H, Arnold AP, Gelfand BD, Hirschi KK, Sano S, Walsh K. Disruption of the Uty epigenetic regulator locus in hematopoietic cells phenocopies the profibrotic attributes of Y chromosome loss in heart failure. NATURE CARDIOVASCULAR RESEARCH 2024; 3:343-355. [PMID: 39183958 PMCID: PMC11343478 DOI: 10.1038/s44161-024-00441-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 08/27/2024]
Abstract
Heart failure affects millions of people worldwide, with men exhibiting a higher incidence than women. Our previous work has shown that mosaic loss of the Y chromosome (LOY) in leukocytes is causally associated with an increased risk for heart failure. Here, we show that LOY macrophages from the failing hearts of humans with dilated cardiomyopathy exhibit widespread changes in gene expression that correlate with cardiac fibroblast activation. Moreover, we identify the ubiquitously transcribed t et ratricopeptide Y-linked (Uty) gene in leukocytes as a causal locus for an accelerated progression of heart failure in male mice with LOY. We demonstrate that Uty disruption leads to epigenetic alterations in both monocytes and macrophages, increasing the propensity of differentiation into profibrotic macrophages. Treatment with a transforming growth factor-β-neutralizing antibody prevented the cardiac pathology associated with Uty deficiency in leukocytes. These findings shed light on the mechanisms that contribute to the higher incidence of heart failure in men.
Collapse
Affiliation(s)
- Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Present address: Department of Medicine II, Kansai Medical University, Osaka, Japan
- These authors contributed equally: Keita Horitani, Nicholas W. Chavkin, Soichi Sano
| | - Nicholas W. Chavkin
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- These authors contributed equally: Keita Horitani, Nicholas W. Chavkin, Soichi Sano
| | - Yohei Arai
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Present address: Department of Cardiology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Present address: Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Present address: Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jesse D. Cochran
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark C. Thel
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Miho Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Emiri Miura-Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Present address: Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yuka Arai
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradley D. Gelfand
- Ophthalmology, Biomedical Engineering, Center for Advanced Vision Science (CAVS), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Laboratory of Cardiovascular Mosaicism, National Cerebral and Cardiovascular Center, Osaka, Japan
- These authors contributed equally: Keita Horitani, Nicholas W. Chavkin, Soichi Sano
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
4
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Kiss T, Nyúl-Tóth Á, Gulej R, Tarantini S, Csipo T, Mukli P, Ungvari A, Balasubramanian P, Yabluchanskiy A, Benyo Z, Conley SM, Wren JD, Garman L, Huffman DM, Csiszar A, Ungvari Z. Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. GeroScience 2022; 44:953-981. [PMID: 35124764 PMCID: PMC9135944 DOI: 10.1007/s11357-022-00519-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular aging has a central role in the pathogenesis of cardiovascular diseases contributing to increased mortality of older adults. There is increasing evidence that, in addition to the documented role of cell-autonomous mechanisms of aging, cell-nonautonomous mechanisms also play a critical role in the regulation of vascular aging processes. Our recent transcriptomic studies (Kiss T. et al. Geroscience. 2020;42(2):727-748) demonstrated that circulating anti-geronic factors from young blood promote vascular rejuvenation in aged mice. The present study was designed to expand upon the results of this study by testing the hypothesis that circulating pro-geronic factors also contribute to the genesis of vascular aging phenotypes. To test this hypothesis, through heterochronic parabiosis, we determined the extent to which shifts in the vascular transcriptome (RNA-seq) are modulated by the old systemic environment. We reanalyzed existing RNA-seq data, comparing the transcriptome in the aorta arch samples isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] and young isochronic parabiont (6-month-old) mice [Y-(Y)] and also assessing transcriptomic changes in the aortic arch in young (6-month-old) parabiont mice [Y-(A); heterochronic parabiosis for 8 weeks] induced by the presence of old blood derived from aged (20-month-old) parabionts. We identified 528 concordant genes whose expression levels differed in the aged phenotype and were shifted towards the aged phenotype by the presence of old blood in young Y-(A) animals. Among them, the expression of 221 concordant genes was unaffected by the presence of young blood in A-(Y) mice. GO enrichment analysis suggests that old blood-regulated genes may contribute to pathologic vascular remodeling. IPA Upstream Regulator analysis (performed to identify upstream transcriptional regulators that may contribute to the observed transcriptomic changes) suggests that the mechanism of action of pro-geronic factors present in old blood may include inhibition of pathways mediated by SRF (serum response factor), insulin-like growth factor-1 (IGF-1) and VEGF-A. In conclusion, relatively short-term exposure to old blood can accelerate vascular aging processes. Our findings provide additional evidence supporting the significant plasticity of vascular aging and the existence of circulating pro-geronic factors mediating pathological remodeling of the vascular smooth muscle cells and the extracellular matrix.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Zoltan Benyo
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
6
|
Chavkin NW, Sano S, Wang Y, Oshima K, Ogawa H, Horitani K, Sano M, MacLauchlan S, Nelson A, Setia K, Vippa T, Watanabe Y, Saucerman JJ, Hirschi KK, Gokce N, Walsh K. The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. J Am Heart Assoc 2021; 10:e019904. [PMID: 34155901 PMCID: PMC8403294 DOI: 10.1161/jaha.120.019904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Background A hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early proinflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase-like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation. Methods and Results The role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after transverse aortic constriction surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2 knockout mice displayed a proinflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, transverse aortic constriction surgery led to the death of all mice by day 6 that was associated with myocardial hyperinflammation and vascular leakage. Conclusions Together, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.
Collapse
Affiliation(s)
- Nicholas W. Chavkin
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Cell BiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Soichi Sano
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
- Department of CardiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Ying Wang
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Kosei Oshima
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Hayato Ogawa
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Keita Horitani
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Miho Sano
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Susan MacLauchlan
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Anders Nelson
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVA
| | - Karishma Setia
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Tanvi Vippa
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Yosuke Watanabe
- Vascular Biology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Jeffrey J. Saucerman
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA
| | - Karen K. Hirschi
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Cell BiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Cardiovascular Research CenterSchool of MedicineYale UniversityNew HavenCT
| | - Noyan Gokce
- Boston University School of MedicineBostonMA
| | - Kenneth Walsh
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| |
Collapse
|